Gas pressure-sensitive regulation of exciton state of monolayer tungsten disulfide

Shuangping Han, Pengyu Zan, Yu Yan, Yaoxing Bian, Chengbing Qin, Liantuan Xiao

PDF(1058 KB)
PDF(1058 KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (11) : 131. DOI: 10.1007/s11705-024-2483-4
RESEARCH ARTICLE

Gas pressure-sensitive regulation of exciton state of monolayer tungsten disulfide

Author information +
History +

Abstract

Over the past few decades, significant progress has been made in thin-film optoelectronic devices based on transition metal dichalcogenides. However, the exciton states' sensitivity to the environment presents challenges for device applications. This study reports the evolution of photoinduced exciton states in monolayer tungsten disulfide in a low-pressure environment to help elucidate the physical mechanism of the transition between neutral and charged excitons. At 222 mTorr, the transition rate between excitons comprises two components: 0.09 s–1 and 1.68 s–1. Based on this phenomenon, we developed a pressure-tuning method that allows for a tuning range of approximately 40% of exciton weight. Our study demonstrates that the intensity of neutral exciton emission from monolayer tungsten disulfide follows a power-law distribution in relation to pressure, indicating a highly sensitive pressure dependence. We provide a nondestructive and highly sensitive method for exciton conversion through in situ optical manipulation. This highlights the potential development of monolayer tungsten disulfide for pressure sensors and explains the impact of environmental factors on the product quality in photovoltaic devices. In addition, it demonstrates the promising future of monolayer transition metal dichalcogenides in applications such as photovoltaic devices and miniature biochemical sensors.

Graphical abstract

Keywords

neutral exciton state / charged exciton state / transition metal dichalcogenides / pressure sensitive

Cite this article

Download citation ▾
Shuangping Han, Pengyu Zan, Yu Yan, Yaoxing Bian, Chengbing Qin, Liantuan Xiao. Gas pressure-sensitive regulation of exciton state of monolayer tungsten disulfide. Front. Chem. Sci. Eng., 2024, 18(11): 131 https://doi.org/10.1007/s11705-024-2483-4

References

[1]
Naik M H , Regan E C , Zhang Z , Chan Y H , Li Z , Wang D , Yoon Y , Ong C S , Zhao W , Zhao S . . Intralayer charge-transfer moiré excitons in van der Waals superlattices. Nature, 2022, 609(7925): 52–57
CrossRef Google scholar
[2]
Su R , Kuiri M , Watanabe K , Taniguchi T , Folk J . Superconductivity in twisted double bilayer graphene stabilized by WSe2. Nature Materials, 2023, 22(11): 1332–1337
CrossRef Google scholar
[3]
Wang Y , Seki T , Yu X , Yu C C , Chiang K Y , Domke K F , Hunger J , Chen Y , Nagata Y , Bonn M . Chemistry governs water organization at a graphene electrode. Nature, 2023, 615(7950): E1–E2
CrossRef Google scholar
[4]
Cao Y , Qu P , Wang C , Zhou J , Li M , Yu X , Yu X , Pang J , Zhou W , Liu H . . Epitaxial growth of vertically aligned antimony selenide nanorod arrays for heterostructure based self-powered photodetector. Advanced Optical Materials, 2022, 10(19): 2200816
CrossRef Google scholar
[5]
Li Y , Huang S , Peng S , Jia H , Pang J , Ibarlucea B , Hou C , Cao Y , Zhou W , Liu H . . Toward smart sensing by MXene. Small, 2023, 19(14): 2206126
CrossRef Google scholar
[6]
Zhou J , Zhu J , He W , Cao Y , Pang J , Ni J , Zhang J . Selective preferred orientation for high-performance antimony selenide thin-film solar cells via substrate surface modulation. Journal of Alloys and Compounds, 2023, 938: 168593
CrossRef Google scholar
[7]
Cao Y , Liu C , Yang T , Zhao Y , Na Y , Jiang C , Zhou J , Pang J , Liu H , Rummeli M H . . Gradient bandgap modification for highly efficient carrier transport in antimony sulfide-selenide tandem solar cells. Solar Energy Materials and Solar Cells, 2022, 246: 111926
CrossRef Google scholar
[8]
Pang J , Peng S , Hou C , Zhao H , Fan Y , Ye C , Zhang N , Wang T , Cao Y , Zhou W . Applications of graphene in five senses, nervous system, and artificial muscles. ACS Sensors, 2023, 8(2): 482–514
CrossRef Google scholar
[9]
Schneider C , Glazov M M , Korn T , Höfling S , Urbaszek B . Two-dimensional semiconductors in the regime of strong light-matter coupling. Nature Communications, 2018, 9(1): 2695
CrossRef Google scholar
[10]
Chaves A , Azadani J G , Alsalman H , da Costa D R , Frisenda R , Chaves A J , Song S H , Kim Y D , He D , Zhou J . . Bandgap engineering of two-dimensional semiconductor materials. npj 2D Materials and Applications, 2020, 4(1): 1–21
[11]
Cui C , Xue F , Hu W J , Li L J . Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Materials and Applications, 2018, 2(1): 1–14
[12]
Peng Z , Chen X , Fan Y , Srolovitz D J , Lei D . Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications. Light, Science & Applications, 2020, 9(1): 190
CrossRef Google scholar
[13]
Qin C , Gao Y , Qiao Z , Xiao L , Jia S . Atomic-layered MoS2 as a tunable optical platform. Advanced Optical Materials, 2016, 4(10): 1429–1456
CrossRef Google scholar
[14]
Han S , Boguschewski C , Gao Y , Xiao L , Zhu J , van Loosdrecht P H M . Incoherent phonon population and exciton-exciton annihilation dynamics in monolayer WS2 revealed by time-resolved resonance Raman scattering. Optics Express, 2019, 27(21): 29949–29961
CrossRef Google scholar
[15]
Chernikov A , van der Zande A M , Hill H M , Rigosi A F , Velauthapillai A , Hone J , Heinz T F . Electrical Tuning of exciton binding energies in monolayer WS2. Physical Review Letters, 2015, 115(12): 126802
CrossRef Google scholar
[16]
Guo L , Chen C A , Zhang Z M , Monahan D , Lee Y H R , Fleming G . Lineshape characterization of excitons in monolayer WS2 by two-dimensional electronic spectroscopy. Nanoscale Advances, 2020, 2(6): 2333–2338
CrossRef Google scholar
[17]
Gelly R J , Renaud D , Liao X , Pingault B , Bogdanovic S , Scuri G , Watanabe K , Taniguchi T , Urbaszek B , Park H . . Probing dark exciton navigation through a local strain landscape in a WSe2 monolayer. Nature Communications, 2022, 13(1): 232
CrossRef Google scholar
[18]
Han S , Liang X , Qin C , Gao Y , Song Y , Wang S , Su X , Zhang G , Chen R , Hu J . . Criteria for assessing the interlayer coupling of van der Waals heterostructures using ultrafast pump-probe photoluminescence spectroscopy. ACS Nano, 2021, 15(8): 12966–12974
CrossRef Google scholar
[19]
Yang C , Gao Y , Qin C , Liang X , Han S , Zhang G , Chen R , Hu J , Xiao L , Jia S . All-optical reversible manipulation of exciton and trion emissions in monolayer WS2. Nanomaterials, 2019, 10(1): 23
CrossRef Google scholar
[20]
Nayak A P , Yuan Z , Cao B , Liu J , Wu J , Moran S T , Li T , Akinwande D , Jin C , Lin J F . Pressure-modulated conductivity, carrier density, and mobility of multilayered tungsten disulfide. ACS Nano, 2015, 9(9): 9117–9123
CrossRef Google scholar
[21]
Sharma A , Zhu Y , Halbich R , Sun X , Zhang L , Wang B , Lu Y . Engineering the dynamics and transport of excitons, trions, and biexcitons in monolayer WS2. ACS Applied Materials & Interfaces, 2022, 14(36): 41165–41177
CrossRef Google scholar
[22]
Conti S , Pimpolari L , Calabrese G , Worsley R , Majee S , Polyushkin D K , Paur M , Pace S , Keum D H , Fabbri F . . Low-voltage 2D materials-based printed field-effect transistors for integrated digital and analog electronics on paper. Nature Communications, 2020, 11(1): 3566
CrossRef Google scholar
[23]
Lien D H , Amani M , Desai S B , Ahn G H , Han K , He J H , Ager J W III , Wu M C , Javey A . Large-area and bright pulsed electroluminescence in monolayer semiconductors. Nature Communications, 2018, 9(1): 1229
CrossRef Google scholar
[24]
Sajid M , Osman A , Siddiqui G U , Kim H B , Kim S W , Ko J B , Lim Y K , Choi K H . All-printed highly sensitive 2D MoS2 based multi-reagent immunosensor for smartphone based point-of-care diagnosis. Scientific Reports, 2017, 7(1): 5802
CrossRef Google scholar
[25]
Yu Y , Fong P W K , Wang S , Surya C . Fabrication of WS2/GaN p-n junction by wafer-scale WS2 thin film transfer. Scientific Reports, 2016, 6(1): 37833
CrossRef Google scholar
[26]
Tagarelli F , Lopriore E , Erkensten D , Perea-Causín R , Brem S , Hagel J , Sun Z , Pasquale G , Watanabe K , Taniguchi T . . Electrical control of hybrid exciton transport in a van der Waals heterostructure. Nature Photonics, 2023, 17(7): 615–621
CrossRef Google scholar
[27]
Ma X , Zhang R , An C , Wu S , Hu X , Liu J . Efficient doping modulation of monolayer WS2 for optoelectronic applications. Chinese Physics B, 2019, 28(3): 037803
CrossRef Google scholar
[28]
Chow P K , Jacobs-Gedrim R B , Gao J , Lu T M , Yu B , Terrones H , Koratkar N . Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides. ACS Nano, 2015, 9(2): 1520–1527
CrossRef Google scholar
[29]
Paradisanos I , Germanis S , Pelekanos N T , Fotakis C , Kymakis E , Kioseoglou G , Stratakis E . Room temperature observation of biexcitons in exfoliated WS2 monolayers. Applied Physics Letters, 2017, 110(19): 193102
CrossRef Google scholar
[30]
Zhu B , Chen X , Cui X . Exciton binding energy of monolayer WS2. Scientific Reports, 2015, 5(1): 9218
CrossRef Google scholar
[31]
Kim M S , Yun S J , Lee Y , Seo C , Han G H , Kim K K , Lee Y H , Kim J . Biexciton emission from edges and grain boundaries of triangular WS2 monolayers. ACS Nano, 2016, 10(2): 2399–2405
CrossRef Google scholar
[32]
Liang X , Qin C , Gao Y , Han S , Zhang G , Chen R , Hu J , Xiao L , Jia S . Reversible engineering of spin-orbit splitting in monolayer MoS2 via laser irradiation under controlled gas atmospheres. Nanoscale, 2021, 13(19): 8966–8975
CrossRef Google scholar
[33]
Li L , Zeng Z Y , Liang T , Tang M , Cheng Y . Elastic properties and electronic structure of WS2 under pressure from first-principles calculations. Zeitschrift für Naturforschung. Section A. Physical Sciences, 2017, 72(4): 295–301
CrossRef Google scholar
[34]
Chen Z , Li J , Li T , Fan T , Meng C , Li C , Kang J , Chai L , Hao Y , Tang Y A . . CRISPR/Cas12a-empowered surface plasmon resonance platform for rapid and specific diagnosis of the Omicron variant of SARS-CoV-2. National Science Review, 2022, 9(8): nwac104
CrossRef Google scholar
[35]
Zheng F , Chen Z , Li J , Wu R , Zhang B , Nie G , Xie Z , Zhang H . A highly sensitive CRISPR-empowered surface plasmon resonance sensor for diagnosis of inherited diseases with femtomolar-level real-time quantification. Advanced Science, 2022, 9(14): 2105231
CrossRef Google scholar
[36]
Xue T , Liang W , Li Y , Sun Y , Xiang Y , Zhang Y , Dai Z , Duo Y , Wu L , Qi K . . Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nature Communications, 2019, 10(1): 28
CrossRef Google scholar
[37]
Xu S , Sun J , Weng L , Hua Y , Liu W , Neville A , Hu M , Gao X . In-situ friction and wear responses of WS2 films to space environment: vacuum and atomic oxygen. Applied Surface Science, 2018, 447: 368–373
CrossRef Google scholar
[38]
Jadczak J , Kutrowska-Girzycka J , Kapuściński P , Huang Y S , Wójs A , Bryja L . Probing of free and localized excitons and trions in atomically thin WSe2, WS2, MoSe2 and MoS2 in photoluminescence and reflectivity experiments. Nanotechnology, 2017, 28(39): 395702
CrossRef Google scholar

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

The authors gratefully acknowledge the support from the National Key Research and Development Program of China (Grant No. 2022YFA1404201) and the National Natural Science Foundation of China (Grant Nos. U23A20380, U22A2091, 62222509, 62127817, and 6191101445), the Shanxi Province Science and Technology Innovation Talent Team (Grant No. 202204051001014), 111 Projects (Grant No. D18001), and Shanxi Provincial Basic Research Program Project (Grant Nos. 202203021222107 and 202203021222133).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-024-2483-4 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Mindmap
PDF(1058 KB)

Accesses

Citations

Detail

Sections
Recommended

/