New approaches to vibrational spectroscopy of zeolite catalysts: a perspective

Russell F Howe

Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (11) : 123

PDF (527KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (11) : 123 DOI: 10.1007/s11705-024-2474-5
VIEWS & COMMENTS

New approaches to vibrational spectroscopy of zeolite catalysts: a perspective

Author information +
History +
PDF (527KB)

Abstract

This perspective discusses three alternative techniques which complement conventional infrared spectroscopy for obtaining vibrational information about zeolite catalysts and adsorbed molecules: inelastic neutron scattering, infrared micro-spectroscopy, and two-dimensional infrared spectroscopy. The techniques are illustrated briefly and future prospects for their use discussed.

Graphical abstract

Keywords

FTIR / zeolites / INS / micro-spectroscopy / 2D FTIR

Cite this article

Download citation ▾
Russell F Howe. New approaches to vibrational spectroscopy of zeolite catalysts: a perspective. Front. Chem. Sci. Eng., 2024, 18(11): 123 DOI:10.1007/s11705-024-2474-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bordiga S, Lamberti C, Bonino F, Travert A, Thibault-Starzyk F. Probing zeolites by vibrational spectroscopies. Chemical Society Reviews, 2015, 44(20): 7262–7341

[2]

Yu X, Cheng Y, Li Y, Polo-Garzon F, Liu J, Mamontov E, Li M, Lennon D, Parker S F, Ramirez-Cuesta A J. . Neutron scattering studies of heterogeneous catalysis. Chemical Reviews, 2023, 123(13): 8638–8700

[3]

Howard J, Waddington T C, Wright C J. Ethylene adsorbed by silver exchanged 13X zeolite, an inelastic neutron scattering study. Chemical Communications, 1975, (19): 775–776

[4]

Brun T O, Curtiss L A, Iton L E, Kleb R, Newsam J M, Beyerlein R A, Vaughan D E W. Inelastic neutron scattering from tetramethylammonium cations occluded within zeolites. Journal of the American Chemical Society, 1987, 109(13): 4118–4119

[5]

Jobic H. Observation of the fundamental bending vibrations of hydroxyl groups in HNa Y zeolite by neutron inelastic scattering. Journal of Catalysis, 1991, 131(1): 289–293

[6]

Jacobs W P J H, van Santen R A, Jobic H. Inelastic neutron scattering study of NH, Y zeolites. Journal of the Chemical Society, Faraday Transactions, 1994, 90(8): 1191–1196

[7]

Trouw F R, Price D L. Chemical applications of neutron scattering. Annual Review of Physical Chemistry, 1999, 50(1): 571–601

[8]

Jobic H. Inelastic scattering of organic molecules in zeolites. Physica B, Condensed Matter, 2000, 276–278: 222–225

[9]

Zachariou A, Hawkins A P, Howe R F, Skakle J M S, Barrow N, Collier P, Nye D W, Smith R I, Stenning G B G, Parker S F. . Counting the acid sites in a commercial ZSM-5 zeolite catalyst. ACS Physical Chemistry Au, 2023, 3(1): 74–83

[10]

Hawkins A P, Zachariou A, Collier P, Ewings R A, Howe R F, Parker S F, Lennon D. Low-temperature studies of propene oligomerization in ZSM-5 by inelastic neutron scattering spectroscopy. RSC Advances, 2019, 9(33): 18785–18790

[11]

Hawkins A P, Zachariou A, Parker S F, Collier P, Barrow N S, Silverwood I P, Howe R F, Lennon D. Effect of steam de-alumination on the interactions of propene with H-ZSM-5 zeolites. RSC Advances, 2020, 10(39): 23136–23147

[12]

Hawkins A P, Zachariou A, Parker S F, Collier P, Silverwood I P, Howe R F, Lennon D. Onset of propene oligomerization reactivity in ZSM-5 studied by inelastic neutron scattering spectroscopy. ACS Omega, 2020, 5(14): 7762–7770

[13]

Hawkins A P, O’Malley A J, Zachariou A, Collier P, Ewings R A, Silverwood I P, Howe R F, Parker S F, Lennon D. Investigation of the dynamics of 1-octene adsorption at 293 K in a ZSM-5 catalyst by inelastic and quasielastic neutron scattering. Journal of Physical Chemistry C, 2019, 123(1): 417–425

[14]

Hawkins A P, Zachariou A, Parker S F, Collier P, Barrow N S, Howe R F, Lennon D. On the transition to gasoline-to-olefins chemistry in the cracking reactions of 1-octene over H-ZSM-5 catalysts. Applied Catalysis A, General, 2023, 667: 119442

[15]

Hawkins A P, Zachariou A, Parker S F, Collier P, Howe R F, Lennon D. Studies of propene conversion over H-ZSM-5 demonstrate the importance of propene as an intermediate in methanol-to-hydrocarbons chemistry. Catalysis Science & Technology, 2021, 11(8): 2924–2938

[16]

Suwardiyanto S, Howe R F, Gibson E K, Catlow C R A, Hameed A, McGregor J, Collier P, Parker S F, Lennon D. An assessment of hydrocarbon species in the methanol-to-hydrocarbon reaction over a ZSM-5 catalyst. Faraday Discussions, 2017, 197: 447–471

[17]

Zachariou A, Hawkins A P, Lennon D, Parker S F, Suwardiyanto S, Matam S K, Catlow C R A, Collier P, Hameed A, McGregor J. . Investigation of ZSM-5 catalysts for dimethylether conversion using inelastic neutron scattering. Applied Catalysis A, General, 2019, 569: 1–7

[18]

Zachariou A, Hawkins A P, Collier P, Howe R F, Parker S F, Lennon D. The effect of co-feeding methyl acetate on the H-ZSM5 catalysed methanol-to-hydrocarbons reaction. Topics in Catalysis, 2020, 63(3–4): 370–377

[19]

Zachariou A, Hawkins A P, Parker S F, Lennon D, Howe R F. Neutron spectroscopy studies of methanol to hydrocarbons catalysis over ZSM-5. Catalysis Today, 2021, 368: 20–27

[20]

Zachariou A, Hawkins A P, Suwardiyanto S, Collier P, Barrow N, Howe R F, Parker S F, Lennon D. New spectroscopic insight into the deactivation of a ZSM-5 methanol-to-hydrocarbons catalyst. ChemCatChem, 2021, 13(11): 2625–2633

[21]

Zachariou A, Hawkins A P, Howe R F, Barrow N, Bradley J, Collier P, Lennon D, Parker S F. A spectroscopic paradox: the interaction of methanol with ZSM-5 at room temperature. Topics in Catalysis, 2021, 64(9–12): 672–684

[22]

Zachariou A, Hawkins A P, Collier P, Howe R F, Parker S F, Lennon D. Neutron scattering studies of the methanol-to-hydrocarbons reaction. Catalysis Science & Technology, 2023, 13(7): 1976–1990

[23]

Howe R F, Suwardiyanto S, Price D J, Castro M, Wright P A, Greenaway A, Frogley M D, Cinque G. Reactions of dimethylether in single crystals of the silicoaluminophosphate STA-7 studied via operando synchrotron infrared microspectroscopy. Topics in Catalysis, 2018, 61(3–4): 199–212

[24]

Minova I B, Matam S K, Greenaway A, Catlow C R A, Frogley M D, Cinque G, Wright P A, Howe R F. Elementary steps in the formation of hydrocarbons from surface methoxy groups in HZSM-5 seen by synchrotron infrared micro-spectroscopy. ACS Catalysis, 2019, 9(7): 6564–6570

[25]

Minova I B, Matam S K, Greenaway A, Catlow C R A, Frogley M D, Cinque G, Wright P A, Howe R F. Effects of crystal size on methanol to hydrocarbon conversion over single crystals of ZSM-5 studied by synchrotron infrared microspectroscopy. Physical Chemistry Chemical Physics, 2020, 22(34): 18849–18859

[26]

Minova I B, Bühl M, Matam S K, Catlow C R A, Frogley M D, Cinque G, Wright P A, Howe R F. Carbene-like reactivity of methoxy groups in a single crystal SAPO-34 MTO catalyst. Catalysis Science & Technology, 2022, 12(7): 2289–2305

[27]

Donaldson P M, Howe R F, Hawkins A P, Towrie M, Greetham G M. Ultrafast 2D-IR spectroscopy of intensely optically scattering pelleted solid catalysts. Journal of Chemical Physics, 2023, 158(11): 114201

[28]

Donaldson P M. Spectrophotometric concentration analysis without molar absorption coefficients by two-dimensional-infrared and Fourier transform infrared spectroscopy. Analytical Chemistry, 2022, 94(51): 17988–17999

[29]

Hawkins A P, Edmeades A E, Hutchison C D M, Towrie M, Howe R F, Greetham G M, Donaldson P M. Laser induced temperature-jump time resolved IR spectroscopy of zeolites. Chemical Science, 2024, 15(10): 3453–3465

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (527KB)

1355

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/