Advanced membrane separation based on two-dimensional porous nanosheets

Yanli Zhang, Shurui Han, Fengkai Wang, Hui Ye, Qingping Xin, Xiaoli Ding, Lizhi Zhao, Ligang Lin, Hong Li, Yuzhong Zhang

PDF(28291 KB)
PDF(28291 KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (11) : 128. DOI: 10.1007/s11705-024-2479-0
REVIEW ARTICLE

Advanced membrane separation based on two-dimensional porous nanosheets

Author information +
History +

Abstract

Two-dimensional porous nanosheets such as metal-organic frameworks, covalent organic frameworks, fluorides of light lanthanide, and perforated graphene oxide are a class of nanomaterials with sheet-like morphologies and defined pore structures. Due to their porous structure and large lateral sizes, these materials exhibit excellent molecular transport properties in separation processes. This review focuses on the pore formation strategies for two-dimensional porous nanosheets and applications of these nanosheets and their constructed membranes in gas separation processes and separation processes applicable to water treatment and the humidity control of gas permeation. A brief discussion of challenges and future developments of separation applications with two-dimensional porous nanosheets and their constructed membranes is included in this review.

Graphical abstract

Keywords

two-dimensional porous nanosheets / membranes / gas separation / water treatment / humidity control

Cite this article

Download citation ▾
Yanli Zhang, Shurui Han, Fengkai Wang, Hui Ye, Qingping Xin, Xiaoli Ding, Lizhi Zhao, Ligang Lin, Hong Li, Yuzhong Zhang. Advanced membrane separation based on two-dimensional porous nanosheets. Front. Chem. Sci. Eng., 2024, 18(11): 128 https://doi.org/10.1007/s11705-024-2479-0

References

[1]
Ahmed Z , Rehman F , Ali U , Ali A , Iqbal M , Thebo K H , Ali A , Iqbal M , Thebo K H . Recent advances in MXene-based separation membranes. ChemBioEng Reviews, 2021, 8(2): 110–120
CrossRef Google scholar
[2]
Kaldis S P , Kapantaidakis G C , Sakellaropoulos G P . Polymer membrane conditioning and design for enhanced CO2-N2 separation. Coal Science and Technology, 1995, 24: 1927–1930
CrossRef Google scholar
[3]
Werber J R , Osuji C O , Elimelech M . Materials for next-generation desalination and water purification membranes. Nature Reviews. Materials, 2016, 1(5): 16018–16034
CrossRef Google scholar
[4]
Wang L , Boutilier M S H , Kidambi P R , Jang D , Hadjiconstantinou N , Karnik R . Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nature Nanotechnology, 2017, 12(6): 509–522
CrossRef Google scholar
[5]
Koros W J , Zhang C . Materials for next-generation molecularly selective synthetic membranes. Nature Materials, 2017, 16(3): 289–297
CrossRef Google scholar
[6]
Sholl D S , Lively R P . Seven chemical separations to change the world. Nature, 2016, 532(7600): 435–437
CrossRef Google scholar
[7]
Wang W , Wei Y Y , Fan J , Cai J H , Lu Z , Ding L , Wang H H . Recent progress of two-dimensional nanosheet membranes and composite membranes for separation applications. Frontiers of Chemical Science and Engineering, 2021, 15(4): 793–819
CrossRef Google scholar
[8]
Giwa A , Ahmed M , Hasan S W . Polymers for membrane filtration in water purification. Polymeric Materials for Clean Water, 2019, 16: 167–190
CrossRef Google scholar
[9]
Park H B , Kamcev J , Robeson L M , Elimelech M , Freeman B D . Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science, 2017, 356(6343): eaab0530–0540
[10]
Cheng Y , Pu Y , Zhao D . Two-dimensional membranes: new paradigms for high-performance separation membranes. Chemistry, an Asian Journal, 2020, 15(15): 2241–2270
CrossRef Google scholar
[11]
Novoselov K S , Geim A K , Morozov S V , Jiang D , Zhang Y , Dubonos S V , Grigorieva I V , Firsov A A . Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669
CrossRef Google scholar
[12]
Bux H , Liang F , Li Y , Cravillon J , Wiebcke M , Caro J . Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. Journal of the American Chemical Society, 2009, 131(44): 16000–16001
CrossRef Google scholar
[13]
Qin Y T , Wan Y , Guo J , Zhao M T . Two-dimensional metal-organic framework nanosheet composites: preparations and applications. Chinese Chemical Letters, 2022, 33(2): 693–702
CrossRef Google scholar
[14]
Côté A P , Benin A I , Ockwig N W , O’keeffe M , Matzger A J , Yaghi O M. Matzger A J , Yaghi O M . Porous, crystalline, covalent organic frameworks. Science, 2005, 310(5751): 1166–1170
CrossRef Google scholar
[15]
Alhabeb M , Maleski K , Anasori B , Lelyukh P , Clark L , Sin S , Gogotsi Y . Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 2017, 29(18): 7633–7644
CrossRef Google scholar
[16]
Zhang X , Xie X , Wang H , Zhang J , Pan B , Xie Y . Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. Journal of the American Chemical Society, 2013, 135(1): 18–21
CrossRef Google scholar
[17]
Wang Q , O’hare D . Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chemical Reviews, 2012, 112(7): 4124–4155
CrossRef Google scholar
[18]
Zhang H . Ultrathin two-dimensional nanomaterials. ACS Nano, 2015, 9(10): 9451–9469
CrossRef Google scholar
[19]
Ding L , Wei Y Y , Wang Y J , Chen H B , Caro J , Wang H H . A two-dimensional lamellar membrane: MXene nanosheet stacks. Angewandte Chemie International Edition, 2017, 56(7): 1825–1829
CrossRef Google scholar
[20]
Ajibade T F , Tian H L , Lasisi K H , Zhang K S . Bio-inspired PDA@WS2 polyacrylonitrile ultrafiltration membrane for the effective separation of saline oily wastewater and the removal of soluble dye. Separation and Purification Technology, 2022, 299: 12711–12722
CrossRef Google scholar
[21]
Han S Q , You W H , Lv S H , Du C J , Zhang X , Zhang E , Zhu J Y , Zhang Y T . Ionic liquid modified COF nanosheet interlayered polyamide membranes for elevated nanofiltration performance. Desalination, 2023, 548: 116300–116311
CrossRef Google scholar
[22]
Kunimatsu M , Nakagawa K , Yoshioka T , Shintani T , Yasui T , Kamio E , Tsang S C E , Li J X , Matsuyama H . Design of niobate nanosheet-graphene oxide composite nanofiltration membranes with improved permeability. Journal of Membrane Science, 2020, 595: 117579–117608
CrossRef Google scholar
[23]
Liu Y , Wang X P , Zong Z A , Lin R J , Zhang X Y , Chen F S , Ding W D , Zhang L L , Meng X M , Hou J W . Thin film nanocomposite membrane incorporated with 2D-MOF nanosheets for highly efficient reverse osmosis desalination. Journal of Membrane Science, 2022, 653: 120520–120531
CrossRef Google scholar
[24]
Liu H , Li B , Zhao P , Xu R M , Tang C Y , Song W L , Habib Z A , Wang X H . Fabrication of novel thin-film composite membrane based on ultrathin metal-organic framework interlayer for enhancing forward osmosis performance. Chinese Chemical Letters, 2023, 34(12): 108369–108379
CrossRef Google scholar
[25]
Liu M , Gurr P A , Fu Q , Webley P A , Qiao G G . Two-dimensional nanosheet-based gas separation membranes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(46): 23169–23196
CrossRef Google scholar
[26]
Wang P Y , Peng Y , Zhu C Y , Yao R , Song H L , Kun L , Yang W S . Single-phase covalent organic framework staggered stacking nanosheet membrane for CO2-selective separation. Angewandte Chemie International Edition, 2021, 60(35): 19047–19052
CrossRef Google scholar
[27]
Manchanda P , Chisca S , Upadhyaya L , Musteata V E , Carrington M , Nunes S P . Diffusion-induced in situ growth of covalent organic frameworks for composite membranes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(45): 25802–25807
CrossRef Google scholar
[28]
Wang F , Han S , Zhang Y , Gao L , Li X , Zhao L , Ye H , Li H , Xin Q , Zhang Y . Constructing rapid water vapor transport channels within mixed matrix membranes based on two-dimensional mesoporous nanosheets. Communications Chemistry, 2022, 5(1): 2065–2075
CrossRef Google scholar
[29]
Wang J , Yang P , Liu L , Zheng B , Jiang J , Ma J , Yan Y , Yang S , Yang L , Liu Q K . . Facile exfoliation of two-dimensional crystalline monolayer nanosheets from an amorphous metal-organic framework. Chinese Chemical Society Chemistry, 2022, 4(6): 1879–1888
CrossRef Google scholar
[30]
Zhang K , Fang Z B , Huang Q Q , Zhang A A , Li J L , Li J Y , Zhang Y , Zhang T , Cao R . Exfoliation of a two-dimensional metal-organic framework for enhanced photocatalytic CO2 reduction. Inorganic Chemistry, 2023, 62(22): 8472–8477
CrossRef Google scholar
[31]
Shao B , He X L , Huang D , Xiang Y L , Luo Y , Wei Y M , Jiang L B , Huang R K , Dong M , Huang J . Oriented exfoliating 3D metal-organic frameworks into ultrathin metal-organic nanosheets with different crystal faces. Advanced Functional Materials, 2024, 2315911
CrossRef Google scholar
[32]
Abdelhamid H N . High performance and ultrafast reduction of 4-nitrophenol using metal-organic frameworks. Journal of Environmental Chemical Engineering, 2021, 9(1): 104404–104415
CrossRef Google scholar
[33]
Yin M , Li Z , Wang L , Tang S K . Preparation of hierarchically porous PVP/ZIF-8 in supercritical CO2 by PVP-induced defect-formation method for high-efficiency gas adsorption. Separation and Purification Technology, 2023, 314: 123550–123559
CrossRef Google scholar
[34]
Jeong S K , Jeong J Y , Lim S , Kim W S , Kwon H T , Kim J . Mixed matrix membranes incorporating two-dimensional ZIF-8 nanosheets for enhanced CO2/N2 separation. Chemical Engineering Journal, 2024, 481: 148294–148305
CrossRef Google scholar
[35]
Yang J , Kong L , Huang C , Wang C C , Wei S H , Zhou L . Liquid-liquid interfacial approach for rapid synthesis of well-crystalline two-dimensional metal-organic frameworks for nitro reduction. Chemical Engineering Journal, 2024, 485: 149969–149979
CrossRef Google scholar
[36]
Lu H , Zhu S . Interfacial synthesis of free-standing metal-organic framework membranes. European Journal of Inorganic Chemistry, 2013, 2013(8): 1294–1300
CrossRef Google scholar
[37]
Cao L A , Wei M , Guo X , Wang D L , Chen L , Guo J . Conductive Ni3(HITP)2 nanofilm with asymmetrical morphology prepared by gas-liquid interface self-assembly for glucose sensing. Ionics, 2024, 30(4): 2375–2385
CrossRef Google scholar
[38]
Guo Y Y , Zhang Q , Gao S Q , Wang H Y , Li Z Y , Qiu J K , Zhao Y , Liu Z M , Wang J J . Bi-functional ionic liquids facilitate liquid-phase exfoliation of porphyrin-based covalent organic frameworks in water for highly efficient CO2 photoreduction. Green Chemistry, 2022, 24(24): 9530–9541
CrossRef Google scholar
[39]
Yao J , Liu C , Liu X , Guo J , Zhang S , Zheng J , Li S . Azobenzene-assisted exfoliation of 2D covalent organic frameworks into large-area, few-layer nanosheets for high flux and selective molecular separation membrane. Journal of Membrane Science, 2020, 601: 117864–117875
CrossRef Google scholar
[40]
Wang T , Zhang R J , Zhai P D , Li M J , Liu X Y , Li C X . Electrochemically exfoliated covalent organic frameworks for improved photocatalytic hydrogen evolution. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2024, 12(2): 1292–1299
CrossRef Google scholar
[41]
Liu R , Yan Q , Tang Y , Liu R , Huang L , Shuai Q . NaCl template-assisted synthesis of self-floating COFs foams for the efficient removal of sulfamerazine. Journal of Hazardous Materials, 2022, 421: 126702–126714
CrossRef Google scholar
[42]
Ding C , Breunig M , Timm J , Marschall R , Senker J , Agarwal S . Flexible, mechanically stable, porous self-standing microfiber network membranes of covalent organic frameworks: preparation method and characterization. Advanced Functional Materials, 2021, 31(49): 2106507–2106515
CrossRef Google scholar
[43]
Chen J , Li R , Liu S , Zhang J , Wu X , Wang J . Surfactant-assisted interfacial polymerization towards high-crystallinity COF membranes for organic solvent nanofiltration. Journal of Membrane Science, 2024, 694: 122404–122415
CrossRef Google scholar
[44]
Ortega-Guerrero A , Sahabudeen H , Croy A , Dianat A , Dong R , Feng X , Cuniberti G . Multiscale modeling strategy of 2D covalent organic frameworks confined at an air-water interface. ACS Applied Materials & Interfaces, 2021, 13(22): 26411–26420
CrossRef Google scholar
[45]
Ou Z W , Liang Z H , Dong X , Tan F L , Gong L , Zhao P , Wang H L , Liu W , Zheng Z K . Surfactants mediated synthesis of highly crystalline thin films of imine-linked covalent organic frameworks on water surface. Chinese Journal of Chemistry, 2021, 39(12): 3322–3328
CrossRef Google scholar
[46]
Shi X , Ma D , Xu F , Zhang Z , Wang Y . Table-salt enabled interface-confined synthesis of covalent organic framework (COF) nanosheets. Chemical Science, 2020, 11(4): 989–996
CrossRef Google scholar
[47]
Yu H , Guan J , Chen Y , Sun Y X , Zhou S Y , Zheng J F , Zhang Q F , Li S H , Zhang S B . Large-area soluble covalent organic framework oligomer coating for organic solution nanofiltration membranes. Nano Micro Small, 2023, 20(4): 2305613–2305624
[48]
Zhang L , Kang W , Ma Q , Xie Y , Jia Y , Deng N , Zhang Y , Ju J , Cheng B . Two-dimensional acetate-based light lanthanide fluoride nanomaterials (F-Ln, Ln = La, Ce, Pr, and Nd): morphology, structure, growth mechanism, and stability. Journal of the American Chemical Society, 2019, 141(33): 13134–13142
CrossRef Google scholar
[49]
Wang S Y , Wang L Y , Cong H , Wang R , Yang J , Li X , Zhao Y , Wang H. Cong H J , Wang R . . A review: g-C3N4 as a new membrane material. Journal of Environmental Chemical Engineering, 2022, 10(4): 108189–108211
CrossRef Google scholar
[50]
He F , Wang Z X , Li Y X , Peng S Q , Liu B . The nonmetal modulation of composition and morphology of g-C3N4-based photocatalysts. Applied Catalysis B: Environmental, 2020, 269(15): 118828–118839
CrossRef Google scholar
[51]
Chen C C , Xie M , Kong L S , Lu W H , Feng Z Y , Zhan J H . Mn3O4 nanodots loaded g-C3N4 nanosheets for catalytic membrane degradation of organic contaminants. Journal of Hazardous Materials, 2020, 390(15): 122146–122157
CrossRef Google scholar
[52]
Lin B , Xia M Y , Xu B R , Chong B , Chen Z H , Yang G D . Bio-inspired nanostructured g-C3N4-based photocatalysts: a comprehensive review. Chinese Journal of Catalysis, 2022, 43(8): 2141–2172
CrossRef Google scholar
[53]
Dong J Q , Zhang Y , Hussain M I , Zhou W J , Chen Y Z , Wang L N . g-C3N4: properties, pore modifications, and photocatalytic applications. Nanomaterials, 2021, 12(1): 121–134
CrossRef Google scholar
[54]
Zhang X , Xie X , Wang H , Zhang J J , Pan B C , Xie Y . Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. Journal of American Chemical Society, 2013, 135(1): 18–21
CrossRef Google scholar
[55]
Xu J , Zhang L , Shi R , Zhu Y . Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(46): 14766–14772
CrossRef Google scholar
[56]
Dong F , Li Y H , Wang Z Y , Ho W K . Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation. Applied Surface Science, 2015, 358(PARTA): 393–403
[57]
Chen Y H , Wang Z M , Li Y G , Guo J , Dai L , Zheng J F , Li S H , Zhang S B . Incorporating 2D porous organic polymer nanosheets into high-temperature proton-exchange membranes for low H3PO4 loss. Journal of Membrane Science, 2024, 693: 122344–122350
CrossRef Google scholar
[58]
Verma M , Bahuguna G , Singh S , Kumari A , Ghosh D , Haick H , Gupta R . Porous SnO2 nanosheets for room temperature ammonia sensing in extreme humidity. Materials Horizons, 2024, 11(1): 184–195
CrossRef Google scholar
[59]
Li Z T , Zhou P , Zhao Y X , Jiang W Y , Zhao B X , Chen X S , Wang J P , Yang R , Zuo C L . Ultrathin and porous CoP nanosheets as an efficient electrocatalyst for boosting hydrogen evolution behavior at a broad range of pH. International Journal of Hydrogen Energy, 2024, 51: 1279–1286
CrossRef Google scholar
[60]
Dong X Y M , Xia H Y , Pang R Y , Wang E , Li J . Urea with trifunctional effects: an assistant for high exposure of single-atom active sites on 2D nanosheets viastructural transformation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2024, 12(9): 5422–5428
CrossRef Google scholar
[61]
Li H B , Zhang C N , Lin Q , Lin F , Xiao T S , Yan K X , Shen B , Zhang H B , Tang Y , Sun Z Z . Epitaxial growth of two-dimensional MWW zeolite. Journal of the American Chemical Society, 2024, 146(12): 8520–8527
CrossRef Google scholar
[62]
Zhao Z X , Yang J , Wang C L , Xue Y T , Wu H , Xie W L , Wu P P , Wang C Z , Xing W , Wang Y . . Template-free synthesis of highly porous silica-doped alumina with exceptional stability via intercalation-exfoliation of boehmite into two-dimensional nanosheets. Science China Materials, 2024, 67(1): 261–271
CrossRef Google scholar
[63]
Huang H B , Shi H D , Das P , Qin J Q , Li Y G , Wang X , Su F , Wen P C , Li S Y , Lu P F . . The chemistry and promising applications of graphene and porous graphene materials. Advanced Functional Materials, 2020, 30(41): 1909035–1909046
CrossRef Google scholar
[64]
Surwade S P , Smirnov S N , Vlassiouk I V , Unocic R R , Veith G M , Dai S , Mahurin S M . Water desalination using nanoporous single-layer graphene. Nature Nanotechnology, 2015, 10(5): 459–464
CrossRef Google scholar
[65]
Li S L , Gu W , Sun Y Q , Zou D , Jing W H . Perforative pore formation on nanoplates for 2D porous MXene membranes via H2O2 mild etching. Ceramics International, 2021, 47(21): 29930–29940
CrossRef Google scholar
[66]
Hong S , El-Demellawi J K , Lei Y , Liu Z , Marzooqi F A , Arafat H A , Alshareef H N . Porous Ti3C2Tx MXene membranes for highly efficient salinity gradient energy harvesting. ACS Nano, 2022, 16(1): 792–800
CrossRef Google scholar
[67]
Kim J , Kang J , Kim J P , Kim J Y , Kwon O , Kim D W . Scalable fabrication of nanoporous multilayer graphene oxide membrane for organic solvent nanofiltration. Carbon, 2023, 207: 162–171
CrossRef Google scholar
[68]
Kang M , Lee D H , Kang Y M , Jung H . Electron beam irradiation dose dependent physico-chemical and electrochemical properties of reduced graphene oxide for supercapacitor. Electrochimica Acta, 2015, 184: 427–435
CrossRef Google scholar
[69]
Wei Y B , Pastuovic Z , Murphy T , Gore D B . Precise tuning chemistry and tailoring defects of graphene oxide films by low energy ion beam irradiation. Applied Surface Science, 2020, 505: 144651–144660
CrossRef Google scholar
[70]
Yang H N , Chen G N , Cheng L , Liu Y , Cheng Y X , Yao H J , Liu Y , Liu G P , Jin W Q . Manipulating gas transport channels in graphene oxide membrane with swift heavy ion irradiation. Separation and Purification Technology, 2023, 320: 124136–124147
CrossRef Google scholar
[71]
Li S L , Lu J , Zou D , Cui L L , Chen B , Wang F , Qiu J , Yu T X , Sun Y Q , Jing W H . Constructing reduced porous graphene oxide for tailoring mass-transfer channels in ultrathin MXene (Ti3C2Tx) membranes for efficient dye/salt separation. Chemical Engineering Journal, 2023, 457: 141217–141228
CrossRef Google scholar
[72]
Robeson L M . The upper bound revisited. Journal of Membrane Science, 2008, 320(1-2): 390–400
CrossRef Google scholar
[73]
Comesaña-Gándara B , Chen J , Bezzu C G , Carta M L , Rose I , Ferrari M C , Esposito E , Fuoco A , Jansen J N , Mckeown N B . Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy & Environmental Science, 2019, 12(9): 2733–2740
CrossRef Google scholar
[74]
Robeson L M . Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 1991, 62(2): 165–185
CrossRef Google scholar
[75]
Zhang Y , Zhao M , Li X , Xin Q , Ding X , Zhao L , Ye H , Lin L , Li H , Zhang Y . Constructing mixed matrix membranes for CO2 separation based on light lanthanide fluoride nanosheets with mesoporous structure. Journal of Industrial and Engineering Chemistry, 2023, 125: 200–210
CrossRef Google scholar
[76]
Xin Q , Shao W , Ma Q , Ye X , Huang Z , Li B , Wang S , Li H , Zhang Y . Efficient CO2 separation of multi-permselective mixed matrix membranes with a unique interfacial structure regulated by mesoporous nanosheets. ACS Applied Materials & Interfaces, 2020, 12(42): 48067–48076
CrossRef Google scholar
[77]
Zhao M , Guo J , Xin Q , Zhang Y , Li X , Ding X , Zhang L , Zhao L , Ye H , Li H . . Novel aminated F-Ce nanosheet mixed matrix membranes with controllable channels for CO2 capture. Separation and Purification Technology, 2023, 324: 124512–124523
CrossRef Google scholar
[78]
Kim H W , Yoon H W , Yoon S M , Yoo B M , Ahn B K , Cho Y H , Shin H J , Yang H , Paik U , Kwon S . . Selective gas transport through few-layered graphene and graphene oxide membranes. Science, 2013, 342(6154): 91–95
CrossRef Google scholar
[79]
Koenig S P , Wang L D , Pellegrino J , Bunch S J . Selective molecular sieving through porous graphene. Nature Nanotechnology, 2012, 7(11): 728–732
CrossRef Google scholar
[80]
Boutilier M S H , Jang D J , Idrobo J C , Kidambi P R , Hadjiconstantinou N G , Karnik R . Molecular sieving across centimeter-scale single-layer nanoporous graphene membranes. ACS Nano, 2017, 11(6): 5726–5736
CrossRef Google scholar
[81]
Ashirov T , Yazaydin A O , Coskun A . Tuning the transport properties of gases in porous graphene membranes with controlled pore size and thickness. Advanced Materials, 2022, 34(5): 2106785–2106798
CrossRef Google scholar
[82]
Van Goethem C , Shen Y , Chi H Y , Mensi M , Zhao K , Nijmeijer A , Just P E , Agrawal K V . Advancing molecular sieving via Å-scale pore tuning in bottom-up graphene synthesis. ACS Nano, 2024, 18(7): 5730–5740
CrossRef Google scholar
[83]
Rodenas T , Luz I , Prieto G , Seoane B , Miro H , Corma A , Kapte F , Francesc X . Llabrés i X, Gascon J. Metal–organic framework nanosheets in polymer composite materials for gas separation. Nature Materials, 2015, 14(1): 48–55
CrossRef Google scholar
[84]
Wan J M , Nian M J , Yang C , Ge K , Liu J J , Chen Z Q , Duan J G , Jin W Q . Interface regulation of mixed matrix membranes by ultrathin MOF nanosheet for faster CO2 transfer. Journal of Membrane Science, 2022, 642: 119991–120002
CrossRef Google scholar
[85]
Bi X , Zhang Y , Zhang F , Zhang S , Wang Z , Jin J . MOF nanosheet-based mixed matrix membranes with metal-organic coordination interfacial interaction for gas separation. ACS Applied Materials & Interfaces, 2020, 12(43): 49101–49110
CrossRef Google scholar
[86]
Yang Z , Belmabkhout Y , Mchugh L N , Ao D , Sun Y , Li S , Qiao Z , Bennett T D , Guiver M D , Zhong C . ZIF-62 glass foam self-supported membranes to address CH4/N2 separations. Nature Materials, 2023, 22(7): 888–894
CrossRef Google scholar
[87]
Carta M , Malpass-Evans R , Croad M , Rogan Y , Jansen J C , Bernardo P , Bazzarelli F , Mckeown N B . An efficient polymer molecular sieve for membrane gas separations. Science, 2013, 339(6117): 303–307
CrossRef Google scholar
[88]
Peng Y , Li Y S , Ban Y J , Jin H , Jiao W M , Liu X L , Yang W S . Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science, 2014, 346(6215): 1356–1359
CrossRef Google scholar
[89]
Peng Y , Li Y , Ban Y , Yang W S . Two-dimensional metal-organic framework nanosheets for membrane-based gas separation. Angewandte Chemie, 2017, 129(33): 9889–9893
CrossRef Google scholar
[90]
Ma C C , Gao G S , Liu H O , Liu Y , Zhang X F . Fabrication of 2D bimetallic metal-organic framework ultrathin membranes by vapor phase transformation of hydroxy double salts. Journal of Membrane Science, 2022, 644: 120167–120177
CrossRef Google scholar
[91]
Song H , Peng Y , Wang C , Shu L , Zhu C Y , Wang Y L , He H Y , Yang W S . Structure regulation of MOF nanosheet membrane for accurate H2/CO2 separation. Angewandte Chemie International Edition, 2023, 62(17): e202218472–202218480
CrossRef Google scholar
[92]
Biswal B P , Chaudhari H D , Banerjee R , Kharul U K . Chemically stable covalent organic framework (COF)-polybenzimidazole hybrid membranes: enhanced gas separation through pore modulation. Chemistry, 2016, 22(14): 4695–4699
CrossRef Google scholar
[93]
Chang X , Guo H , Chang Q , Tian Z H , Zhang Y W , Li D Y , Wang J , Zhang Y T . Mixed-matrix membranes composed of dopamine modified covalent organic framework and PIM-1 for efficient CO2/N2 separation. Journal of Membrane Science, 2023, 686: 122017–122028
CrossRef Google scholar
[94]
Xin Q , Zhang X , Shao W , Li H , Zhang Y Z . COF-based MMMs with light-responsive properties generating unexpected surface segregation for efficient SO2/N2 separation. Journal of Membrane Science, 2023, 665: 121109–121120
CrossRef Google scholar
[95]
Fan H , Mundstock A , Feldhoff A , Knebel A , Gu J , Meng H , Caro J . Covalent organic framework-covalent organic framework bilayer membranes for highly selective gas separation. Journal of the American Chemical Society, 2018, 140(32): 10094–10098
CrossRef Google scholar
[96]
Ying Y , Tong M , Ning S C , Ravi S K , Peh S B , Tan S C , Pennycook S J , Zhao D . Ultrathin two-dimensional membranes assembled by ionic covalent organic nanosheets with reduced apertures for gas separation. Journal of the American Chemical Society, 2020, 142(9): 4472–4480
CrossRef Google scholar
[97]
Wang S , Yang Y , Liang X , Ren Y , Ma H , Zhu Z , Wang J , Zeng S , Song S , Wang X . . Ultrathin ionic COF Membrane via polyelectrolyte-mediated assembly for efficient CO2 separation. Advanced Functional Materials, 2023, 33(24): 2300386–2300392
CrossRef Google scholar
[98]
Fu J , Liu J Y , Zhang G H , Zhu Q H , Wang S L , Qin S , He L , Tao G H . Boost of gas adsorption kinetics of covalent organic frameworks via ionic liquid solution process. Small, 2023, 19(39): 2302570–2302579
CrossRef Google scholar
[99]
Liu J Y , Zhang L , Fu J , Wang S L , Zhou Y R , Wang Y H , Qin S , Tao G H , He L . Mobile hydrogen-bonding donor in covalent organic framework for efficient iodine capture. Separation and Purification Technology, 2024, 331: 125664
CrossRef Google scholar
[100]
Ying Y , Peh S B , Yang H , Yang Z Q , Zhao D . Ultrathin covalent organic framework membranes via a multi-interfacial engineering strategy for gas separation. Advanced Materials, 2022, 34(25): 2104946–2104952
CrossRef Google scholar
[101]
Du J R , Liu L , Chakma A , Feng X S . Using poly(N,N-dimethylaminoethyl methacrylate)/polyacrylonitrile composite membranes for gas dehydration and humidification. Chemical Engineering Science, 2010, 65(16): 4672–4681
CrossRef Google scholar
[102]
Le T M H , Wang R , Sairiam S . Self-protecting PVDF-PDA-TiO2 membranes towards highly efficient and prolonged dye wastewater treatment by photocatalytic membranes. Journal of Membrane Science, 2023, 683: 121789–121798
CrossRef Google scholar
[103]
Petukhov D I , Chernova E A , Kapitanova O O , Boytsova O V , Valeev R G , Chumakov A P , Konovalov O V , Eliseev A A . Thin graphene oxide membranes for gas dehumidification. Journal of Membrane Science, 2019, 577: 184–194
CrossRef Google scholar
[104]
Takenaka R , Moriyama N , Nagasawa H K , Kanezashi M K , Tsuru T N . Permeation properties of water vapor through graphene oxide/polymer substrate composite membranes. Membranes, 2023, 13(5): 533–544
CrossRef Google scholar
[105]
Yu J , Ruengkajorn K , Crivoi D G , Chen C P , Buffet J C , O’Hare D . High gas barrier coating using non-toxic nanosheet dispersions for flexible food packaging film. Nature Communications, 2019, 10(1): 2398–2408
CrossRef Google scholar
[106]
Wang J J , Xu X Z , Zhang J , Chen M T , Dong S Y , Han J B , Wei M . Moisture-permeable, humidity-enhanced gas barrier films based on organic/inorganic multilayers. ACS Applied Materials & Interfaces, 2018, 10(33): 28130–28138
CrossRef Google scholar
[107]
Lee H J , Shirke Y M , Kim J , Yu H J , Yoo C H , Back S , Jeon J D , Lee J S . Tailoring molecular structures of UiO-66-NH2 for high performance H2O/N2 separation membranes: a synergistic effect of hydrophilic modification and defect engineering. Journal of Membrane Science, 2023, 665: 121096–121105
CrossRef Google scholar
[108]
Deng R , Han W , Yeung K L . Confined PFSA/MOF composite membranes in fuel cells for promoted water management and performance. Catalysis Today, 2019, 331: 12–17
CrossRef Google scholar
[109]
Cohen-Tanugi D , Grossman J C . Water desalination across nanoporous graphene. Nano Letters, 2012, 12(7): 3602–3608
CrossRef Google scholar
[110]
Celebi K , Buchheim J , Wyss R M , Droudian A , Gasser P , Shorubalko I , Kye J I , Lee C , Park H G . Ultimate permeation across atomically thin porous graphene. Science, 2014, 344(6181): 289–292
CrossRef Google scholar
[111]
O’Hern S C , Boutilier M S H , Idrobo J C , Song Y , Kong J , Laoui T , Atieh M , Karnik R . Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Letters, 2014, 14(3): 1234–1241
CrossRef Google scholar
[112]
Akhavan O . Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano, 2010, 4(7): 4174–4180
CrossRef Google scholar
[113]
Yang Y , Yang X , Liang L , Gao Y Y , Cheng H N , Li X M , Zou M C , Ma R Z , Yuan Q , Duan X F . Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science, 2019, 364(6445): 1057–1062
CrossRef Google scholar
[114]
Guan J , You X , Shi B , Liu Y , Yuan J , Yang C , Pang X , Wu H , Shen J , Fan C . . Engineering multi-pathway graphene oxide membranes toward ultrafast water purification. Journal of Membrane Science, 2021, 638: 119706–119716
CrossRef Google scholar
[115]
Wang Y , Li L , Wei Y , Xue J , Chen H , Ding L , Caro J , Wang H . Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers. Angewandte Chemie International Edition, 2017, 56(31): 8974–8980
CrossRef Google scholar
[116]
Liu Y C , Xie D Q , Song M R , Jiang L Z , Fu G , Liu B , Li J Y . Water desalination across multilayer graphitic carbon nitride membrane: insights from non-equilibrium molecular dynamics simulations. Carbon, 2018, 140: 131–138
CrossRef Google scholar
[117]
Ran J , Pan T , Wu Y Y , Chu C Q , Cui P , Zhang P P , Ai X Y , Fu C F , Yang Z J , Xu T W . Endowing g-C3N4 membranes with superior permeability and stability by using acid spacers. Angewandte Chemie International Edition, 2019, 58(46): 16463–16468
CrossRef Google scholar
[118]
Wu Y Y , Fu C F , Huang Q , Zhang P P , Cui P , Ran J , Yang J L , Xu T W . 2D heterostructured nanofluidic channels for enhanced desalination performance of graphene oxide membranes. ACS Nano, 2021, 15(4): 7586–7595
CrossRef Google scholar
[119]
Yuan S , Li X , Zhu J , Zhang G , Van Puyvelde P , Van der Bruggen B . Covalent organic frameworks for membrane separation. Chemical Society Reviews, 2019, 48(10): 2665–2681
CrossRef Google scholar
[120]
Xu X , Wu X , Xu K , Xu H , Chen H Z , Huang N . Pore partition in two-dimensional covalent organic frameworks. Nature Communications, 2023, 14(1): 3360–3368
CrossRef Google scholar
[121]
Li Y , Wu Q X , Guo X H , Zhang M C , Chen B , Wei G Y , Li X , Li X F , Li S J , Ma L J . Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving. Nature Communications, 2020, 11(1): 599–609
CrossRef Google scholar
[122]
Sheng F M , Wu B , Li X Y , Xu T T , Shehzad M A , Wang X X , Ge L , Wang H T , Xu T W . Efficient ion sieving in covalent organic framework membranes with sub-2-nanometer channels. Advanced Materials, 2021, 33(44): 2104404–2104409
CrossRef Google scholar
[123]
Xiao A K , Shi X S , Zhang Z , Yin C C , Xiong S , Wang Y . Secondary growth of bi-layered covalent organic framework nanofilms with offset channels for desalination. Journal of Membrane Science, 2021, 624: 119122–119132
CrossRef Google scholar
[124]
Zhang Y Q , Guo J , Han G , Bai Y P , Ge Q H , Ma J , Lau C H , Shao L . Molecularly soldered covalent organic frameworks for ultrafast precision sieving. Science Advances, 2021, 7(13): 8706–8712
CrossRef Google scholar
[125]
Sapkota B , Liang W T , Vahidmohammadi A , Karnik R , Noy A , Wanunu M . High permeability sub-nanometre sieve composite MoS2 membranes. Nature Communications, 2020, 11(1): 2247–2255
[126]
Kim C , Koh D Y , Lee Y J , Choi J , Cho H S , Choi M . Bottom-up synthesis of two-dimensional carbon with vertically aligned ordered micropores for ultrafast nanofiltration. Science Advances, 2023, 9(6): 7871–7879
CrossRef Google scholar
[127]
Han S R , Xie Y F , Xin Q P , Lv J , Zhang Y L , Wang F K , Fu X J , Li H , Zhao L Z , Ye H . . High permeability dual-channel membranes based on porous fluorine-cerium nanosheets for molecular sieving. Journal of Membrane Science, 2023, 666: 121126–121136
CrossRef Google scholar
[128]
Yu Y , Wu X J , Zhao M , Ma Q , Chen J , Chen B , Sindoro M , Yang J , Han S , Lu Q . . Anodized aluminum oxide templated synthesis of metal-organic frameworks used as membrane reactors. Angewandte Chemie International Edition, 2017, 56(2): 578–581
CrossRef Google scholar
[129]
Xue J , Gao J M , Xu M J , Zong Y Q , Wang M X , Ma S S . Super wetting porous g-C3N4 nanosheets coated PVDF membrane for emulsified oil/water separation and aqueous organic pollutant elimination. Advanced Materials Interfaces, 2021, 8(19): 2100962–2100970
CrossRef Google scholar
[130]
Li R , Ren Y , Zhao P , Wang J , Liu J D , Zhang Y T . Graphitic carbon nitride (g-C3N4) nanosheets functionalized composite membrane with self-cleaning and antibacterial performance. Journal of Hazardous Materials, 2019, 365: 606–614
CrossRef Google scholar
[131]
Zhou K G , Mcmanus D , Prestat E , Zhong X , Shin Y Y , Zhang H L , Haigh S J , Casiraghi C . Self-catalytic membrane photo-reactor made of carbon nitride nanosheets. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(30): 11666–11671
CrossRef Google scholar
[132]
Li X J , Liu Y , Liu Q H , Zheng Z L , Guo H X . Single-layer membranes for organic solvent nanofiltration: a molecular dynamics simulation and comparative experimental study. RSC Advances, 2022, 12(12): 7189–7198
CrossRef Google scholar
[133]
Ajebe E G , Hu C C , Lugito G , Hu C P , Hung W S , Lee K R , Lai J Y . Investigating the impact of metal ion variations in terephthalate metal-organic frameworks on the organic solvent nanofiltration performance of mixed matrix membranes. Journal of Membrane Science, 2024, 700: 122715–122725
CrossRef Google scholar
[134]
Wu M , Fu X X , Li J , Zhao W Q , Li X B . SWCNTs-channeled MOF nanosheet membrane for high-efficient organic solvent nanofiltration. Separation and Purification Technology, 2024, 338: 126328–126339
CrossRef Google scholar
[135]
Chen L , Zhou X , Meng R , Li D , Li D , Li X , Zhang K , Ji Q , Li Y , Xia Y , Ci L . Stable antifouling membranes based on graphene oxide nanosheets for organic solvent nanofiltration. ACS Applied Nano Materials, 2024, 7(2): 1929–1939
CrossRef Google scholar
[136]
Li G , Liu Y , He Z , Shi K , Liu F . Retrievable ultrafast covalent triazine framework membranes for organic solvent nanofiltration. Chemical Engineering Journal, 2024, 484: 149488–149499
CrossRef Google scholar

Competing interests

The authors declare that they have no competing interests.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(28291 KB)

Accesses

Citations

Detail

Sections
Recommended

/