Ultralong hydroxyapatite-based forward osmosis membrane for freshwater generation
Mohamed Gamal Gomaa , Hamdy Maamoun Abdel-Ghafar , Francesco Galiano , Francesca Russo , Alberto Figoli , El-Sayed Ali Abdel-Aal , Abdel-Hakim Taha Kandil , Bahaa Ahmed Salah
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (9) : 100
Ultralong hydroxyapatite-based forward osmosis membrane for freshwater generation
Increasing global water shortages are accelerating the pace of membrane manufacturing, which generates many environmentally harmful solvents. Such challenges need a radical rethink of developing innovative membranes that can address freshwater production without generating environmentally harmful solvents. This work utilized the synthesized ultra-long hydroxyapatite (UHA) by the solvothermal method using the green solvent oleic acid in preparing UHA-based forward osmosis membranes. The membranes were developed using different loading ratios of graphene oxide (GO) by vacuum-assisted filtration technique. The prepared GO/UHA membranes were identified using X-ray diffraction, scanning electron microscope, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Water contact angle and pore size distribution were determined for the obtained GO/UHA membranes. The obtained hierarchical porous structure in the prepared membranes with interconnected channels results in a stable water flux with reverse salt flux. The best water flux rate of 42 ± 2 L·m–2·h–1 was achieved using the 50 mg GO/UHA membrane, which is 3.3 times higher than the pristine membrane, and a reverse salt flux of 67 g·m–2·h–1. The obtained results showed a promising capability of a new generation of sustainable inorganic-based membranes that can be utilized in freshwater generation by energy-efficient techniques such as forward osmosis.
forward osmosis / ultra-long hydroxyapatite / graphene oxide / inorganic-based membrane
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
The Author(s) 2024. This article is published with open access at link.springer.com and journal.hep.com.cn
Supplementary files
/
| 〈 |
|
〉 |