Advanced membrane separation based on two-dimensional porous nanosheets
Yanli Zhang, Shurui Han, Fengkai Wang, Hui Ye, Qingping Xin, Xiaoli Ding, Lizhi Zhao, Ligang Lin, Hong Li, Yuzhong Zhang
Advanced membrane separation based on two-dimensional porous nanosheets
Two-dimensional porous nanosheets such as metal-organic frameworks, covalent organic frameworks, fluorides of light lanthanide, and perforated graphene oxide are a class of nanomaterials with sheet-like morphologies and defined pore structures. Due to their porous structure and large lateral sizes, these materials exhibit excellent molecular transport properties in separation processes. This review focuses on the pore formation strategies for two-dimensional porous nanosheets and applications of these nanosheets and their constructed membranes in gas separation processes and separation processes applicable to water treatment and the humidity control of gas permeation. A brief discussion of challenges and future developments of separation applications with two-dimensional porous nanosheets and their constructed membranes is included in this review.
two-dimensional porous nanosheets / membranes / gas separation / water treatment / humidity control
[1] |
Ahmed Z , Rehman F , Ali U , Ali A , Iqbal M , Thebo K H , Ali A , Iqbal M , Thebo K H . Recent advances in MXene-based separation membranes. ChemBioEng Reviews, 2021, 8(2): 110–120
CrossRef
Google scholar
|
[2] |
Kaldis S P , Kapantaidakis G C , Sakellaropoulos G P . Polymer membrane conditioning and design for enhanced CO2-N2 separation. Coal Science and Technology, 1995, 24: 1927–1930
CrossRef
Google scholar
|
[3] |
Werber J R , Osuji C O , Elimelech M . Materials for next-generation desalination and water purification membranes. Nature Reviews. Materials, 2016, 1(5): 16018–16034
CrossRef
Google scholar
|
[4] |
Wang L , Boutilier M S H , Kidambi P R , Jang D , Hadjiconstantinou N , Karnik R . Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nature Nanotechnology, 2017, 12(6): 509–522
CrossRef
Google scholar
|
[5] |
Koros W J , Zhang C . Materials for next-generation molecularly selective synthetic membranes. Nature Materials, 2017, 16(3): 289–297
CrossRef
Google scholar
|
[6] |
Sholl D S , Lively R P . Seven chemical separations to change the world. Nature, 2016, 532(7600): 435–437
CrossRef
Google scholar
|
[7] |
Wang W , Wei Y Y , Fan J , Cai J H , Lu Z , Ding L , Wang H H . Recent progress of two-dimensional nanosheet membranes and composite membranes for separation applications. Frontiers of Chemical Science and Engineering, 2021, 15(4): 793–819
CrossRef
Google scholar
|
[8] |
Giwa A , Ahmed M , Hasan S W . Polymers for membrane filtration in water purification. Polymeric Materials for Clean Water, 2019, 16: 167–190
CrossRef
Google scholar
|
[9] |
Park H B , Kamcev J , Robeson L M , Elimelech M , Freeman B D . Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science, 2017, 356(6343): eaab0530–0540
|
[10] |
Cheng Y , Pu Y , Zhao D . Two-dimensional membranes: new paradigms for high-performance separation membranes. Chemistry, an Asian Journal, 2020, 15(15): 2241–2270
CrossRef
Google scholar
|
[11] |
Novoselov K S , Geim A K , Morozov S V , Jiang D , Zhang Y , Dubonos S V , Grigorieva I V , Firsov A A . Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669
CrossRef
Google scholar
|
[12] |
Bux H , Liang F , Li Y , Cravillon J , Wiebcke M , Caro J . Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. Journal of the American Chemical Society, 2009, 131(44): 16000–16001
CrossRef
Google scholar
|
[13] |
Qin Y T , Wan Y , Guo J , Zhao M T . Two-dimensional metal-organic framework nanosheet composites: preparations and applications. Chinese Chemical Letters, 2022, 33(2): 693–702
CrossRef
Google scholar
|
[14] |
Côté A P , Benin A I , Ockwig N W , O’keeffe M , Matzger A J , Yaghi O M. Matzger A J , Yaghi O M . Porous, crystalline, covalent organic frameworks. Science, 2005, 310(5751): 1166–1170
CrossRef
Google scholar
|
[15] |
Alhabeb M , Maleski K , Anasori B , Lelyukh P , Clark L , Sin S , Gogotsi Y . Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 2017, 29(18): 7633–7644
CrossRef
Google scholar
|
[16] |
Zhang X , Xie X , Wang H , Zhang J , Pan B , Xie Y . Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. Journal of the American Chemical Society, 2013, 135(1): 18–21
CrossRef
Google scholar
|
[17] |
Wang Q , O’hare D . Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chemical Reviews, 2012, 112(7): 4124–4155
CrossRef
Google scholar
|
[18] |
Zhang H . Ultrathin two-dimensional nanomaterials. ACS Nano, 2015, 9(10): 9451–9469
CrossRef
Google scholar
|
[19] |
Ding L , Wei Y Y , Wang Y J , Chen H B , Caro J , Wang H H . A two-dimensional lamellar membrane: MXene nanosheet stacks. Angewandte Chemie International Edition, 2017, 56(7): 1825–1829
CrossRef
Google scholar
|
[20] |
Ajibade T F , Tian H L , Lasisi K H , Zhang K S . Bio-inspired PDA@WS2 polyacrylonitrile ultrafiltration membrane for the effective separation of saline oily wastewater and the removal of soluble dye. Separation and Purification Technology, 2022, 299: 12711–12722
CrossRef
Google scholar
|
[21] |
Han S Q , You W H , Lv S H , Du C J , Zhang X , Zhang E , Zhu J Y , Zhang Y T . Ionic liquid modified COF nanosheet interlayered polyamide membranes for elevated nanofiltration performance. Desalination, 2023, 548: 116300–116311
CrossRef
Google scholar
|
[22] |
Kunimatsu M , Nakagawa K , Yoshioka T , Shintani T , Yasui T , Kamio E , Tsang S C E , Li J X , Matsuyama H . Design of niobate nanosheet-graphene oxide composite nanofiltration membranes with improved permeability. Journal of Membrane Science, 2020, 595: 117579–117608
CrossRef
Google scholar
|
[23] |
Liu Y , Wang X P , Zong Z A , Lin R J , Zhang X Y , Chen F S , Ding W D , Zhang L L , Meng X M , Hou J W . Thin film nanocomposite membrane incorporated with 2D-MOF nanosheets for highly efficient reverse osmosis desalination. Journal of Membrane Science, 2022, 653: 120520–120531
CrossRef
Google scholar
|
[24] |
Liu H , Li B , Zhao P , Xu R M , Tang C Y , Song W L , Habib Z A , Wang X H . Fabrication of novel thin-film composite membrane based on ultrathin metal-organic framework interlayer for enhancing forward osmosis performance. Chinese Chemical Letters, 2023, 34(12): 108369–108379
CrossRef
Google scholar
|
[25] |
Liu M , Gurr P A , Fu Q , Webley P A , Qiao G G . Two-dimensional nanosheet-based gas separation membranes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(46): 23169–23196
CrossRef
Google scholar
|
[26] |
Wang P Y , Peng Y , Zhu C Y , Yao R , Song H L , Kun L , Yang W S . Single-phase covalent organic framework staggered stacking nanosheet membrane for CO2-selective separation. Angewandte Chemie International Edition, 2021, 60(35): 19047–19052
CrossRef
Google scholar
|
[27] |
Manchanda P , Chisca S , Upadhyaya L , Musteata V E , Carrington M , Nunes S P . Diffusion-induced in situ growth of covalent organic frameworks for composite membranes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(45): 25802–25807
CrossRef
Google scholar
|
[28] |
Wang F , Han S , Zhang Y , Gao L , Li X , Zhao L , Ye H , Li H , Xin Q , Zhang Y . Constructing rapid water vapor transport channels within mixed matrix membranes based on two-dimensional mesoporous nanosheets. Communications Chemistry, 2022, 5(1): 2065–2075
CrossRef
Google scholar
|
[29] |
Wang J , Yang P , Liu L , Zheng B , Jiang J , Ma J , Yan Y , Yang S , Yang L , Liu Q K .
CrossRef
Google scholar
|
[30] |
Zhang K , Fang Z B , Huang Q Q , Zhang A A , Li J L , Li J Y , Zhang Y , Zhang T , Cao R . Exfoliation of a two-dimensional metal-organic framework for enhanced photocatalytic CO2 reduction. Inorganic Chemistry, 2023, 62(22): 8472–8477
CrossRef
Google scholar
|
[31] |
Shao B , He X L , Huang D , Xiang Y L , Luo Y , Wei Y M , Jiang L B , Huang R K , Dong M , Huang J . Oriented exfoliating 3D metal-organic frameworks into ultrathin metal-organic nanosheets with different crystal faces. Advanced Functional Materials, 2024, 2315911
CrossRef
Google scholar
|
[32] |
Abdelhamid H N . High performance and ultrafast reduction of 4-nitrophenol using metal-organic frameworks. Journal of Environmental Chemical Engineering, 2021, 9(1): 104404–104415
CrossRef
Google scholar
|
[33] |
Yin M , Li Z , Wang L , Tang S K . Preparation of hierarchically porous PVP/ZIF-8 in supercritical CO2 by PVP-induced defect-formation method for high-efficiency gas adsorption. Separation and Purification Technology, 2023, 314: 123550–123559
CrossRef
Google scholar
|
[34] |
Jeong S K , Jeong J Y , Lim S , Kim W S , Kwon H T , Kim J . Mixed matrix membranes incorporating two-dimensional ZIF-8 nanosheets for enhanced CO2/N2 separation. Chemical Engineering Journal, 2024, 481: 148294–148305
CrossRef
Google scholar
|
[35] |
Yang J , Kong L , Huang C , Wang C C , Wei S H , Zhou L . Liquid-liquid interfacial approach for rapid synthesis of well-crystalline two-dimensional metal-organic frameworks for nitro reduction. Chemical Engineering Journal, 2024, 485: 149969–149979
CrossRef
Google scholar
|
[36] |
Lu H , Zhu S . Interfacial synthesis of free-standing metal-organic framework membranes. European Journal of Inorganic Chemistry, 2013, 2013(8): 1294–1300
CrossRef
Google scholar
|
[37] |
Cao L A , Wei M , Guo X , Wang D L , Chen L , Guo J . Conductive Ni3(HITP)2 nanofilm with asymmetrical morphology prepared by gas-liquid interface self-assembly for glucose sensing. Ionics, 2024, 30(4): 2375–2385
CrossRef
Google scholar
|
[38] |
Guo Y Y , Zhang Q , Gao S Q , Wang H Y , Li Z Y , Qiu J K , Zhao Y , Liu Z M , Wang J J . Bi-functional ionic liquids facilitate liquid-phase exfoliation of porphyrin-based covalent organic frameworks in water for highly efficient CO2 photoreduction. Green Chemistry, 2022, 24(24): 9530–9541
CrossRef
Google scholar
|
[39] |
Yao J , Liu C , Liu X , Guo J , Zhang S , Zheng J , Li S . Azobenzene-assisted exfoliation of 2D covalent organic frameworks into large-area, few-layer nanosheets for high flux and selective molecular separation membrane. Journal of Membrane Science, 2020, 601: 117864–117875
CrossRef
Google scholar
|
[40] |
Wang T , Zhang R J , Zhai P D , Li M J , Liu X Y , Li C X . Electrochemically exfoliated covalent organic frameworks for improved photocatalytic hydrogen evolution. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2024, 12(2): 1292–1299
CrossRef
Google scholar
|
[41] |
Liu R , Yan Q , Tang Y , Liu R , Huang L , Shuai Q . NaCl template-assisted synthesis of self-floating COFs foams for the efficient removal of sulfamerazine. Journal of Hazardous Materials, 2022, 421: 126702–126714
CrossRef
Google scholar
|
[42] |
Ding C , Breunig M , Timm J , Marschall R , Senker J , Agarwal S . Flexible, mechanically stable, porous self-standing microfiber network membranes of covalent organic frameworks: preparation method and characterization. Advanced Functional Materials, 2021, 31(49): 2106507–2106515
CrossRef
Google scholar
|
[43] |
Chen J , Li R , Liu S , Zhang J , Wu X , Wang J . Surfactant-assisted interfacial polymerization towards high-crystallinity COF membranes for organic solvent nanofiltration. Journal of Membrane Science, 2024, 694: 122404–122415
CrossRef
Google scholar
|
[44] |
Ortega-Guerrero A , Sahabudeen H , Croy A , Dianat A , Dong R , Feng X , Cuniberti G . Multiscale modeling strategy of 2D covalent organic frameworks confined at an air-water interface. ACS Applied Materials & Interfaces, 2021, 13(22): 26411–26420
CrossRef
Google scholar
|
[45] |
Ou Z W , Liang Z H , Dong X , Tan F L , Gong L , Zhao P , Wang H L , Liu W , Zheng Z K . Surfactants mediated synthesis of highly crystalline thin films of imine-linked covalent organic frameworks on water surface. Chinese Journal of Chemistry, 2021, 39(12): 3322–3328
CrossRef
Google scholar
|
[46] |
Shi X , Ma D , Xu F , Zhang Z , Wang Y . Table-salt enabled interface-confined synthesis of covalent organic framework (COF) nanosheets. Chemical Science, 2020, 11(4): 989–996
CrossRef
Google scholar
|
[47] |
Yu H , Guan J , Chen Y , Sun Y X , Zhou S Y , Zheng J F , Zhang Q F , Li S H , Zhang S B . Large-area soluble covalent organic framework oligomer coating for organic solution nanofiltration membranes. Nano Micro Small, 2023, 20(4): 2305613–2305624
|
[48] |
Zhang L , Kang W , Ma Q , Xie Y , Jia Y , Deng N , Zhang Y , Ju J , Cheng B . Two-dimensional acetate-based light lanthanide fluoride nanomaterials (F-Ln, Ln = La, Ce, Pr, and Nd): morphology, structure, growth mechanism, and stability. Journal of the American Chemical Society, 2019, 141(33): 13134–13142
CrossRef
Google scholar
|
[49] |
Wang S Y , Wang L Y , Cong H , Wang R , Yang J , Li X , Zhao Y , Wang H. Cong H J , Wang R .
CrossRef
Google scholar
|
[50] |
He F , Wang Z X , Li Y X , Peng S Q , Liu B . The nonmetal modulation of composition and morphology of g-C3N4-based photocatalysts. Applied Catalysis B: Environmental, 2020, 269(15): 118828–118839
CrossRef
Google scholar
|
[51] |
Chen C C , Xie M , Kong L S , Lu W H , Feng Z Y , Zhan J H . Mn3O4 nanodots loaded g-C3N4 nanosheets for catalytic membrane degradation of organic contaminants. Journal of Hazardous Materials, 2020, 390(15): 122146–122157
CrossRef
Google scholar
|
[52] |
Lin B , Xia M Y , Xu B R , Chong B , Chen Z H , Yang G D . Bio-inspired nanostructured g-C3N4-based photocatalysts: a comprehensive review. Chinese Journal of Catalysis, 2022, 43(8): 2141–2172
CrossRef
Google scholar
|
[53] |
Dong J Q , Zhang Y , Hussain M I , Zhou W J , Chen Y Z , Wang L N . g-C3N4: properties, pore modifications, and photocatalytic applications. Nanomaterials, 2021, 12(1): 121–134
CrossRef
Google scholar
|
[54] |
Zhang X , Xie X , Wang H , Zhang J J , Pan B C , Xie Y . Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. Journal of American Chemical Society, 2013, 135(1): 18–21
CrossRef
Google scholar
|
[55] |
Xu J , Zhang L , Shi R , Zhu Y . Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(46): 14766–14772
CrossRef
Google scholar
|
[56] |
Dong F , Li Y H , Wang Z Y , Ho W K . Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation. Applied Surface Science, 2015, 358(PARTA): 393–403
|
[57] |
Chen Y H , Wang Z M , Li Y G , Guo J , Dai L , Zheng J F , Li S H , Zhang S B . Incorporating 2D porous organic polymer nanosheets into high-temperature proton-exchange membranes for low H3PO4 loss. Journal of Membrane Science, 2024, 693: 122344–122350
CrossRef
Google scholar
|
[58] |
Verma M , Bahuguna G , Singh S , Kumari A , Ghosh D , Haick H , Gupta R . Porous SnO2 nanosheets for room temperature ammonia sensing in extreme humidity. Materials Horizons, 2024, 11(1): 184–195
CrossRef
Google scholar
|
[59] |
Li Z T , Zhou P , Zhao Y X , Jiang W Y , Zhao B X , Chen X S , Wang J P , Yang R , Zuo C L . Ultrathin and porous CoP nanosheets as an efficient electrocatalyst for boosting hydrogen evolution behavior at a broad range of pH. International Journal of Hydrogen Energy, 2024, 51: 1279–1286
CrossRef
Google scholar
|
[60] |
Dong X Y M , Xia H Y , Pang R Y , Wang E , Li J . Urea with trifunctional effects: an assistant for high exposure of single-atom active sites on 2D nanosheets viastructural transformation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2024, 12(9): 5422–5428
CrossRef
Google scholar
|
[61] |
Li H B , Zhang C N , Lin Q , Lin F , Xiao T S , Yan K X , Shen B , Zhang H B , Tang Y , Sun Z Z . Epitaxial growth of two-dimensional MWW zeolite. Journal of the American Chemical Society, 2024, 146(12): 8520–8527
CrossRef
Google scholar
|
[62] |
Zhao Z X , Yang J , Wang C L , Xue Y T , Wu H , Xie W L , Wu P P , Wang C Z , Xing W , Wang Y .
CrossRef
Google scholar
|
[63] |
Huang H B , Shi H D , Das P , Qin J Q , Li Y G , Wang X , Su F , Wen P C , Li S Y , Lu P F .
CrossRef
Google scholar
|
[64] |
Surwade S P , Smirnov S N , Vlassiouk I V , Unocic R R , Veith G M , Dai S , Mahurin S M . Water desalination using nanoporous single-layer graphene. Nature Nanotechnology, 2015, 10(5): 459–464
CrossRef
Google scholar
|
[65] |
Li S L , Gu W , Sun Y Q , Zou D , Jing W H . Perforative pore formation on nanoplates for 2D porous MXene membranes via H2O2 mild etching. Ceramics International, 2021, 47(21): 29930–29940
CrossRef
Google scholar
|
[66] |
Hong S , El-Demellawi J K , Lei Y , Liu Z , Marzooqi F A , Arafat H A , Alshareef H N . Porous Ti3C2Tx MXene membranes for highly efficient salinity gradient energy harvesting. ACS Nano, 2022, 16(1): 792–800
CrossRef
Google scholar
|
[67] |
Kim J , Kang J , Kim J P , Kim J Y , Kwon O , Kim D W . Scalable fabrication of nanoporous multilayer graphene oxide membrane for organic solvent nanofiltration. Carbon, 2023, 207: 162–171
CrossRef
Google scholar
|
[68] |
Kang M , Lee D H , Kang Y M , Jung H . Electron beam irradiation dose dependent physico-chemical and electrochemical properties of reduced graphene oxide for supercapacitor. Electrochimica Acta, 2015, 184: 427–435
CrossRef
Google scholar
|
[69] |
Wei Y B , Pastuovic Z , Murphy T , Gore D B . Precise tuning chemistry and tailoring defects of graphene oxide films by low energy ion beam irradiation. Applied Surface Science, 2020, 505: 144651–144660
CrossRef
Google scholar
|
[70] |
Yang H N , Chen G N , Cheng L , Liu Y , Cheng Y X , Yao H J , Liu Y , Liu G P , Jin W Q . Manipulating gas transport channels in graphene oxide membrane with swift heavy ion irradiation. Separation and Purification Technology, 2023, 320: 124136–124147
CrossRef
Google scholar
|
[71] |
Li S L , Lu J , Zou D , Cui L L , Chen B , Wang F , Qiu J , Yu T X , Sun Y Q , Jing W H . Constructing reduced porous graphene oxide for tailoring mass-transfer channels in ultrathin MXene (Ti3C2Tx) membranes for efficient dye/salt separation. Chemical Engineering Journal, 2023, 457: 141217–141228
CrossRef
Google scholar
|
[72] |
Robeson L M . The upper bound revisited. Journal of Membrane Science, 2008, 320(1-2): 390–400
CrossRef
Google scholar
|
[73] |
Comesaña-Gándara B , Chen J , Bezzu C G , Carta M L , Rose I , Ferrari M C , Esposito E , Fuoco A , Jansen J N , Mckeown N B . Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy & Environmental Science, 2019, 12(9): 2733–2740
CrossRef
Google scholar
|
[74] |
Robeson L M . Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 1991, 62(2): 165–185
CrossRef
Google scholar
|
[75] |
Zhang Y , Zhao M , Li X , Xin Q , Ding X , Zhao L , Ye H , Lin L , Li H , Zhang Y . Constructing mixed matrix membranes for CO2 separation based on light lanthanide fluoride nanosheets with mesoporous structure. Journal of Industrial and Engineering Chemistry, 2023, 125: 200–210
CrossRef
Google scholar
|
[76] |
Xin Q , Shao W , Ma Q , Ye X , Huang Z , Li B , Wang S , Li H , Zhang Y . Efficient CO2 separation of multi-permselective mixed matrix membranes with a unique interfacial structure regulated by mesoporous nanosheets. ACS Applied Materials & Interfaces, 2020, 12(42): 48067–48076
CrossRef
Google scholar
|
[77] |
Zhao M , Guo J , Xin Q , Zhang Y , Li X , Ding X , Zhang L , Zhao L , Ye H , Li H .
CrossRef
Google scholar
|
[78] |
Kim H W , Yoon H W , Yoon S M , Yoo B M , Ahn B K , Cho Y H , Shin H J , Yang H , Paik U , Kwon S .
CrossRef
Google scholar
|
[79] |
Koenig S P , Wang L D , Pellegrino J , Bunch S J . Selective molecular sieving through porous graphene. Nature Nanotechnology, 2012, 7(11): 728–732
CrossRef
Google scholar
|
[80] |
Boutilier M S H , Jang D J , Idrobo J C , Kidambi P R , Hadjiconstantinou N G , Karnik R . Molecular sieving across centimeter-scale single-layer nanoporous graphene membranes. ACS Nano, 2017, 11(6): 5726–5736
CrossRef
Google scholar
|
[81] |
Ashirov T , Yazaydin A O , Coskun A . Tuning the transport properties of gases in porous graphene membranes with controlled pore size and thickness. Advanced Materials, 2022, 34(5): 2106785–2106798
CrossRef
Google scholar
|
[82] |
Van Goethem C , Shen Y , Chi H Y , Mensi M , Zhao K , Nijmeijer A , Just P E , Agrawal K V . Advancing molecular sieving via Å-scale pore tuning in bottom-up graphene synthesis. ACS Nano, 2024, 18(7): 5730–5740
CrossRef
Google scholar
|
[83] |
Rodenas T , Luz I , Prieto G , Seoane B , Miro H , Corma A , Kapte F , Francesc X . Llabrés i X, Gascon J. Metal–organic framework nanosheets in polymer composite materials for gas separation. Nature Materials, 2015, 14(1): 48–55
CrossRef
Google scholar
|
[84] |
Wan J M , Nian M J , Yang C , Ge K , Liu J J , Chen Z Q , Duan J G , Jin W Q . Interface regulation of mixed matrix membranes by ultrathin MOF nanosheet for faster CO2 transfer. Journal of Membrane Science, 2022, 642: 119991–120002
CrossRef
Google scholar
|
[85] |
Bi X , Zhang Y , Zhang F , Zhang S , Wang Z , Jin J . MOF nanosheet-based mixed matrix membranes with metal-organic coordination interfacial interaction for gas separation. ACS Applied Materials & Interfaces, 2020, 12(43): 49101–49110
CrossRef
Google scholar
|
[86] |
Yang Z , Belmabkhout Y , Mchugh L N , Ao D , Sun Y , Li S , Qiao Z , Bennett T D , Guiver M D , Zhong C . ZIF-62 glass foam self-supported membranes to address CH4/N2 separations. Nature Materials, 2023, 22(7): 888–894
CrossRef
Google scholar
|
[87] |
Carta M , Malpass-Evans R , Croad M , Rogan Y , Jansen J C , Bernardo P , Bazzarelli F , Mckeown N B . An efficient polymer molecular sieve for membrane gas separations. Science, 2013, 339(6117): 303–307
CrossRef
Google scholar
|
[88] |
Peng Y , Li Y S , Ban Y J , Jin H , Jiao W M , Liu X L , Yang W S . Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science, 2014, 346(6215): 1356–1359
CrossRef
Google scholar
|
[89] |
Peng Y , Li Y , Ban Y , Yang W S . Two-dimensional metal-organic framework nanosheets for membrane-based gas separation. Angewandte Chemie, 2017, 129(33): 9889–9893
CrossRef
Google scholar
|
[90] |
Ma C C , Gao G S , Liu H O , Liu Y , Zhang X F . Fabrication of 2D bimetallic metal-organic framework ultrathin membranes by vapor phase transformation of hydroxy double salts. Journal of Membrane Science, 2022, 644: 120167–120177
CrossRef
Google scholar
|
[91] |
Song H , Peng Y , Wang C , Shu L , Zhu C Y , Wang Y L , He H Y , Yang W S . Structure regulation of MOF nanosheet membrane for accurate H2/CO2 separation. Angewandte Chemie International Edition, 2023, 62(17): e202218472–202218480
CrossRef
Google scholar
|
[92] |
Biswal B P , Chaudhari H D , Banerjee R , Kharul U K . Chemically stable covalent organic framework (COF)-polybenzimidazole hybrid membranes: enhanced gas separation through pore modulation. Chemistry, 2016, 22(14): 4695–4699
CrossRef
Google scholar
|
[93] |
Chang X , Guo H , Chang Q , Tian Z H , Zhang Y W , Li D Y , Wang J , Zhang Y T . Mixed-matrix membranes composed of dopamine modified covalent organic framework and PIM-1 for efficient CO2/N2 separation. Journal of Membrane Science, 2023, 686: 122017–122028
CrossRef
Google scholar
|
[94] |
Xin Q , Zhang X , Shao W , Li H , Zhang Y Z . COF-based MMMs with light-responsive properties generating unexpected surface segregation for efficient SO2/N2 separation. Journal of Membrane Science, 2023, 665: 121109–121120
CrossRef
Google scholar
|
[95] |
Fan H , Mundstock A , Feldhoff A , Knebel A , Gu J , Meng H , Caro J . Covalent organic framework-covalent organic framework bilayer membranes for highly selective gas separation. Journal of the American Chemical Society, 2018, 140(32): 10094–10098
CrossRef
Google scholar
|
[96] |
Ying Y , Tong M , Ning S C , Ravi S K , Peh S B , Tan S C , Pennycook S J , Zhao D . Ultrathin two-dimensional membranes assembled by ionic covalent organic nanosheets with reduced apertures for gas separation. Journal of the American Chemical Society, 2020, 142(9): 4472–4480
CrossRef
Google scholar
|
[97] |
Wang S , Yang Y , Liang X , Ren Y , Ma H , Zhu Z , Wang J , Zeng S , Song S , Wang X .
CrossRef
Google scholar
|
[98] |
Fu J , Liu J Y , Zhang G H , Zhu Q H , Wang S L , Qin S , He L , Tao G H . Boost of gas adsorption kinetics of covalent organic frameworks via ionic liquid solution process. Small, 2023, 19(39): 2302570–2302579
CrossRef
Google scholar
|
[99] |
Liu J Y , Zhang L , Fu J , Wang S L , Zhou Y R , Wang Y H , Qin S , Tao G H , He L . Mobile hydrogen-bonding donor in covalent organic framework for efficient iodine capture. Separation and Purification Technology, 2024, 331: 125664
CrossRef
Google scholar
|
[100] |
Ying Y , Peh S B , Yang H , Yang Z Q , Zhao D . Ultrathin covalent organic framework membranes via a multi-interfacial engineering strategy for gas separation. Advanced Materials, 2022, 34(25): 2104946–2104952
CrossRef
Google scholar
|
[101] |
Du J R , Liu L , Chakma A , Feng X S . Using poly(N,N-dimethylaminoethyl methacrylate)/polyacrylonitrile composite membranes for gas dehydration and humidification. Chemical Engineering Science, 2010, 65(16): 4672–4681
CrossRef
Google scholar
|
[102] |
Le T M H , Wang R , Sairiam S . Self-protecting PVDF-PDA-TiO2 membranes towards highly efficient and prolonged dye wastewater treatment by photocatalytic membranes. Journal of Membrane Science, 2023, 683: 121789–121798
CrossRef
Google scholar
|
[103] |
Petukhov D I , Chernova E A , Kapitanova O O , Boytsova O V , Valeev R G , Chumakov A P , Konovalov O V , Eliseev A A . Thin graphene oxide membranes for gas dehumidification. Journal of Membrane Science, 2019, 577: 184–194
CrossRef
Google scholar
|
[104] |
Takenaka R , Moriyama N , Nagasawa H K , Kanezashi M K , Tsuru T N . Permeation properties of water vapor through graphene oxide/polymer substrate composite membranes. Membranes, 2023, 13(5): 533–544
CrossRef
Google scholar
|
[105] |
Yu J , Ruengkajorn K , Crivoi D G , Chen C P , Buffet J C , O’Hare D . High gas barrier coating using non-toxic nanosheet dispersions for flexible food packaging film. Nature Communications, 2019, 10(1): 2398–2408
CrossRef
Google scholar
|
[106] |
Wang J J , Xu X Z , Zhang J , Chen M T , Dong S Y , Han J B , Wei M . Moisture-permeable, humidity-enhanced gas barrier films based on organic/inorganic multilayers. ACS Applied Materials & Interfaces, 2018, 10(33): 28130–28138
CrossRef
Google scholar
|
[107] |
Lee H J , Shirke Y M , Kim J , Yu H J , Yoo C H , Back S , Jeon J D , Lee J S . Tailoring molecular structures of UiO-66-NH2 for high performance H2O/N2 separation membranes: a synergistic effect of hydrophilic modification and defect engineering. Journal of Membrane Science, 2023, 665: 121096–121105
CrossRef
Google scholar
|
[108] |
Deng R , Han W , Yeung K L . Confined PFSA/MOF composite membranes in fuel cells for promoted water management and performance. Catalysis Today, 2019, 331: 12–17
CrossRef
Google scholar
|
[109] |
Cohen-Tanugi D , Grossman J C . Water desalination across nanoporous graphene. Nano Letters, 2012, 12(7): 3602–3608
CrossRef
Google scholar
|
[110] |
Celebi K , Buchheim J , Wyss R M , Droudian A , Gasser P , Shorubalko I , Kye J I , Lee C , Park H G . Ultimate permeation across atomically thin porous graphene. Science, 2014, 344(6181): 289–292
CrossRef
Google scholar
|
[111] |
O’Hern S C , Boutilier M S H , Idrobo J C , Song Y , Kong J , Laoui T , Atieh M , Karnik R . Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Letters, 2014, 14(3): 1234–1241
CrossRef
Google scholar
|
[112] |
Akhavan O . Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano, 2010, 4(7): 4174–4180
CrossRef
Google scholar
|
[113] |
Yang Y , Yang X , Liang L , Gao Y Y , Cheng H N , Li X M , Zou M C , Ma R Z , Yuan Q , Duan X F . Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science, 2019, 364(6445): 1057–1062
CrossRef
Google scholar
|
[114] |
Guan J , You X , Shi B , Liu Y , Yuan J , Yang C , Pang X , Wu H , Shen J , Fan C .
CrossRef
Google scholar
|
[115] |
Wang Y , Li L , Wei Y , Xue J , Chen H , Ding L , Caro J , Wang H . Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers. Angewandte Chemie International Edition, 2017, 56(31): 8974–8980
CrossRef
Google scholar
|
[116] |
Liu Y C , Xie D Q , Song M R , Jiang L Z , Fu G , Liu B , Li J Y . Water desalination across multilayer graphitic carbon nitride membrane: insights from non-equilibrium molecular dynamics simulations. Carbon, 2018, 140: 131–138
CrossRef
Google scholar
|
[117] |
Ran J , Pan T , Wu Y Y , Chu C Q , Cui P , Zhang P P , Ai X Y , Fu C F , Yang Z J , Xu T W . Endowing g-C3N4 membranes with superior permeability and stability by using acid spacers. Angewandte Chemie International Edition, 2019, 58(46): 16463–16468
CrossRef
Google scholar
|
[118] |
Wu Y Y , Fu C F , Huang Q , Zhang P P , Cui P , Ran J , Yang J L , Xu T W . 2D heterostructured nanofluidic channels for enhanced desalination performance of graphene oxide membranes. ACS Nano, 2021, 15(4): 7586–7595
CrossRef
Google scholar
|
[119] |
Yuan S , Li X , Zhu J , Zhang G , Van Puyvelde P , Van der Bruggen B . Covalent organic frameworks for membrane separation. Chemical Society Reviews, 2019, 48(10): 2665–2681
CrossRef
Google scholar
|
[120] |
Xu X , Wu X , Xu K , Xu H , Chen H Z , Huang N . Pore partition in two-dimensional covalent organic frameworks. Nature Communications, 2023, 14(1): 3360–3368
CrossRef
Google scholar
|
[121] |
Li Y , Wu Q X , Guo X H , Zhang M C , Chen B , Wei G Y , Li X , Li X F , Li S J , Ma L J . Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving. Nature Communications, 2020, 11(1): 599–609
CrossRef
Google scholar
|
[122] |
Sheng F M , Wu B , Li X Y , Xu T T , Shehzad M A , Wang X X , Ge L , Wang H T , Xu T W . Efficient ion sieving in covalent organic framework membranes with sub-2-nanometer channels. Advanced Materials, 2021, 33(44): 2104404–2104409
CrossRef
Google scholar
|
[123] |
Xiao A K , Shi X S , Zhang Z , Yin C C , Xiong S , Wang Y . Secondary growth of bi-layered covalent organic framework nanofilms with offset channels for desalination. Journal of Membrane Science, 2021, 624: 119122–119132
CrossRef
Google scholar
|
[124] |
Zhang Y Q , Guo J , Han G , Bai Y P , Ge Q H , Ma J , Lau C H , Shao L . Molecularly soldered covalent organic frameworks for ultrafast precision sieving. Science Advances, 2021, 7(13): 8706–8712
CrossRef
Google scholar
|
[125] |
Sapkota B , Liang W T , Vahidmohammadi A , Karnik R , Noy A , Wanunu M . High permeability sub-nanometre sieve composite MoS2 membranes. Nature Communications, 2020, 11(1): 2247–2255
|
[126] |
Kim C , Koh D Y , Lee Y J , Choi J , Cho H S , Choi M . Bottom-up synthesis of two-dimensional carbon with vertically aligned ordered micropores for ultrafast nanofiltration. Science Advances, 2023, 9(6): 7871–7879
CrossRef
Google scholar
|
[127] |
Han S R , Xie Y F , Xin Q P , Lv J , Zhang Y L , Wang F K , Fu X J , Li H , Zhao L Z , Ye H .
CrossRef
Google scholar
|
[128] |
Yu Y , Wu X J , Zhao M , Ma Q , Chen J , Chen B , Sindoro M , Yang J , Han S , Lu Q .
CrossRef
Google scholar
|
[129] |
Xue J , Gao J M , Xu M J , Zong Y Q , Wang M X , Ma S S . Super wetting porous g-C3N4 nanosheets coated PVDF membrane for emulsified oil/water separation and aqueous organic pollutant elimination. Advanced Materials Interfaces, 2021, 8(19): 2100962–2100970
CrossRef
Google scholar
|
[130] |
Li R , Ren Y , Zhao P , Wang J , Liu J D , Zhang Y T . Graphitic carbon nitride (g-C3N4) nanosheets functionalized composite membrane with self-cleaning and antibacterial performance. Journal of Hazardous Materials, 2019, 365: 606–614
CrossRef
Google scholar
|
[131] |
Zhou K G , Mcmanus D , Prestat E , Zhong X , Shin Y Y , Zhang H L , Haigh S J , Casiraghi C . Self-catalytic membrane photo-reactor made of carbon nitride nanosheets. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(30): 11666–11671
CrossRef
Google scholar
|
[132] |
Li X J , Liu Y , Liu Q H , Zheng Z L , Guo H X . Single-layer membranes for organic solvent nanofiltration: a molecular dynamics simulation and comparative experimental study. RSC Advances, 2022, 12(12): 7189–7198
CrossRef
Google scholar
|
[133] |
Ajebe E G , Hu C C , Lugito G , Hu C P , Hung W S , Lee K R , Lai J Y . Investigating the impact of metal ion variations in terephthalate metal-organic frameworks on the organic solvent nanofiltration performance of mixed matrix membranes. Journal of Membrane Science, 2024, 700: 122715–122725
CrossRef
Google scholar
|
[134] |
Wu M , Fu X X , Li J , Zhao W Q , Li X B . SWCNTs-channeled MOF nanosheet membrane for high-efficient organic solvent nanofiltration. Separation and Purification Technology, 2024, 338: 126328–126339
CrossRef
Google scholar
|
[135] |
Chen L , Zhou X , Meng R , Li D , Li D , Li X , Zhang K , Ji Q , Li Y , Xia Y , Ci L . Stable antifouling membranes based on graphene oxide nanosheets for organic solvent nanofiltration. ACS Applied Nano Materials, 2024, 7(2): 1929–1939
CrossRef
Google scholar
|
[136] |
Li G , Liu Y , He Z , Shi K , Liu F . Retrievable ultrafast covalent triazine framework membranes for organic solvent nanofiltration. Chemical Engineering Journal, 2024, 484: 149488–149499
CrossRef
Google scholar
|
/
〈 | 〉 |