Dealloyed TiCuMn efficiently catalyze the NO reduction and Zn-NO batteries
Lang Zhang, Tong Hou, Weijia Liu, Yeyu Wu, Tianran Wei, Junyang Ding, Qian Liu, Jun Luo, Xijun Liu
Dealloyed TiCuMn efficiently catalyze the NO reduction and Zn-NO batteries
Electrocatalytic NO reduction reaction offers a sustainable route to achieving environmental protection and NH3 production targets as well. In this work, a class of dealloyed Ti60Cu33Mn7 ribbons with enough nanoparticles for the high-efficient NO reduction reaction to NH3 is fabricated, reaching an excellent Faradaic efficiency of 93.2% at –0.5 V vs reversible hydrogen electrode and a high NH3 synthesis rate of 717.4 μmol·h–1·mgcat.–1 at –0.6 V vs reversible hydrogen electrode. The formed nanoparticles on the surface of the catalyst could facilitate the exposure of active sites and the transportation of various reactive ions and gases. Meanwhile, the Mn content in the TiCuMn ribbons modulates the chemical and physical properties of its surface, such as modifying the electronic structure of the Cu species, optimizing the adsorption energy of N* atoms, decreasing the strength of the NO adsorption, and eliminating the thermodynamic energy barrier, thus improving the NO reduction reaction catalytic performance. Moreover, a Zn-NO battery was fabricated using the catalyst and Zn plates, generating an NH3 yield of 129.1 µmol·h–1·cm–2 while offering a peak power density of 1.45 mW·cm–2.
nitric oxide reduction / NH3 electrosynthesis / TiCuMn alloy / Mn modulation / Zn-NO battery
[1] |
Qu Z , Sun F , Pi X , Li X , Wu D , Gao J , Zhao G . One-step synergistic optimization of hierarchical pore topology and nitrogen dopants in activated coke for efficient catalytic oxidation of nitric oxide. Journal of Cleaner Production, 2022, 335: 130360
CrossRef
Google scholar
|
[2] |
Kreuzer L B , Patel C K N . Nitric oxide air pollution: detection by optoacoustic spectroscopy. Science, 1971, 173(3991): 45–47
CrossRef
Google scholar
|
[3] |
Chebrolu V T , Jang D , Rani G M , Lim C , Yong K , Kim W B . Overview of emerging catalytic materials for electrochemical green ammonia synthesis and process. Carbon Energy, 2023, 5(12): e361
CrossRef
Google scholar
|
[4] |
Zhang S , Liu Q , Tang X , Zhou Z , Fan T , You Y , Zhang Q , Zhang S , Luo J , Liu X . Electrocatalytic reduction of NO to NH3 in ionic liquids by P-doped TiO2 nanotubes. Frontiers of Chemical Science and Engineering, 2023, 17(6): 726–734
CrossRef
Google scholar
|
[5] |
Wu H E , Fei G T , Gao X D , Guo X , Gong X X , Ma X L , Wang Q , Xv S H . Research progress on preparation and application of polyaniline and its composite materials. China Powder Science and Technology, 2023, 29(5): 70–80
|
[6] |
Sun B , Lu S , Qian Y , Zhang X , Tian J . Recent progress in research and design concepts for the characterization, testing, and photocatalysts for nitrogen reduction reaction. Carbon Energy, 2023, 5(3): e305
CrossRef
Google scholar
|
[7] |
Ji Y Q , Yu Z H , Yan L G , Wen S . Research progress in preparation, modification and application of biomass-based single-atom catalysts. China Powder Science and Technology, 2023, 29(4): 100–107
|
[8] |
Theerthagiri J , Karuppasamy K , Mahadi A H , Moon C J , Rahamathulla N , Kheawhom S , Alameri S , Alfantazi A , Murthy A P , Choi M Y . Electrochemical reduction of gaseous nitric oxide into ammonia: a review. Environmental Chemistry Letters, 2024, 22(1): 189–208
CrossRef
Google scholar
|
[9] |
Gao L , Xv X B , Hu C Q , Zhong J , Sun L B . Preparation and investigation of high performance Pt-Mn alloy catalyst towards oxygen reduction. China Powder Science and Technology, 2023, 29(2): 1–9
|
[10] |
Tounsi H , Djemal S , Petitto C , Delahay G . Copper loaded hydroxyapatite catalyst for selective catalytic reduction of nitric oxide with ammonia. Applied Catalysis B: Environmental, 2011, 107(1): 158–163
CrossRef
Google scholar
|
[11] |
Zhang G , Wang G , Wan Y , Liu X , Chu K . Ampere-level nitrate electroreduction to ammonia over monodispersed Bi-doped FeS2. ACS Nano, 2023, 17(21): 21328–21336
CrossRef
Google scholar
|
[12] |
Chen S , Qi G , Yin R , Liu Q , Feng L , Feng X , Hu G , Luo J , Liu X , Liu W . Electrocatalytic nitrate-to-ammonia conversion on CoO/CuO nanoarrays using Zn-nitrate batteries. Nanoscale, 2023, 15(48): 19577–19585
CrossRef
Google scholar
|
[13] |
Sun T , Gao F , Wang Y , Yi H , Yu Q , Zhao S , Tang X . Morphology and valence state evolution of Cu: unraveling the impact on nitric oxide electroreduction. Journal of Energy Chemistry, 2024, 91: 276–286
CrossRef
Google scholar
|
[14] |
Long J , Chen S , Zhang Y , Guo C , Fu X , Deng D , Xiao J . Direct electrochemical ammonia synthesis from nitric oxide. Angewandte Chemie International Edition, 2020, 59(24): 9711–9718
CrossRef
Google scholar
|
[15] |
Krzywda P M , Paradelo Rodríguez A , Benes N E , Mei B T , Mul G . Effect of electrolyte and electrode configuration on Cu-catalyzed nitric oxide reduction to ammonia. ChemElectroChem, 2022, 9(5): e202101273
CrossRef
Google scholar
|
[16] |
Chen L , Sun W , Xu Z , Hao M , Li B , Liu X , Ma J , Wang L , Li C , Wang W . Ultrafine Cu nanoparticles decorated porous TiO2 for high-efficient electrocatalytic reduction of NO to synthesize NH3. Ceramics International, 2022, 48(15): 21151–21161
CrossRef
Google scholar
|
[17] |
Shi J , Wang C , Yang R , Chen F , Meng N , Yu Y , Zhang B . Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Ru doping. Science China. Chemistry, 2021, 64(9): 1493–1497
CrossRef
Google scholar
|
[18] |
Ren Z , Zhang H , Wang S , Huang B , Dai Y , Wei W . Nitric oxide reduction reaction for efficient ammonia synthesis on topological nodal-line semimetal Cu2Si monolayer. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2022, 10(15): 8568–8577
CrossRef
Google scholar
|
[19] |
Feng J , Ji Y , Li Y . In silico design of copper-based alloys for ammonia synthesis from nitric oxide reduction accelerated by machine learning. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2023, 11(26): 14195–14203
CrossRef
Google scholar
|
[20] |
Yang M , Wei T , He J , Liu Q , Feng L , Li H , Luo J , Liu X . Au nanoclusters anchored on TiO2 nanosheets for high-efficiency electroreduction of nitrate to ammonia. Nano Research, 2024, 17(3): 1209–1216
CrossRef
Google scholar
|
[21] |
Curtin T , O’ Regan F , Deconinck C , Knüttle N , Hodnett B K . The catalytic oxidation of ammonia: influence of water and sulfur on selectivity to nitrogen over promoted copper oxide/alumina catalysts. Catalysis Today, 2000, 55(1): 189–195
CrossRef
Google scholar
|
[22] |
Ge Z X , Wang T J , Ding Y , Yin S B , Li F M , Chen P , Chen Y . Interfacial engineering enhances the electroactivity of frame-like concave RhCu bimetallic nanocubes for nitrate reduction. Advanced Energy Materials, 2022, 12(15): 2103916
CrossRef
Google scholar
|
[23] |
Zhang W , Qin X , Wei T , Liu Q , Luo J , Liu X . Single atomic cerium sites anchored on nitrogen-doped hollow carbon spheres for highly selective electroreduction of nitric oxide to ammonia. Journal of Colloid and Interface Science, 2023, 638: 650–657
CrossRef
Google scholar
|
[24] |
Ding J , Hou X , Qiu Y , Zhang S , Liu Q , Luo J , Liu X . Iron-doping strategy promotes electroreduction of nitrate to ammonia on MoS2 nanosheets. Inorganic Chemistry Communications, 2023, 151: 110621
CrossRef
Google scholar
|
[25] |
Wang G , Zhang J , Liu L , Zhou J Z , Liu Q , Qian G , Xu Z P , Richards R M . Novel multi-metal containing MnCr catalyst made from manganese slag and chromium wastewater for effective selective catalytic reduction of nitric oxide at low temperature. Journal of Cleaner Production, 2018, 183: 917–924
CrossRef
Google scholar
|
[26] |
Hua H , Zeng J , Wang G , Zhang J , Zhou J , Pan Y , Liu Q , Xu Y , Qian G , Xu Z P . Understanding of the high hydrothermal stability of a catalyst prepared from Mn slag for low-temperature selective catalytic reduction of NO. Journal of Hazardous Materials, 2020, 381: 120935
CrossRef
Google scholar
|
[27] |
Zhang K , Li Z X , Li X , Chen X Y , Tang H Q , Liu X H , Wang C Y , Ma J M . Perspective on cycling stability of lithium-iron manganese phosphate for lithium-ion batteries. Rare Metals, 2023, 42(3): 740–750
CrossRef
Google scholar
|
[28] |
Wu B , Huang L , Yan L , Gang H , Cao Y , Wei D , Wang H , Guo Z , Zhang W . Boron-modulated electronic-configuration tuning of cobalt for enhanced nitric oxide fixation to ammonia. Nano Letters, 2023, 23(15): 7120–7128
CrossRef
Google scholar
|
[29] |
Liang J , Liu P , Li Q , Li T , Yue L , Luo Y , Liu Q , Li N , Tang B , Alshehri A A .
CrossRef
Google scholar
|
[30] |
Li P , Jin Z , Fang Z , Yu G . A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy & Environmental Science, 2021, 14(6): 3522–3531
CrossRef
Google scholar
|
[31] |
Zhao W , Qin J , Teng W , Mu J , Chen C , Ke J , Huang J C , Liu B , Wang S . Catalytic photo-redox of simulated air into ammonia over bimetallic MOFs nanosheets with oxygen vacancies. Applied Catalysis B: Environmental, 2022, 305: 121046
CrossRef
Google scholar
|
[32] |
Watt G W , Chrisp J D . Spectrophotometric method for determination of hydrazine. Analytical Chemistry, 1952, 24(12): 2006–2008
CrossRef
Google scholar
|
[33] |
Fu M , Mao Y , Wang H , Luo W , Jiang Y , Shen W , Li M , He R . Enhancing the electrocatalytic performance of nitrate reduction to ammonia by in-situ nitrogen leaching. Chinese Chemical Letters, 2024, 35(2): 108341
CrossRef
Google scholar
|
[34] |
Sun R , Su Z H , Zhao Z F , Yang M Q , Li T S , Zhao J X , Shang Y C . Ni3S2 nanocrystals in-situ grown on Ni foam as highly efficient electrocatalysts for alkaline hydrogen evolution. Rare Metals, 2023, 42(10): 3420–3429
CrossRef
Google scholar
|
[35] |
Lu G , Gao S , Liu Q , Zhang S , Luo J , Liu X . Design of material regulatory mechanism for electrocatalytic converting NO/NO3− to NH3 progress. Nature and Science, 2023, 3(3): e20220047
|
[36] |
Ding J , Yang H , Zhang H , Wang Z , Liu Q , Feng L , Hu G , Luo J , Liu X . Dealloyed NiTiZrAg as an efficient electrocatalyst for hydrogen evolution in alkaline seawater. International Journal of Hydrogen Energy, 2024, 53: 318–324
CrossRef
Google scholar
|
[37] |
Fang D , He F , Xie J , Xue L . Calibration of binding energy positions with C1s for XPS results. Journal of Wuhan University of Technology-Mater. Science Edition, 2020, 35(4): 711–718
|
[38] |
Chen L N , Wang S H , Zhang P Y , Chen Z X , Lin X , Yang H J , Sheng T , Lin W F , Tian N , Sun S G .
CrossRef
Google scholar
|
[39] |
Tian J S , Hu Y C , Lu W F , Zhu J H , Liu X D , Shen J , Wang G , Schroers J . Dealloying of an amorphous TiCuRu alloy results in a nanostructured electrocatalyst for hydrogen evolution reaction. Carbon Energy, 2023, 5(8): e322
CrossRef
Google scholar
|
[40] |
Gupta S , Zhao S , Wang X X , Hwang S , Karakalos S , Devaguptapu S V , Mukherjee S , Su D , Xu H , Wu G . Quaternary FeCoNiMn-based nanocarbon electrocatalysts for bifunctional oxygen reduction and evolution: promotional role of Mn doping in stabilizing carbon. ACS Catalysis, 2017, 7(12): 8386–8393
CrossRef
Google scholar
|
[41] |
Fan M Y , Wang J J , Zhao J , Zhang H , Ma T Y , Han X P , Hu W B . High-entropy oxide-supported platinum nanoparticles for efficient hydrogen evolution reaction. Rare Metals, 2024, 43(4): 1537–1546
CrossRef
Google scholar
|
[42] |
Chen C , Li S , Zhu X , Bo S , Cheng K , He N , Qiu M , Xie C , Song D , Liu Y .
CrossRef
Google scholar
|
[43] |
Zhang C , Xu H , Wang Y , An M , Wang Y , Yuan Z , Zhang W , Li C , Guo M , Su D . Reduction of 4-nitrophenol with nano-gold@graphene composite porous material. China Powder Science and Technology, 2023, 29(4): 80–93
|
[44] |
Chen K , Xiang J , Guo Y , Liu X , Li X , Chu K . Pd1Cu single-atom alloys for high-current-density and durable NO-to-NH3 electroreduction. Nano Letters, 2024, 24(2): 541–548
CrossRef
Google scholar
|
[45] |
Qin Y , Cao H , Liu Q , Yang S , Feng X , Wang H , Lian M , Zhang D , Wang H , Luo J .
CrossRef
Google scholar
|
[46] |
Zhang L , Liang J , Wang Y , Mou T , Lin Y , Yue L , Li T , Liu Q , Luo Y , Li N .
CrossRef
Google scholar
|
[47] |
Liang J , Chen H , Mou T , Zhang L , Lin Y , Yue L , Luo Y , Liu Q , Li N , Alshehri A A .
CrossRef
Google scholar
|
[48] |
Mou T , Liang J , Ma Z , Zhang L , Lin Y , Li T , Liu Q , Luo Y , Liu Y , Gao S .
CrossRef
Google scholar
|
/
〈 | 〉 |