Comprehensive mechanism and microkinetic model-driven rational screening of 4N-modulated single-atom catalysts for selective oxidation of benzene to phenol

Rong Fan, Jiarong Lu, Hao Yan, Yibin Liu, Xin Zhou, Hui Zhao, Xiang Feng, Xiaobo Chen, Chaohe Yang

PDF(1211 KB)
PDF(1211 KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (11) : 137. DOI: 10.1007/s11705-024-2488-z
RESEARCH ARTICLE

Comprehensive mechanism and microkinetic model-driven rational screening of 4N-modulated single-atom catalysts for selective oxidation of benzene to phenol

Author information +
History +

Abstract

Exploring effective transition metal single-atom catalysts for selective oxidation of benzene to phenol is still a great challenge due to the lack of a comprehensive mechanism and mechanism-driven approach. Here, robust 4N-coordinated transition metal single atom catalysts embedded within graphene (TM1-N4/C) are systematically screened by density functional theory and microkinetic modeling approach to assess their selectivity and activity in benzene oxidation reaction. Our findings indicate that the single metal atom triggers the dissociation of H2O2 to form an active oxygen species (O*). The lone-electronic pair character of O* activates the benzene C–H bond by constructing C–O bond with C atom of benzene, promoting the formation of phenol products. In addition, after benzene captures O* to form phenol, the positively charged bare single metal atom activates the phenol O–H bond by electron interaction with the O atom in the phenol, inducing the generation of benzoquinone by-products. The activation process of O–H bond is accompanied by H atom falling onto the carrier. On this basis, it can be inferred that adsorption energy of the C atom on the O* atom (EC) and the H atom on the TM1-N4/C (EH), which respectively represent activation ability of benzene C–H bond and phenol O–H bond, could be labeled as descriptors describing catalytic activity and selectivity. Moreover, based on the as-obtained volcano map, appropriate EC (–8 to –7 eV) and weakened EH (–1.5 to 0 eV) contribute to the optimization of catalytic performance for benzene oxidation to phenol. This study offers profound opinions on the rational design of metal single-atom catalysts that exhibit favorable catalytic behaviors in hydrocarbon oxidation.

Graphical abstract

Keywords

phenol / oxidation / mechanism / density functional theory / microkinetic analysis

Cite this article

Download citation ▾
Rong Fan, Jiarong Lu, Hao Yan, Yibin Liu, Xin Zhou, Hui Zhao, Xiang Feng, Xiaobo Chen, Chaohe Yang. Comprehensive mechanism and microkinetic model-driven rational screening of 4N-modulated single-atom catalysts for selective oxidation of benzene to phenol. Front. Chem. Sci. Eng., 2024, 18(11): 137 https://doi.org/10.1007/s11705-024-2488-z

References

[1]
Wang Z , Hisahiro E . Recent trends in phenol synthesis by photocatalytic oxidation of benzene. Dalton Transactions, 2023, 52(28): 9525–9540
CrossRef Google scholar
[2]
Luo Y C , Xiong J H , Pang C L , Li G Y , Hu C W . Direct hydroxylation of benzene to phenol over TS-1 catalysts. Catalysts, 2018, 8(2): 49
CrossRef Google scholar
[3]
Jia X , Wang F Y , Wen H , Zhang L X , Jiao S Y , Wang X L , Pei X Y , Xing S Z . An efficient photocatalyst based on H5PMo10V2O40/UiO-66-NH2 for direct hydroxylation of benzene to phenol by H2O2. RSC Advances, 2022, 12(45): 29433–29439
CrossRef Google scholar
[4]
Gonfa M T , Shen S , Chen L , Hu B , Zhou W , Bai Z J , Au C T , Yin S F . Research progress on the heterogeneous photocatalytic selective oxidation of benzene to phenol. Chinese Journal of Catalysis, 2023, 49: 16–41
CrossRef Google scholar
[5]
Yu H D , Hui L , Fang Y , Xue Y R , He F , Li Y L . A metal-free graphdiyne material for highly efficient oxidation of benzene to phenol. 2D Materials, 2021, 8(4): 044004
[6]
Shi X Q , Liu S E , Duanmu C S , Shang M J , Qiu M , Shen C , Yang Y , Su Y H . Visible-light photooxidation of benzene to phenol in continuous-flow microreactors. Chemical Engineering Journal, 2021, 420: 129976
CrossRef Google scholar
[7]
Ouyang C , Li J W , Qu Y Q , Hong S , He S B . Oxidation of benzene to phenol with N2O over a hierarchical Fe/ZSM-5 catalyst. Green Energy & Environment, 2023, 8(4): 1161–1173
CrossRef Google scholar
[8]
Mancuso A , Vaiano V , Antico P , Sacco O , Venditto V . Photoreactive polymer composite for selective oxidation of benzene to phenol. Catalysis Today, 2023, 413: 113914
CrossRef Google scholar
[9]
ElMetwally A E , Eshaq G , Yehia F Z , Al-Sabagh A M , Kegnæs S . Iron oxychloride as an efficient catalyst for selective hydroxylation of benzene to phenol. ACS Catalysis, 2018, 8(11): 10668–10675
CrossRef Google scholar
[10]
Zhang T , Sun Z , Li S Y , Wang B J , Liu Y F , Zhang R G , Zhao Z K . Regulating electron configuration of single Cu sites via unsaturated N,O-coordination for selective oxidation of benzene. Nature Communications, 2022, 13(1): 6996
CrossRef Google scholar
[11]
Yu J , Cao C Y , Jin H Q , Chen W M , Shen Q K , Li P P , Zheng L R , He F , Song W G , Li Y L . Uniform single atomic Cu1-C4 sites anchored in graphdiyne for hydroxylation of benzene to phenol. National Science Review, 2022, 9(9): nwac018
CrossRef Google scholar
[12]
Chen W M , Jin H Q , He F , Cui P X , Cao C Y , Song W G . Dynamic evolution of nitrogen and oxygen dual-coordinated single atomic copper catalyst during partial oxidation of benzene to phenol. Nano Research, 2022, 15(4): 3017–3025
CrossRef Google scholar
[13]
Zhu Y Q , Sun W M , Luo J , Chen W X , Cao T , Zheng L R , Dong J C , Zhang J , Zhang M L , Han Y H . . A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts. Nature Communications, 2018, 9(1): 3861
CrossRef Google scholar
[14]
Zhao Y T , Xing H R , Wang Q , Chen Y J , Xia J W , Xu H , He G Y , Yin F X , Chen Q , Chen H Q . Engineering atomically dispersed single Cu–N3 catalytic sites for highly selective oxidation of benzene to phenol. Inorganic Chemistry Frontiers, 2022, 9(11): 2637–2643
CrossRef Google scholar
[15]
Liu Y , Zheng Y M , Dong P P , Zhang W Z , Wu W J , Mao J J . Atomically dispersed Cu anchored on nitrogen and boron codoped carbon nanosheets for enhancing catalytic performance. ACS Applied Materials & Interfaces, 2021, 13(51): 61047–61054
CrossRef Google scholar
[16]
Bhandari S , Khatun R , Khan T S , Khurana D , Poddar M K , Shukla A , Prasad V , Bal R . Preparation of a nanostructured iron chromite spinel in the pure form and its catalytic activity for the selective oxidation of benzene to phenol: experimental and DFT studies. Green Chemistry, 2022, 24(23): 9303–9314
CrossRef Google scholar
[17]
Zhou H , Zhao Y F , Gan J , Xu J , Wang Y , Lv H W , Fang S , Wang Z Y , Deng Z L , Wang X Q . . Cation-exchange induced precise regulation of single copper site triggers room-temperature oxidation of benzene. Journal of the American Chemical Society, 2020, 142(29): 12643–12650
CrossRef Google scholar
[18]
Zhang T , Nie X W , Yu W W , Guo X W , Song C S , Si R , Liu Y F , Zhao Z K . Single atomic Cu-N2 catalytic sites for highly active and selective hydroxylation of benzene to phenol. iScience, 2019, 22: 97–108
CrossRef Google scholar
[19]
Zhang M L , Wang Y G , Chen W X , Dong J C , Zheng L R , Luo J , Wan J W , Tian S B , Cheong W C , Wang D S . . Metal (hydr)oxides@polymer core-shell strategy to metal single-atom materials. Journal of the American Chemical Society, 2017, 139(32): 10976–10979
CrossRef Google scholar
[20]
Pan Y , Chen Y J , Wu K L , Chen Z , Liu S J , Cao X , Cheong W C , Meng T , Luo J , Zheng L R C . . Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nature Communications, 2019, 10(1): 4290
CrossRef Google scholar
[21]
Jin H Q , Cui P X , Cao C Y , Yu X H , Zhao R Q , Ma D , Song W G . Understanding the density-dependent activity of Cu single-atom catalyst in the benzene hydroxylation reaction. ACS Catalysis, 2023, 13(2): 1316–1325
CrossRef Google scholar
[22]
Che W , Li P , Han G F , Noh H J , Seo J M , Jeon J P , Li C Q , Liu W , Li F , Liu Q H . . Out-of-plane single-copper-site catalysts for room-temperature benzene oxidation. Angewandte Chemie International Edition, 2024, 63(20): e202403017
CrossRef Google scholar
[23]
Yang W J , Feng Y J , Chen X L , Wu C C , Wang F , Gao Z Y , Liu Y F , Ding X L , Li H . Understanding trends in the NO oxidation activity of single-atom catalysts. Journal of Environmental Chemical Engineering, 2022, 10(6): 108744
CrossRef Google scholar
[24]
Zhang J , Yan L , Xue K , Wu J , Ku R Q , Ding Y M , Dong H L , Zhou L J . Understanding trends in electrochemical methanol oxidation reaction activity on a single transition-metal atom embedded in N-coordinated graphene catalysts. Journal of Physical Chemistry Letters, 2023, 14(14): 3384–3390
CrossRef Google scholar
[25]
Perdew J P , Burke K , Ernzerhof M . Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868
CrossRef Google scholar
[26]
Perdew J P , Chevary J A , Vosko S H , Jackson K A , Pederson M R , Singh D J , Fiolhais C . Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Physical Review B: Condensed Matter, 1992, 46(11): 6671–6687
CrossRef Google scholar
[27]
Zhao L M , Wang S P , Ding Q Y , Xu W B , Sang P P , Chi Y H , Lu X Q , Guo W Y . The oxidation of methanol on PtRu (111): a periodic density functional theory investigation. Journal of Physical Chemistry C, 2015, 119(35): 20389–20400
CrossRef Google scholar
[28]
Yan H , Li S F , Feng X , Lu J R , Zheng X H , Li R Y , Zhou X , Chen X B , Liu Y B , Chen D . . Rational screening of metal catalysts for selective oxidation of glycerol to glyceric acid from microkinetic analysis. AIChE Journal. American Institute of Chemical Engineers, 2023, 69(2): e17868
CrossRef Google scholar
[29]
Fan R , Li R Y , Wang X P , Kuang X H , Li J B , Liu Y B , Yan H , Zhou X , Zhao H , Feng X . . Theoretical study of the local environment of Co-NxCy structure for selective oxidation of benzene to phenol. Molecular Catalysis, 2024, 553: 113795
CrossRef Google scholar
[30]
Zhang J , Wang Y , Wang Y Y , Zhang M G . Catalytic activity for oxygen reduction reaction on CoN2 embedded graphene: a density functional theory study. Journal of the Electrochemical Society, 2017, 164(12): F1122–F1129
CrossRef Google scholar
[31]
Niu J T , Liu H Y , Jin Y , Fan B G , Qi W J , Ran J Y . A density functional theory study of methane activation on MgO supported Ni9M1 cluster: role of M on C–H activation. Frontiers of Chemical Science and Engineering, 2022, 16(10): 1485–1492
CrossRef Google scholar
[32]
Xu H L , Peng X F , Zheng J Y , Wang Z . Tuning nitrogen defects and doping sulfur in carbon nitride for enhanced visible light photocatalytic activity. Frontiers of Chemical Science and Engineering, 2023, 17(1): 93–101
CrossRef Google scholar
[33]
Lin Y M , Zhang Y Y , Nie R F , Zhou K , Ma Y , Liu M J , Lu D , Bao Z B , Yang Q W , Yang Y W . . Room-temperature hydrogenation of halogenated nitrobenzenes over metal-organic-framework-derived ultra-dispersed Ni stabilized by N-doped carbon nanoneedles. Frontiers of Chemical Science and Engineering, 2022, 16(12): 1782–1792
CrossRef Google scholar
[34]
Li C H , Zhang L L , Li H , Yang S . Cobalt nitride enabled benzimidazoles production from furyl/aryl bio-alcohols and o-nitroanilines without an external H-source. Frontiers of Chemical Science and Engineering, 2023, 17(1): 68–81
CrossRef Google scholar
[35]
Bo J X , Li M , Zhu X L , Ge Q F , Han J Y , Wang H . Bamboo-like N-doped carbon nanotubes encapsulating M(Co,Fe)-Ni alloy for electrochemical production of syngas with potential-independent CO/H2 ratios. Frontiers of Chemical Science and Engineering, 2022, 16(4): 498–510
CrossRef Google scholar
[36]
Błoński P , Tuček J , Sofer Z , Mazánek V , Petr M , Pumera M , Otyepka M , Zbořil R . Doping with graphitic nitrogen triggers ferromagnetism in graphene. Journal of the American Chemical Society, 2017, 139(8): 3171–3180
CrossRef Google scholar
[37]
Wang J , Zheng M Y , Zhao X , Fan W L . Structure-performance descriptors and the role of the axial oxygen atom on M–N4–C single-atom catalysts for electrochemical CO2 reduction. ACS Catalysis, 2022, 12(9): 5441–5454
CrossRef Google scholar
[38]
Yang W J , Xu S P , Ma K , Wu C C , Gates I D , Ding X L , Meng W H , Gao Z Y . Geometric structures, electronic characteristics, stabilities, catalytic activities, and descriptors of graphene-based single-atom catalysts. Nano Materials Science, 2020, 2(2): 120–131
CrossRef Google scholar
[39]
Janthon P , Kozlov S M , Viñes F , Limtrakul J , Illas F . Establishing the accuracy of broadly used density functionals in describing bulk properties of transition metals. Journal of Chemical Theory and Computation, 2013, 9(3): 1631–1640
CrossRef Google scholar
[40]
Wang Y L , Hu P , Yang J , Zhu Y A , Chen D . Chen D. C–H bond activation in light alkanes: a theoretical perspective. Chemical Society Reviews, 2021, 50(7): 4299–4358
CrossRef Google scholar
[41]
Studt F , Abild-Pedersen F , Wu Q X , Jensen A D , Temel B , Grunwaldt J D , Nørskov J K . CO hydrogenation to methanol on Cu–Ni catalysts: theory and experiment. Journal of Catalysis, 2012, 293: 51–60
CrossRef Google scholar
[42]
Xu W Z , Sun Y , Li N , Liu W , Zhang Z C . Copper and cobalt Co-catalyzed selective electrooxidation of phenol to p-benzoquinone under mild conditions. ChemElectroChem, 2023, 10(18): e202300187
CrossRef Google scholar
[43]
Han C L , Ye Y L , Wang G W , Hong W , Feng C H . Selective electro-oxidation of phenol to benzoquinone/hydroquinone on polyaniline enhances capacitance and cycling stability of polyaniline electrodes. Chemical Engineering Journal, 2018, 347: 648–659
CrossRef Google scholar
[44]
Zhang T , Zhang D , Han X H , Dong T , Guo X W , Song C S , Si R , Liu W , Liu Y F , Zhao Z K . Preassembly strategy to fabricate porous hollow carbonitride spheres inlaid with single Cu–N3 sites for selective oxidation of benzene to phenol. Journal of the American Chemical Society, 2018, 140(49): 16936–16940
CrossRef Google scholar

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

Our work was supported by the Fundamental Research Funds for the Central Universities (Grant No. 23CX07009A), the National Natural Science Foundation of China (Grant No. 22108305), the Natural Science Foundation of Shandong Province (Grant No. ZR2023YQ009) and the Special Project Fund of Taishan-Scholars Shandong Province (Grant No. tsqn202211078).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-024-2488-z and is accessible for authorized users.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(1211 KB)

Accesses

Citations

Detail

Sections
Recommended

/