Enhanced formic acid production for CO2 photocatalytic reduction over Pd/H-TiO2 catalyst

Huimin Gao, Jinpeng Zhang, Fangyuan Zhang, Jieying Jing, Wen-Ying Li

PDF(1237 KB)
PDF(1237 KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (11) : 134. DOI: 10.1007/s11705-024-2485-2
RESEARCH ARTICLE

Enhanced formic acid production for CO2 photocatalytic reduction over Pd/H-TiO2 catalyst

Author information +
History +

Abstract

The photocatalytic reduction of CO2 into formic acid is a feasible approach to alleviate the effects of global climate change and achieve chemical energy storage. It is important to design highly active photocatalysts to improve the selectivity and yield of formic acid. In this study, TiO2-based catalysts were prepared and loaded with Pd nanoparticles via an impregnation process. The Pd/H-TiO2 catalyst demonstrated superior CO2 reduction activity and a high formic acid production rate of 14.14 mmolcat·g–1·h–1. The excellent catalytic performance observed in the presence of a Pd/H-TiO2 catalyst is ascribed to the synergy between Ov and Pd. The presence of Ov led to increase in CO2 adsorption while Pd loading enhanced the photogenerated electron-hole pair separation. Electron transfer from H-TiO2 to Pd also contributed to CO2 activation.

Graphical abstract

Keywords

CO2 reduction / formic acid / photocatalysis / TiO2 catalyst

Cite this article

Download citation ▾
Huimin Gao, Jinpeng Zhang, Fangyuan Zhang, Jieying Jing, Wen-Ying Li. Enhanced formic acid production for CO2 photocatalytic reduction over Pd/H-TiO2 catalyst. Front. Chem. Sci. Eng., 2024, 18(11): 134 https://doi.org/10.1007/s11705-024-2485-2

References

[1]
Yuan Z M , Zhu X L , Gao X Q , An C H , Wang Z , Zuo C , Dionysiou D D , He H , Jiang Z Y . Enhancing photocatalytic CO2 reduction with TiO2-based materials: strategies, mechanisms, challenges, and perspectives. Environmental Science and Ecotechnology, 2024, 20: 100368
CrossRef Google scholar
[2]
Wang S W , Wang L G , Wang D S , Li Y D . Recent advances of single-atom catalysts in CO2 conversion. Energy & Environmental Science, 2023, 16(7): 2759–2803
CrossRef Google scholar
[3]
Pan F P , Li B Y , Deng W , Du Z C , Gang Y , Wang G F , Li Y . Promoting electrocatalytic CO2 reduction on nitrogen-doped carbon with sulfur addition. Applied Catalysis B: Environmental, 2019, 252: 240–249
CrossRef Google scholar
[4]
Liu M X , Xu Y K , Meng Y , Wang L J , Wang H , Huang Y C , Onishi N , Wang L , Fan Z J , Himeda Y . Heterogeneous catalysis for carbon dioxide mediated hydrogen storage technology based on formic acid. Advanced Energy Materials, 2022, 12(31): 2200817
CrossRef Google scholar
[5]
Lv C C , Bai X H , Ning S B , Song C X , Guan Q Q , Liu B , Li Y G , Ye J H . Nanostructured materials for photothermal carbon dioxide hydrogenation: regulating solar utilization and catalytic performance. ACS Nano, 2023, 17(3): 1725–1738
CrossRef Google scholar
[6]
Zhang S Q , Yu H Y , Wang Y , Yan Y X , Dai J , Shu D J , Wu X L . Surface dual metal occupations in Fe-doped FexBi2–xO3 induce highly efficient photocatalytic CO2 reduction. ACS Applied Materials & Interfaces, 2023, 15(20): 25049–25057
CrossRef Google scholar
[7]
Saito D , Tamaki Y , Ishitani O . Photocatalysis of CO2 reduction by a Ru(II)-Ru(II) supramolecular catalyst adsorbed on Al2O3. ACS Catalysis, 2023, 13(7): 4376–4383
CrossRef Google scholar
[8]
Pan H Q , Heagy M D . Photons to formate: a review on photocatalytic reduction of CO2 to formic acid. Nanomaterials, 2020, 10(12): 2422
CrossRef Google scholar
[9]
Xiong J , Yang A J , Sun Q , Gao H X , Zhang H Y , Mao Y , Liang Z W . Insights into CO2 activation and charge transfer in photocatalytic reduction of CO2 on pure and metal single atom modified TiO2 surfaces. Molecular Catalysis, 2023, 547: 113370
CrossRef Google scholar
[10]
Khan H , Shah M U H . Modification strategies of TiO2 based photocatalysts for enhanced visible light activity and energy storage ability: a review. Journal of Environmental Chemical Engineering, 2023, 11(6): 111532
CrossRef Google scholar
[11]
Li G H , Sun Y Y , Zhang Q M , Gao Z , Sun W , Zhou X X . Ag quantum dots modified hierarchically porous and defective TiO2 nanoparticles for improved photocatalytic CO2 reduction. Chemical Engineering Journal, 2021, 410: 128397
CrossRef Google scholar
[12]
Wu Y W , Yan L , Yu Y Q , Jing C Y . Photocatalytic CO2 reduction to CH4 on iron porphyrin supported on atomically thin defective titanium dioxide. Catalysis Science & Technology, 2021, 11(18): 6103–6111
CrossRef Google scholar
[13]
Ali Khan A , Tahir M . Synergistic effect of Co/La in oxygen vacancy rich ternary CoAlLa layered double hydroxide with enhanced reductive sites for selective photoreduction of CO2 to CH4. Energy & Fuels, 2021, 35(10): 8922–8943
CrossRef Google scholar
[14]
Zhao H L , Pan F P , Li Y . A review on the effects of TiO2 surface point defects on CO2 photoreduction with H2O. Journal of Materiomics, 2017, 3(1): 17–32
CrossRef Google scholar
[15]
Song G X , Lang X F , Huo C X , Ren S H , Wang Y J , Tang Z K , Chen X G . Mechanism of photocatalytic reduction of CO2 to CH4 on F-doped defective anatase TiO2 (101) surface: a density functional theory study. Surface Science, 2023, 730: 122247
CrossRef Google scholar
[16]
Wang S , Nie X W , Lin J B , Ding F S , Song C S , Guo X W . Computational design of single-atom modified Ti-MOFs for photocatalytic CO2 reduction to C1 chemicals. ChemSusChem, 2024, 17(8): e202301619
CrossRef Google scholar
[17]
Wei F , Luo T , Wang Y , Kong L C , Feng J J , Li Z Q , Lu J Q , Yang F . Boosting CO2 electroreduction to formate via in-situ formation of ultrathin Bi nanosheets decorated with monodispersed Pd nanoparticles. Journal of Catalysis, 2023, 424: 50–63
CrossRef Google scholar
[18]
Zhang F , Li Y H , Qi M Y , Tang Z R , Xu Y J . Boosting the activity and stability of Ag-Cu2O/ZnO nanorods for photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2020, 268: 118380
CrossRef Google scholar
[19]
Shi Y X , Li L L , Xu Z , Guo F , Li Y , Shi W L . Synergistic coupling of piezoelectric and plasmonic effects regulates the Schottky barrier in Ag nanoparticles/ultrathin g-C3N4 nanosheets heterostructure to enhance the photocatalytic activity. Applied Surface Science, 2023, 616: 156466
CrossRef Google scholar
[20]
Jin B B , Ye X , Zhong H , Jin F M . Light-driven hydrogenation of bicarbonate into formate over nano-Pd/TiO2. ACS Sustainable Chemistry & Engineering, 2020, 8(17): 6798–6805
CrossRef Google scholar
[21]
Zheng M Y , Yang J , Fan W L , Zhao X . Oxygen vacancy and nitrogen doping collaboratively boost performance and stability of TiO2-supported Pd catalysts for CO2 photoreduction: a DFT study. Physical Chemistry Chemical Physics, 2021, 23(43): 24801–24813
CrossRef Google scholar
[22]
Li J , Zhou H , Zhuo H , Wei Z Z , Zhuang G L , Zhong X , Deng S W , Li X N , Wang J G . Oxygen vacancies on TiO2 promoted the activity and stability of supported Pd nanoparticles for the oxygen reduction reaction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(5): 2264–2272
CrossRef Google scholar
[23]
Vequizo J J M , Kato K , Amano F , Yamakata A . Unfolding the impact of H2-reduction treatment in enhancing the photocatalytic activity of rutile TiO2 based on photocarriers dynamics. Journal of Physical Chemistry C, 2023, 127(22): 10411–10418
CrossRef Google scholar
[24]
Sang L X , Zhao Y X , Burda C . TiO2 nanoparticles as functional building blocks. Chemical Reviews, 2014, 114(19): 9283–9318
CrossRef Google scholar
[25]
Zhong J B , Lu Y , Jiang W D , Meng Q M , He X Y , Li J Z , Chen Y Q . Characterization and photocatalytic property of Pd/TiO2 with the oxidation of gaseous benzene. Journal of Hazardous Materials, 2009, 168(2-3): 1632–1635
CrossRef Google scholar
[26]
Yilmaz P , Lacerda A M , Larrosa I , Dunn S . Photoelectrocatalysis of rhodamine B and solar hydrogen production by TiO2 and Pd/TiO2 catalyst systems. Electrochimica Acta, 2017, 231: 641–649
CrossRef Google scholar
[27]
Phan T N , Park Y K , Lee I G , Ko C H . Enhancement of C–O bond cleavage to afford aromatics in the hydrodeoxygenation of anisole over ruthenium-supporting mesoporous metal oxides. Applied Catalysis A, General, 2017, 544: 84–93
CrossRef Google scholar
[28]
Samsudin E M , Hamid S B A , Juan J C , Basirun W J , Kandjani A E . Surface modification of mixed-phase hydrogenated TiO2 and corresponding photocatalytic response. Applied Surface Science, 2015, 359: 883–896
CrossRef Google scholar
[29]
Liu L , Yu P Y , Chen X B , Mao S S , Shen D Z . Hydrogenation and disorder in engineered black TiO2. Physical Review Letters, 2013, 111(6): 065505
CrossRef Google scholar
[30]
Mo L B , Wang Y , Bai Y , Xiang Q Y , Li Q , Yao W Q , Wang J O , Ibrahim K , Wang H H , Wan C H . . Hydrogen impurity defects in rutile TiO2. Scientific Reports, 2015, 5(1): 17634
CrossRef Google scholar
[31]
Zhang Y S , Liu J X , Qian K , Jia A P , Li D , Shi L , Hu J , Zhu J F , Huang W X . Structure sensitivity of Au-TiO2 strong metal-support interactions. Angewandte Chemie International Edition, 2021, 60(21): 12074–12081
CrossRef Google scholar
[32]
Li J L , Zhang M , Guan Z J , Li Q Y , He C Q , Yang J J . Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO2 in the photocatalytic reduction of CO2. Applied Catalysis B: Environmental, 2017, 206: 300–307
CrossRef Google scholar
[33]
Jiang D L , Zhou Y M , Zhang Q X , Song Q , Zhou C J , Shi X L , Li D . Synergistic integration of AuCu Co-catalyst with oxygen vacancies on TiO2 for efficient photocatalytic conversion of CO2 to CH4. ACS Applied Materials & Interfaces, 2021, 13(39): 46772–46782
CrossRef Google scholar
[34]
Zhu Q H , Deng Z S , Xie H J , Xing M Y , Zhang J L . Investigation of concerted proton-electron donors for promoting the selective production of HCOOH in CO2 photoreduction. ACS Catalysis, 2023, 13(5): 3254–3262
CrossRef Google scholar
[35]
Peña R , Romero R , Amado-Piña D , Natividad R . Cu/TiO2 photo-catalyzed CO2 chemical reduction in a multiphase capillary reactor. Topics in Catalysis, 2024, 67(5-8): 377–393
CrossRef Google scholar
[36]
Zhang H N , Li Y F , Wang J Z , Wu N N , Sheng H , Chen C C , Zhao J C . An unprecedent hydride transfer pathway for selective photocatalytic reduction of CO2 to formic acid on TiO2. Applied Catalysis B: Environmental, 2021, 284: 119692
CrossRef Google scholar
[37]
Iguchi S , Kikkawa S , Teramura K , Hosokawa S , Tanaka T . Investigation of the electrochemical and photoelectrochemical properties of Ni-Al LDH photocatalysts. Physical Chemistry Chemical Physics, 2016, 18(20): 13811–13819
CrossRef Google scholar
[38]
Huang X Y , Lei R , Yuan J , Gao F , Jiang C K , Feng W H , Zhuang J D , Liu P . Insight into the piezo-photo coupling effect of PbTiO3/CdS composites for piezo-photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2021, 282: 119586
CrossRef Google scholar
[39]
Zheng D , Xue Y F , Wang J , Varbanov P S , Klemes J J , Yin C . Nanocatalysts in photocatalytic water splitting for green hydrogen generation: challenges and opportunities. Journal of Cleaner Production, 2023, 414: 137700
CrossRef Google scholar
[40]
Quan Q , Xie S J , Weng B , Wang Y , Xu Y J . Revealing the double-edged sword role of graphene on boosted charge transfer versus active site control in TiO2 nanotube arrays@RGO/MoS2 heterostructure. Small, 2018, 14(21): 1704531
CrossRef Google scholar
[41]
Basumatary R , Basumatary B , Konwar D , Ramchiary A . Tailored highly efficient Co-doped TiO2/CoTiO3 heterojunction photocatalyst for methylene blue degradation under visible light. Journal of the Korean Ceramic Society, 2023, 60(3): 547–559
CrossRef Google scholar
[42]
Ren J , Ouyang S , Xu H , Meng X , Wang T , Wang D , Ye J . Targeting activation of CO2 and H2 over Ru-loaded ultrathin layered double hydroxides to achieve efficient photothermal CO2 methanation in flow-type system. Advanced Energy Materials, 2017, 7(5): 1601657
CrossRef Google scholar
[43]
Chang L , Besteiro L V , Sun J C , Santiago E Y , Gray S K , Wang Z M , Govorov A O . Electronic structure of the plasmons in metal nanocrystals: fundamental limitations for the energy efficiency of hot electron generation. ACS Energy Letters, 2019, 4(10): 2552–2568
CrossRef Google scholar
[44]
Cao Y H , Zhang R Y , Zhou T L , Jin S M , Huang J D , Ye L Q , Huang Z A , Wang F , Zhou Y . Zhou Y. B–O bonds in ultrathin boron nitride nanosheets to promote photocatalytic carbon dioxide conversion. ACS Applied Materials & Interfaces, 2020, 12(8): 9935–9943
CrossRef Google scholar
[45]
Zindrou A , Deligiannakis Y . Quantitative in situ monitoring of Cu-atom release by Cu2O nanocatalysts under photocatalytic CO2 reduction conditions: new insights into the photocorrosion mechanism. Nanomaterials (Basel, Switzerland), 2023, 13(11): 1773
CrossRef Google scholar
[46]
Li A , Cao Q , Zhou G Y , Schmidt B , Zhu W J , Yuan X T , Huo H L , Gong J L , Antonietti M . Three-phase photocatalysis for the enhanced selectivity and activity of CO2 reduction on a hydrophobic surface. Angewandte Chemie International Edition, 2019, 58(41): 14549–14555
CrossRef Google scholar
[47]
Qu T X , Wei S Z , Xiong Z , Zhang J Y , Zhao Y C . Progress and prospect of CO2 photocatalytic reduction to methanol. Fuel Processing Technology, 2023, 251: 107933
CrossRef Google scholar

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (Grant No. 2022YFE0208400), the Natural Science Foundation of Shanxi Province (Grant No. 202303021221019), the Fundamental Research Funds for the Central Universities (Grant No. 2022ZFJH004), and the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (Grant No. 2021SX-FR002).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-024-2485-2 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(1237 KB)

Accesses

Citations

Detail

Sections
Recommended

/