Interfacing biosynthetic CdS with engineered Rhodopseudomonas palustris for efficient visible light-driven CO2–CH4 conversion

Yu Zhang, Yulei Qian, Zhenye Tong, Su Yan, Xiaoyu Yong, Yang-Chun Yong, Jun Zhou

PDF(1055 KB)
PDF(1055 KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (10) : 109. DOI: 10.1007/s11705-024-2460-y
RESEARCH ARTICLE

Interfacing biosynthetic CdS with engineered Rhodopseudomonas palustris for efficient visible light-driven CO2–CH4 conversion

Author information +
History +

Abstract

Engineered photosynthetic bacterium Rhodopseudomonas palustris is excellent at one-step CO2 biomethanation and can use near-infrared light sources, overcoming the limitations of conventional photosynthetic systems. The current study constructed a biohybrid system that deposited CdS nanoparticles on R. palustris. This biohybrid system broadens the capture of sustainable solar energy, achieving a 155 nmol·mL–1 biological CH4 production under full visible light irradiation, 13.4-fold of that by the pure R. palustris. The transcriptome profiles revealed that gene expression related to photosynthetic electron transfer chain, nitrogenase, nanofilaments, and redox stress defense was activated. Accordingly, we attributed the much-enhanced CO2 biomethanation in the biohybrid system to the remarkable increase in the intracellular reducing power and the stronger rigidity of the cells assisted by photoexcited electrons from CdS nanoparticles. Our discovery offers insight and a promising strategy for improving the current CO2–CH4 biomanufacturing system.

Graphical abstract

Keywords

CO2 methanation / Rhodopseudomonas palustris / CdS nanoparticles / green catalysis

Cite this article

Download citation ▾
Yu Zhang, Yulei Qian, Zhenye Tong, Su Yan, Xiaoyu Yong, Yang-Chun Yong, Jun Zhou. Interfacing biosynthetic CdS with engineered Rhodopseudomonas palustris for efficient visible light-driven CO2–CH4 conversion. Front. Chem. Sci. Eng., 2024, 18(10): 109 https://doi.org/10.1007/s11705-024-2460-y

References

[1]
Cao J X , Zhang J , Chen Y , Fan R , Xu L , Wu E T , Xue Y , Yang J L , Chen Y M , Yang B . . Current status, future prediction and offset potential of fossil fuel CO2 emissions in China. Journal of Cleaner Production, 2023, 426: 139207
CrossRef Google scholar
[2]
Zhu J X , Li J T , Lu R H , Yu R H , Zhao S Y , Li C B , Lv L , Xia L X , Chen X B , Cai W W . . Surface passivation for highly active, selective, stable, and scalable CO2 electroreduction. Nature Communications, 2023, 14(1): 4670
CrossRef Google scholar
[3]
Lv L , Lu R H , Zhu J X , Yu R H , Zhang W , Cui E H , Chen X B , Dai Y H , Cui L M , Li J . . Coordinating the edge defects of bismuth with sulfur for enhanced CO2 electroreduction to formate. Angewandte Chemie International Edition, 2023, 62(25): e202303117
CrossRef Google scholar
[4]
SuBZhengMLinWLuX FLuanDWangS BLouX W D. Lou X W. S-scheme Co9S8@Cd0.8Zn0.2S-DETA hierarchical nanocages bearing organic CO2 activators for photocatalytic syngas production. Advanced Energy Materials, 2023, 13(15): 2203290
[5]
Zhao Y F , Chen G B , Bian T , Zhou C , Waterhouse G I N , Wu L Z , Tung C H , Smith L J , O’Hare D , Zhang T R . Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Advanced Materials, 2015, 27(47): 7824–7831
CrossRef Google scholar
[6]
Zhu J X , Lv L , Zaman S , Chen X B , Dai Y H , Chen S H , He G J , Wang D S , Mai L Q . Advances and challenges in single-site catalysts towards electrochemical CO2 methanation. Energy & Environmental Science, 2023, 16(11): 4812–4833
CrossRef Google scholar
[7]
Wang Y , Zhang C B , Li R G . Modulating the selectivity of photocatalytic CO2 reduction in barium titanate by introducing oxygen vacancies. Transactions of Tianjin University, 2022, 28(4): 227–235
CrossRef Google scholar
[8]
Weliwatte N S , Minteer S D . Photo-bioelectrocatalytic CO2 reduction for a circular energy landscape. Joule, 2021, 5(10): 2564–2592
CrossRef Google scholar
[9]
Kumar M , Sahoo P C , Srikanth S , Bagai R , Puri S K , Ramakumar S S V . Photosensitization of electro-active microbes for solar assisted carbon dioxide transformation. Bioresource Technology, 2019, 272: 300–307
CrossRef Google scholar
[10]
Martins M , Toste C , Pereira I A C . Enhanced light-driven hydrogen production by self-photosensitized biohybrid systems. Angewandte Chemie International Edition, 2021, 60(16): 9055–9062
CrossRef Google scholar
[11]
Ye J , Yu J , Zhang Y Y , Chen M , Liu X , Zhou S G , He Z . Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri-CdS biohybrid. Applied Catalysis B: Environmental, 2019, 257: 117916
CrossRef Google scholar
[12]
Ye J , Ren G P , Kang L , Zhang Y Y , Liu X , Zhou S G , He Z . Efficient photoelectron capture by Ni decoration in Methanosarcina barkeri-CdS biohybrids for enhanced photocatalytic CO2-to-CH4 conversion. iScience, 2020, 23(7): 101287
CrossRef Google scholar
[13]
Liu L Y , Xie G J , Ding J , Liu B F , Xing D F , Ren N Q , Wang Q . Microbial methane emissions from the non-methanogenesis processes: a critical review. Science of the Total Environment, 2022, 806: 151362
CrossRef Google scholar
[14]
Bižić M , Klintzsch T , Ionescu D , Hindiyeh M Y , Günthel M , Muro-Pastor A M , Eckert W , Urich T , Keppler F , Grossart H P . Aquatic and terrestrial cyanobacteria produce methane. Science Advances, 2020, 6(3): eaax5343
CrossRef Google scholar
[15]
Zhang Y T , Wei W , Wang Y , Ni B J . Enhancing methane production from algae anaerobic digestion using diatomite. Journal of Cleaner Production, 2021, 315: 128138
CrossRef Google scholar
[16]
Lenhart K , Bunge M , Ratering S , Neu T R , Schüttmann I , Greule M , Kammann C , Schnell S , Müller C , Zorn H . . Evidence for methane production by saprotrophic fungi. Nature Communications, 2012, 3(1): 1046
CrossRef Google scholar
[17]
Zheng Y N , Harris D F , Yu Z , Fu Y F , Poudel S , Ledbetter R N , Fixen K R , Yang Z Y , Boyd E S , Lidstrom M E . . A pathway for biological methane production using bacterial iron-only nitrogenase. Nature Microbiology, 2018, 3(3): 281–286
CrossRef Google scholar
[18]
Ma L Q , Fang Z , Wang Y Z , Zhou J , Yong Y C . Photo-driven highly efficient one-step CO2 biomethanation with engineered photo-synthetic bacteria Rhodopseudomonas palustris. ACS Sustainable Chemistry & Engineering, 2020, 8(26): 9616–9621
CrossRef Google scholar
[19]
Wang B , Xiao K M , Jiang Z F , Wang J F , Yu J C , Wong P K . Biohybrid photoheterotrophic metabolism for significant enhancement of biological nitrogen fixation in pure microbial cultures. Energy & Environmental Science, 2019, 12(7): 2185–2191
CrossRef Google scholar
[20]
Shang L , Tong B , Yu H J , Waterhouse G I N , Zhou C , Zhao Y F , Tahir M , Wu L Z , Tung C H , Zhang T . CdS nanoparticle-decorated Cd nanosheets for efficient visible light-driven photocatalytic hydrogen evolution. Advanced Energy Materials, 2016, 6(3): 1501241
CrossRef Google scholar
[21]
LaSarre B , Kysela D T , Stein B D , Ducret A , Brun Y V , McKinlay J B . Restricted localization of photosynthetic intracytoplasmic membranes (ICMs) in multiple genera of purple nonsulfur bacteria. MBio, 2018, 9(4): e00780–18
CrossRef Google scholar
[22]
Wang B , Jiang Z F , Yu J C , Wang J F , Wong P K . Enhanced CO2 reduction and valuable C2+ chemical production by a CdS-photosynthetic hybrid system. Nanoscale, 2019, 11(19): 9296–9301
CrossRef Google scholar
[23]
Wang J , Xia T , Wang L , Zheng X S , Qi Z M , Gao C , Zhu J F , Li Z Q , Xu H X , Xiong Y J . Enabling visible-light-driven selective CO2 reduction by doping quantum dots: trapping electrons and suppressing H2 evolution. Angewandte Chemie International Edition, 2018, 57(50): 16447–16451
CrossRef Google scholar
[24]
Bai H J , Zhang Z M , Guo Y , Yang G E . Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids and Surfaces. B, Biointerfaces, 2009, 70(1): 142–146
CrossRef Google scholar
[25]
Sakimoto K K , Wong A B , Yang P . Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science, 2016, 351(6268): 74–77
CrossRef Google scholar
[26]
Huang S F , Tang J H , Liu X , Dong G W , Zhou S G . Fast light-driven biodecolorization by a Geobacter sulfurreducens-CdS biohybrid. ACS Sustainable Chemistry & Engineering, 2019, 7(18): 15427–15433
CrossRef Google scholar
[27]
Gupta D , Guzman M S , Bose A . Extracellular electron uptake by autotrophic microbes: physiological, ecological, and evolutionary implications. Journal of Industrial Microbiology & Biotechnology, 2020, 47(9–10): 863–876
CrossRef Google scholar
[28]
Chen G J , Zhou Z R , Li B F , Lin X H , Yang C , Fang Y X , Lin W , Hou Y D , Zhang G G , Wang S , Wang S B . S-Scheme heterojunction of crystalline carbon nitride nanosheets and ultrafine WO3 nanoparticles for photocatalytic CO2 reduction. Journal of Environmental Sciences, 2024, 140: 103–112
CrossRef Google scholar
[29]
ZhuangXHouY DYuanR SDingZ XWee-JunOWangS B. Hollow NiCo2S4 nanospheres as a cocatalyst to support ZnIn2S4 nanosheets for visible-light-driven hydrogen production. Acta Physico-Chimica Sinica, 2022, 38(7): 2111021 (in Chinese)
[30]
Chen M Y , Fang Z , Xu L X , Zhou D , Yang X J , Zhu H J , Yong Y C . Enhancement of photo-driven biomethanation under visible light by nano-engineering of Rhodopseudomonas palustris. Bioresources and Bioprocessing, 2021, 8(1): 30
CrossRef Google scholar
[31]
Jin S , Jeon Y , Jeon M S , Shin J , Song Y , Kang S , Bae J , Cho S , Lee J K , Kim D R . . Acetogenic bacteria utilize light-driven electrons as an energy source for autotrophic growth. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(9): e2020552118
CrossRef Google scholar
[32]
Gupta D , Sutherland M C , Rengasamy K , Meacham J M , Kranz R G , Bose A . Photoferrotrophs produce a pioAB electron conduit for extracellular electron uptake. MBio, 2019, 10(6): e02668–19
CrossRef Google scholar
[33]
Grattieri M . Purple bacteria photo-bioelectrochemistry: enthralling challenges and opportunities. Photochemical & Photobiological Sciences, 2020, 19(4): 424–435
CrossRef Google scholar
[34]
Czarnecki O , Grimm B . Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria. Journal of Experimental Botany, 2012, 63(4): 1675–1687
CrossRef Google scholar
[35]
Buggy J J , Sganga M W , Bauer C E . Characterization of a light-responding transactivator responsible for differentially controlling reaction-center and light-harvesting-I gene-expression in rhodobacter-capsulatus. Journal of Bacteriology, 1994, 176(22): 6936–6943
CrossRef Google scholar
[36]
Guzman M S , Rengasamy K , Binkley M M , Jones C , Ranaivoarisoa T O , Singh R , Fike D A , Meacham J M , Bose A . Phototrophic extracellular electron uptake is linked to carbon dioxide fixation in the bacterium Rhodopseudomonas palustris. Nature Communications, 2019, 10(1): 1355
CrossRef Google scholar
[37]
Zeng Y , Zhou X , Qi R L , Dai N , Fu X C , Zhao H , Peng K , Yuan H T , Huang Y M , Lv F T . . Photoactive conjugated polymer-based hybrid biosystems for enhancing cyanobacterial photosynthesis and regulating redox state of protein. Advanced Functional Materials, 2021, 31(8): 2007814
CrossRef Google scholar
[38]
McKinlay J B , Harwood C S . Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(26): 11669–11675
CrossRef Google scholar
[39]
Zheng Y N , Harwood C S . Influence of energy and electron availability on in vivo methane and hydrogen production by a variant molybdenum nitrogenase. Applied and Environmental Microbiology, 2019, 85(9): e02671–18
CrossRef Google scholar
[40]
Kim Y , Shin S A , Lee J , Yang K D , Nam K T . Hybrid system of semiconductor and photosynthetic protein. Nanotechnology, 2014, 25(34): 342001
CrossRef Google scholar
[41]
Brown K A , Harris D F , Wilker M B , Rasmussen A , Khadka N , Hamby H , Keable S , Dukovic G , Peters J W , Seefeldt L C . . Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid. Science, 2016, 352(6284): 448–450
CrossRef Google scholar
[42]
Cui D Z , Wang J Q , Wang H , Yang Y , Zhao M . The cytotoxicity of endogenous CdS and Cd2+ ions during CdS NPs biosynthesis. Journal of Hazardous Materials, 2021, 409: 124485
CrossRef Google scholar
[43]
Weng B , Qi M Y , Han C , Tang Z R , Xu Y J . Photocorrosion inhibition of semiconductor-based photocatalysts: basic principle, current development, and future perspective. ACS Catalysis, 2019, 9(5): 4642–4687
CrossRef Google scholar
[44]
Tremblay P L , Xu M Y , Chen Y M , Zhang T . Nonmetallic abiotic-biological hybrid photocatalyst for visible water splitting and carbon dioxide reduction. iScience, 2020, 23(1): 100784
CrossRef Google scholar
[45]
Gürgan M , Koku H , Eroglu I , Yücel M . Transcriptome analysis of the effects of light and dark cycle on hydrogen production metabolism of Rhodobacter capsulatus DSM1710. International Journal of Hydrogen Energy, 2020, 45(60): 34707–34719
CrossRef Google scholar
[46]
Venkidusamy K , Megharaj M , Schröder U , Karouta F , Mohan S V , Naidu R . Electron transport through electrically conductive nanofilaments in Rhodopseudomonas palustris strain RP2. RSC Advances, 2015, 5(122): 100790–100798
CrossRef Google scholar

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was supported by the 2022 Carbon Dafeng and Carbon Neutral Science and Technology Innovation Special Fund in Jiangsu Province (Grant No. BK20220003), the National Natural Science Foundation of China (Grant No. 32371538), the Special Funds for Jiangsu Provincial Science and technology plan (Grant No. BZ2022052), the Jiangsu Agriculture Science and Technology Innovation Fund (Grant No. CX(21)2015), and the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture (Grant No. XTD2204).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-024-2460-y and is accessible for authorized users.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(1055 KB)

Accesses

Citations

Detail

Sections
Recommended

/