Recent advances and practical challenges of high-energy-density flexible lithium-ion batteries
Guangxiang Zhang, Xin Chen, Yulin Ma, Hua Huo, Pengjian Zuo, Geping Yin, Yunzhi Gao, Chuankai Fu
Recent advances and practical challenges of high-energy-density flexible lithium-ion batteries
With the rapid iteration and update of wearable flexible devices, high-energy-density flexible lithium-ion batteries are rapidly thriving. Flexibility, energy density, and safety are all important indicators for flexible lithium-ion batteries, which can be determined jointly by material selection and structural design. Here, recent progress on high-energy-density electrode materials and flexible structure designs are discussed. Commercialized electrode materials and the next-generation high-energy-density electrode materials are analyzed in detail. The electrolytes with high safety and excellent flexibility are classified and discussed. The strategies to increase the mass loading of active materials on the electrodes by designing the current collector and electrode structure are discussed with keys of representative works. And the novel configuration structures to enhance the flexibility of batteries are displayed. In the end, it is pointed out that it is necessary to quantify the comprehensive performance of flexible lithium-ion batteries and simultaneously enhance the energy density, flexibility, and safety of batteries for the development of the next-generation high-energy-density flexible lithium-ion batteries.
lithium-ion batteries / flexibility / high energy density / safety
[1] |
Chang J , Huang Q , Gao Y , Zheng Z . Pathways of developing high-energy-density flexible lithium batteries. Advanced Materials, 2021, 33(46): 2004419
CrossRef
Google scholar
|
[2] |
Wang M , Luo Y , Wang T , Wan C , Pan L , Pan S , He K , Neo A , Chen X . Artificial skin perception. Advanced Materials, 2021, 33(19): 2003014
CrossRef
Google scholar
|
[3] |
Zhou G , Li F , Cheng H M . Progress in flexible lithium batteries and future prospects. Energy & Environmental Science, 2014, 7(4): 1307–1338
CrossRef
Google scholar
|
[4] |
Kim S H , Kim N Y , Choe U J , Kim J M , Lee Y G , Lee S Y . Ultrahigh-energy-density flexible lithium-metal full cells based on conductive fibrous skeletons. Advanced Energy Materials, 2021, 11(24): 2100531
CrossRef
Google scholar
|
[5] |
Wang Z , Zhang W , Li X , Gao L . Recent progress in flexible energy storage materials for lithium-ion batteries and electrochemical capacitors: a review. Journal of Materials Research, 2016, 31(12): 1648–1664
CrossRef
Google scholar
|
[6] |
Alahmed A , Sabir E C . Textile based electrodes for flexible lithium-ion batteries: new updates. Current Nanoscience, 2022, 18(6): 659–667
CrossRef
Google scholar
|
[7] |
Zeng L , Qiu L , Cheng H M . Towards the practical use of flexible lithium ion batteries. Energy Storage Materials, 2019, 23: 434–438
CrossRef
Google scholar
|
[8] |
Deng L , Wei T , Liu J , Zhan L , Chen W , Cao J . Recent developments of carbon-based anode materials for flexible lithium-ion batteries. Crystals, 2022, 12(9): 1279
CrossRef
Google scholar
|
[9] |
Zhang X . Thermal analysis of a cylindrical lithium-ion battery. Electrochimica Acta, 2011, 56(3): 1246–1255
CrossRef
Google scholar
|
[10] |
Deng J , Smith I , Bae C , Rairigh P , Miller T , Surampudi B . Communication-impact behaviors of pouch and prismatic battery modules. Journal of the Electrochemical Society, 2021, 168(2): 020520
CrossRef
Google scholar
|
[11] |
Ostfeld A E , Gaikwad A M , Khan Y , Arias A C . High-performance flexible energy storage and harvesting system for wearable electronics. Scientific Reports, 2016, 6(1): 26122
CrossRef
Google scholar
|
[12] |
Xie C , Guo Y , Zheng Z . Pushing the limit of flexible batteries. CCS Chemistry, 2023, 5(3): 531–543
CrossRef
Google scholar
|
[13] |
Fu K K , Cheng J , Li T , Hu L . Flexible batteries: from mechanics to devices. ACS Energy Letters, 2016, 1(5): 1065–1079
CrossRef
Google scholar
|
[14] |
Liang G , Mo F , Yang Q , Huang Z , Li X , Wang D , Liu Z , Li H , Zhang Q , Zhi C . Commencing an acidic battery based on a copper anode with ultrafast proton-regulated kinetics and superior dendrite-free property. Advanced Materials, 2019, 31(52): 1905873
CrossRef
Google scholar
|
[15] |
Lu X , Cheng J , Zhou D , Chen Y , Jiang H , Lu Y , Zhang D , Kong D , Chu P K , Yang H Y .
CrossRef
Google scholar
|
[16] |
Li H , Tang Z , Liu Z , Zhi C . Evaluating flexibility and wearability of flexible energy storage devices. Joule, 2019, 3(3): 613–619
CrossRef
Google scholar
|
[17] |
Mao L , Meng Q , Ahmad A , Wei Z . Mechanical analyses and structural design requirements for flexible energy storage devices. Advanced Energy Materials, 2017, 7(23): 1700535
CrossRef
Google scholar
|
[18] |
Zheng S , Shi D , Sun T , Zhang L , Zhang W , Li Y , Guo Z , Tao Z , Chen J . Hydrogen bond networks stabilized high-capacity organic cathode for lithium-ion batteries. Angewandte Chemie International Edition, 2023, 62(9): e202217710
CrossRef
Google scholar
|
[19] |
Ge M , Cao C , Biesold G M , Sewell C D , Hao S M , Huang J , Zhang W , Lai Y , Lin Z . Recent advances in silicon-based electrodes: from fundamental research toward practical applications. Advanced Materials, 2021, 33(16): 2004577
CrossRef
Google scholar
|
[20] |
Nagata H , Akimoto J , Kataoka K . Influence of compositing conditions for Si-composite negative electrodes in sulfide-type all-solid-state lithium-ion batteries. New Journal of Chemistry, 2023, 47(18): 8479–8483
CrossRef
Google scholar
|
[21] |
Shang J , Yu W , Wang L , Xie C , Xu H , Wang W , Huang Q , Zheng Z . Metallic glass-fiber fabrics: a new type of flexible, super-lightweight, and 3D current collector for lithium batteries. Advanced Materials, 2023, 35(26): 2211748
CrossRef
Google scholar
|
[22] |
Koo M , Park K I , Lee S H , Suh M , Jeon D Y , Choi J W , Kang K , Lee K J . Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Letters, 2012, 12(9): 4810–4816
CrossRef
Google scholar
|
[23] |
Xu S , Zhang Y , Cho J , Lee J , Huang X , Jia L , Fan J A , Su Y , Su J , Zhang H .
CrossRef
Google scholar
|
[24] |
Ren J , Zhang Y , Bai W , Chen X , Zhang Z , Fang X , Weng W , Wang Y , Peng H . Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance. Angewandte Chemie International Edition, 2014, 53(30): 7864–7869
CrossRef
Google scholar
|
[25] |
Liu Q C , Liu T , Liu D P , Li Z J , Zhang X B , Zhang Y . A flexible and wearable lithium-oxygen battery with record energy density achieved by the interlaced architecture inspired by bamboo slips. Advanced Materials, 2016, 28(38): 8413–8418
CrossRef
Google scholar
|
[26] |
Qian G , Zhu B , Liao X , Zhai H , Srinivasan A , Fritz N J , Cheng Q , Ning M , Qie B , Li Y .
CrossRef
Google scholar
|
[27] |
Meng Q , Kang C , Zhu J , Xiao X , Ma Y , Huo H , Zuo P , Du C , Lou S , Yin G . DNA helix structure inspired flexible lithium-ion batteries with high spiral deformability and long-lived cyclic stability. Nano Letters, 2022, 22(13): 5553–5560
CrossRef
Google scholar
|
[28] |
Bao Y , Liu H , Zhao Z , Ma X , Zhang X Y , Liu G , Song W L . Toward flexible embodied energy: scale-inspired overlapping lithium-ion batteries with high-energy-density and variable stiffness. Advanced Functional Materials, 2023, 33(37): 2301581
CrossRef
Google scholar
|
[29] |
Wang Y , Chen F , Liu Z , Tang Z , Yang Q , Zhao Y , Du S , Chen Q , Zhi C . A highly elastic and reversibly stretchable all polymer supercapacitor. Angewandte Chemie International Edition, 2019, 58(44): 15707–15711
CrossRef
Google scholar
|
[30] |
Xu C , Fan Z , Zhang M , Wang P , Wang H , Jin C , Peng Y , Jiang F , Feng X , Ouyang M . A comparative study of the venting gas of lithium-ion batteries during thermal runaway triggered by various methods. Cell Reports. Physical Science, 2023, 4(12): 101705
CrossRef
Google scholar
|
[31] |
Zhou Q , Dong S , Lv Z , Xu G , Huang L , Wang Q , Cui Z , Cui G . A temperature-responsive electrolyte endowing superior safety characteristic of lithium metal batteries. Advanced Energy Materials, 2020, 10(6): 1903441
CrossRef
Google scholar
|
[32] |
Deng R , He T . Flexible solid-state lithium-ion batteries: materials and structures. Energies, 2023, 16(12): 4549
CrossRef
Google scholar
|
[33] |
Kim B , Yang S H , Seo J H , Kang Y C . Inducing an amorphous phase in polymer plastic crystal electrolyte for effective ion transportation in lithium metal batteries. Advanced Functional Materials, 2023, 34(7): 2310957
|
[34] |
Wang X , Lu X , Liu B , Chen D , Tong Y , Shen G . Flexible energy storage devices: design consideration and recent progress. Advanced Materials, 2014, 26(28): 4763–4782
CrossRef
Google scholar
|
[35] |
Zhang S , Wang Y , He H , Huo F , Lu Y , Zhang X , Dong K . A new era of precise liquid regulation: quasi-liquid. Green Energy & Environment, 2017, 2(4): 329–330
CrossRef
Google scholar
|
[36] |
Cai M , Dong Y , Xie M , Dong W , Dong C , Dai P , Zhang H , Wang X , Sun X , Zhang S .
CrossRef
Google scholar
|
[37] |
Wang C Y , Zheng Z J , Feng Y Q , Ye H , Cao F F , Guo Z P . Topological design of ultrastrong MXene paper hosted Li enables ultrathin and fully flexible lithium metal batteries. Nano Energy, 2020, 74: 104817
CrossRef
Google scholar
|
[38] |
Aliahmad N , Biswas P K , Dalir H , Agarwal M . Synthesis of V2O5/single-walled carbon nanotubes integrated into nanostructured composites as cathode materials in high performance lithium-ion batteries. Energies, 2022, 15(2): 552
CrossRef
Google scholar
|
[39] |
Cho S J , Choi K H , Yoo J T , Kim J H , Lee Y H , Chun S J , Park S B , Choi D H , Wu Q , Lee S Y .
CrossRef
Google scholar
|
[40] |
Weng W , Sun Q , Zhang Y , He S , Wu Q , Deng J , Fang X , Guan G , Ren J , Peng H . A gum-like lithium-ion battery based on a novel arched structure. Advanced Materials, 2015, 27(8): 1363–1369
CrossRef
Google scholar
|
[41] |
Kammoun M , Berg S , Ardebili H . Flexible thin-film battery based on graphene-oxide embedded in solid polymer electrolyte. Nanoscale, 2015, 7(41): 17516–17522
CrossRef
Google scholar
|
[42] |
Zheng S , Wu Z S , Zhou F , Wang X , Ma J , Liu C , He Y B , Bao X . All-solid-state planar integrated lithium-ion micro-batteries with extraordinary flexibility and high-temperature performance. Nano Energy, 2018, 51: 613–620
CrossRef
Google scholar
|
[43] |
Cui J , Yao S , Chong W G , Wu J , Ihsan-Ul-Haq M , Ma L , Zhao M , Wang Y , Kim J K . Ultrafast Li+ diffusion kinetics of 2D oxidized phosphorus for quasi-solid-state bendable batteries with exceptional energy densities. Chemistry of Materials, 2019, 31(11): 4113–4123
CrossRef
Google scholar
|
[44] |
Xu J , Cai X , Cai S , Shao Y , Hu C , Lu S , Ding S . High-energy lithium-ion batteries: recent progress and a promising future in applications. Energy & Environmental Materials, 2023, 6(5): e12450
CrossRef
Google scholar
|
[45] |
Xu D , Liang M , Qi S , Sun W , Lv L P , Du F H , Wang B , Chen S , Wang Y , Yu Y . The progress and prospect of tunable organic molecules for organic lithium-ion batteries. ACS Nano, 2021, 15(1): 47–80
CrossRef
Google scholar
|
[46] |
Park H , Shuku Y , Lee J , Lee K , Joo M D , An B K , Awaga K , Young P S , Eon K J . Isomeric triptycene triquinones as universal cathode materials for high energy alkali metal batteries. Batteries & Supercaps, 2023, 6(3): e202200497
CrossRef
Google scholar
|
[47] |
Chen H , Armand M , Demailly G , Dolhem F , Poizot P , Tarascon J M . From biomass to a renewable LiXC6O6 organic electrode for sustainable Li-ion batteries. ChemSusChem, 2008, 1(4): 348–355
CrossRef
Google scholar
|
[48] |
Li K , Yu J , Si Z , Gao B , Wang H , Wang Y . W H, Wang Y. One-dimensional π-d conjugated coordination polymer with double redox-active centers for all-organic symmetric lithium-ion batteries. Chemical Engineering Journal, 2022, 450: 138052
CrossRef
Google scholar
|
[49] |
Lu Y , Zhang Q , Li L , Niu Z , Chen J . Design strategies toward enhancing the performance of organic electrode materials in metal-ion batteries. Chem, 2018, 4(12): 2786–2813
CrossRef
Google scholar
|
[50] |
Zhao F , Zhao X , Peng B , Gan F , Yao M , Tan W , Dong J , Zhang Q . Polyimide-derived carbon nanofiber membranes as anodes for high-performance flexible lithium-ion batteries. Chinese Chemical Letters, 2018, 29(11): 1692–1697
CrossRef
Google scholar
|
[51] |
Wang X , Liu B , Hou X , Wang Q , Li W , Chen D , Shen G . Ultralong-life and high-rate web-like Li4Ti5O12 anode for high-performance flexible lithium-ion batteries. Nano Research, 2014, 7(7): 1073–1082
CrossRef
Google scholar
|
[52] |
Li P , Kim H , Ming J , Jung H-G , Belharouak I , Sun Y K . Quasi-compensatory effect in emerging anode-free lithium batteries. eScience, 2021, 1(1): 3–12
|
[53] |
Zhang Y , Yi L , Zhang J , Wang X , Hu X , Wei W , Wang H . Advances in flexible lithium metal batteries. Science China Materials, 2022, 65(8): 2035–2059
CrossRef
Google scholar
|
[54] |
Zhang X , Yang Y , Zhou Z . Towards practical lithium-metal anodes. Chemical Society Reviews, 2020, 49(10): 3040–3071
CrossRef
Google scholar
|
[55] |
Gao J , Chen C , Dong Q , Dai J , Yao Y , Li T , Rundlett A , Wang R , Wang C , Hu L . Stamping flexible Li alloy anodes. Advanced Materials, 2021, 33(11): 2005305
CrossRef
Google scholar
|
[56] |
Qing P , Wu Z , Wang A , Huang S , Long K , Naren T , Chen D , He P , Huang H , Chen Y .
CrossRef
Google scholar
|
[57] |
Kim J M , Engelhard M H , Lu B , Xu Y , Tan S , Matthews B E , Tripathi S , Cao X , Niu C , Hu E .
CrossRef
Google scholar
|
[58] |
Kim J H , Lee Y H , Cho S J , Gwon J G , Cho H J , Jang M , Lee S Y , Lee S Y . Nanomat Li-S batteries based on all-fibrous cathode/separator assemblies and reinforced Li metal anodes: towards ultrahigh energy density and flexibility. Energy & Environmental Science, 2019, 12(1): 177–186
CrossRef
Google scholar
|
[59] |
Liu T , Feng X L , Jin X , Shao M Z , Su Y T , Zhang Y , Zhang X B . Protecting the lithium metal anode for a safe flexible lithium air battery in ambient air. Angewandte Chemie International Edition, 2019, 58(50): 18240–18245
CrossRef
Google scholar
|
[60] |
Zhang S , Liang T , Wang D , Xu Y , Cui Y , Li J , Wang X , Xia X , Gu C , Tu J . A stretchable and safe polymer electrolyte with a protecting-layer strategy for solid-state lithium metal batteries. Advanced Science, 2021, 8(15): 2003241
CrossRef
Google scholar
|
[61] |
Wang H , Fu J , Wang C , Wang J , Yang A , Li C , Sun Q , Yi C , Li H . A binder-free high silicon content flexible anode for Li-ion batteries. Energy & Environmental Science, 2020, 13(3): 848–858
CrossRef
Google scholar
|
[62] |
Salvatierra R V , Raji A R O , Lee S K , Ji Y , Li L , Tour J M . Silicon nanowires and lithium cobalt oxide nanowires in graphene nanoribbon papers for full lithium ion battery. Advanced Energy Materials, 2016, 6(24): 1600918
CrossRef
Google scholar
|
[63] |
Mu Y , Han M , Wu B , Wang Y , Zi L , Li J , Li Z , Wang S , Wan J , Zeng L . Nitrogen, oxygen-codoped vertical graphene arrays coated 3D flexible carbon nanofibers with high silicon content as an ultrastable anode for superior lithium storage. Advanced Science, 2022, 9(6): 2104685
CrossRef
Google scholar
|
[64] |
An Y , Tian Y , Liu C , Xiong S , Feng J , Qian Y . One-step, vacuum-assisted construction of micrometer-sized nanoporous silicon confined by uniform two-dimensional N-doped carbon toward advanced Li-ion and MXene-based Li metal batteries. ACS Nano, 2022, 16(3): 4560–4577
CrossRef
Google scholar
|
[65] |
Huo S , Sheng L , Xue W , Wang L , Xu H , Zhang H , He X . Challenges of polymer electrolyte with wide electrochemical window for high energy solid-state lithium batteries. InfoMat, 2023, 5(3): e12394
CrossRef
Google scholar
|
[66] |
Fang R , Li Y , Wu N , Xu B , Liu Y , Manthiram A , Goodenough J B . Ultra-thin single-particle-layer sodium beta-alumina-based composite polymer electrolyte membrane for sodium-metal batteries. Advanced Functional Materials, 2023, 33(6): 2211229
CrossRef
Google scholar
|
[67] |
Xu P , Shuang Z Y , Zhao C Z , Li X , Fan L Z , Chen A , Chen H , Kuzmina E , Karaseva E , Kolosnitsyn V .
CrossRef
Google scholar
|
[68] |
Son J M , Oh S , Bae S H , Nam S , Oh K . A pair of NiCo2O4 and V2O5 nanowires directly grown on carbon fabric for highly bendable lithium-ion batteries. Advanced Energy Materials, 2019, 9(18): 1900477
CrossRef
Google scholar
|
[69] |
Ha S H , Shin K H , Park H W , Lee Y J . Flexible lithium-ion batteries with high areal capacity enabled by smart conductive textiles. Small, 2018, 14(43): 1703418
CrossRef
Google scholar
|
[70] |
Chen H , Zheng M , Qian Sh , Ling H Y , Wu Z , Liu X , Yan C , Zhang S . Functional additives for solid polymer electrolytes in flexible and high-energy-density solid-state lithium-ion batteries. Carbon Energy, 2021, 3(6): 929–956
CrossRef
Google scholar
|
[71] |
Fang R , Liu Y , Li Y , Manthiram A , Goodenough J B . Achieving stable all-solid-state lithium-metal batteries by tuning the cathode-electrolyte interface and ionic/electronic transport within the cathode. Materials Today, 2023, 64: 52–60
CrossRef
Google scholar
|
[72] |
Yang S J , Hu J K , Jiang F N , Yuan H , Park H S , Huang J Q . Safer solid-state lithium metal batteries: mechanisms and strategies. InfoMat, 2023, 6(2): e12512
|
[73] |
Tufail M K , Ahmed A , Rafiq M , Asif N M , Shoaib A S S , Sohail M , Sufyan J M , Najam T , Althomali R H , Rahman M M . Chemistry aspects and designing strategies of flexible materials for high-performance flexible lithium-ion batteries. Chemical Record, 2023, 24(1): e202300155
|
[74] |
Liu Y N , Xiao Z , Zhang W K , Zhang J , Huang H , Gan Y P , He X P , Kumar G G , Xia Y . Poly(m-phenylene isophthalamide)-reinforced polyethylene oxide composite electrolyte with high mechanical strength and thermostability for all-solid-state lithium metal batteries. Rare Metals, 2022, 41(11): 3762–3773
CrossRef
Google scholar
|
[75] |
Wang S , Xiong P , Zhang J , Wang G . Recent progress on flexible lithium metal batteries: composite lithium metal anodes and solid-state electrolytes. Energy Storage Materials, 2020, 29: 310–331
CrossRef
Google scholar
|
[76] |
Su Y , Xu F , Zhang X , Qiu Y , Wang H . Rational design of high-performance PEO/ceramic composite solid electrolytes for lithium metal batteries. Nano-Micro Letters, 2023, 15(1): 82
CrossRef
Google scholar
|
[77] |
Fang R , Xu H , Xu B , Li X , Li Y , Goodenough J B . Reaction mechanism optimization of solid-state Li-S batteries with a PEO-based electrolyte. Advanced Functional Materials, 2021, 31(2): 2001812
CrossRef
Google scholar
|
[78] |
Xia Y , Wang Q , Liu Y , Zhang J , Xia X , Huang H , Gan Y , He X , Xiao Z , Zhang W . Three-dimensional polyimide nanofiber framework reinforced polymer electrolyte for all-solid-state lithium metal battery. Journal of Colloid and Interface Science, 2023, 638: 908–917
CrossRef
Google scholar
|
[79] |
Xie H , Yang C , Fu K K , Yao Y , Jiang F , Hitz E , Liu B , Wang S , Hu L . Flexible, scalable, and highly conductive garnet-polymer solid electrolyte templated by bacterial cellulose. Advanced Energy Materials, 2018, 8(18): 1703474
CrossRef
Google scholar
|
[80] |
Shen W , Li K , Lv Y , Xu T , Wei D , Liu Z . Highly-safe and ultra-stable all-flexible gel polymer lithium ion batteries aiming for scalable applications. Advanced Energy Materials, 2020, 10(21): 1904281
CrossRef
Google scholar
|
[81] |
Yusim Y , Trevisanello E , Ruess R H , Richter F , Mayer A , Bresser D , Passerini S , Janek J , Henss A . Evaluation and improvement of the stability of poly(ethylene oxide)-based solid-state batteries with high-voltage cathodes. Angewandte Chemie International Edition, 2023, 12(62): e202218316
CrossRef
Google scholar
|
[82] |
Thomas M L , Kan H S , Nanbu S , Masahiro Y F . Organic ionic plastic crystals: flexible solid electrolytes for lithium secondary batteries. Energy Advances, 2023, 2(6): 748–764
CrossRef
Google scholar
|
[83] |
Wan J , Xie J , Kong X , Liu Z , Liu K , Shi F , Pei A , Chen H , Chen W , Chen J .
CrossRef
Google scholar
|
[84] |
Wang Z , Shen L , Deng S , Cui P , Yao X . 10 μm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries. Advanced Materials, 2021, 33(25): 2100353
CrossRef
Google scholar
|
[85] |
Lopez J , Mackanic D G , Cui Y , Bao Z . Designing polymers for advanced battery chemistries. Nature Reviews. Materials, 2019, 4(5): 4312–4330
|
[86] |
Wu N , Shi Y R , Lang S Y , Zhou J M , Liang J Y , Wang W , Tan S J , Yin Y X , Wen R , Guo Y G . Self-healable solid polymeric electrolytes for stable and flexible lithium metal batteries. Angewandte Chemie International Edition, 2019, 58(50): 18146–18149
CrossRef
Google scholar
|
[87] |
Ha H J , Kil E H , Kwon Y H , Kim J Y , Lee C K , Lee S Y . UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries. Energy & Environmental Science, 2012, 5(4): 6491–6499
CrossRef
Google scholar
|
[88] |
Ho C K , Ju C S , Hee K S , Han K Y , Young K J , Young L S . Thin, deformable, and safety-reinforced plastic crystal polymer electrolytes for high-performance flexible lithium-ion batteries. Advanced Functional Materials, 2014, 24(1): 44–52
CrossRef
Google scholar
|
[89] |
Chen G , Zhang F , Zhou Z , Li J , Tang Y . A flexible dual-ion battery based on PVDF-HFP-modified gel polymer electrolyte with excellent cycling performance and superior rate capability. Advanced Energy Materials, 2018, 8(25): 1801219
CrossRef
Google scholar
|
[90] |
Chi X , Li M , Di J , Bai P , Song L , Wang X , Li F , Liang S , Xu J , Yu J . A highly stable and flexible zeolite electrolyte solid-state Li-air battery. Nature, 2021, 592(7855): 551–557
CrossRef
Google scholar
|
[91] |
Wu Q , Yang Y , Ma C , Chen Z , Su Q , Zhu C , Gao Y , Ma R , Li C . Flexible nanocomposite polymer electrolyte based on UV-cured polyurethane acrylate for lithium metal batteries. ACS Sustainable Chemistry & Engineering, 2021, 9(16): 5631–5641
CrossRef
Google scholar
|
[92] |
Pan K , Zhang L , Qian W , Wu X , Dong K , Zhang H , Zhang S . A flexible ceramic/polymer hybrid solid electrolyte for solid state lithium metal batteries. Advanced Materials, 2020, 32(17): 2000399
CrossRef
Google scholar
|
[93] |
Jiang T , He P , Wang G , Shen Y , Nan C W , Fan L Z . Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries. Advanced Energy Materials, 2020, 10(12): 1903376
CrossRef
Google scholar
|
[94] |
Liu Y , Li Y , Sun J , Du Z , Hu X , Bi J , Liu C , Ai W , Yan Q . Present and future of functionalized Cu current collectors for stabilizing lithium metal anodes. Nano Research Energy, 2023, 2: e9120048
CrossRef
Google scholar
|
[95] |
Fu A , Wang C , Peng J , Su M , Pei F , Cui J , Fang X , Li J F , Zheng N . Lithiophilic and antioxidative copper current collectors for highly stable lithium metal batteries. Advanced Functional Materials, 2021, 31(15): 2009805
CrossRef
Google scholar
|
[96] |
Liu P , Wang Y , Hao H , Basu S , Feng X , Xu Y , Boscoboinik J A , Nanda J , Watt J , Mitlin D . Stable potassium metal anodes with an all-aluminum current collector through improved electrolyte wetting. Advanced Materials, 2020, 32(49): 2002908
CrossRef
Google scholar
|
[97] |
Park M H , Noh M , Lee S , Ko M , Chae S , Sim S , Choi S , Kim H , Nam H , Park S .
CrossRef
Google scholar
|
[98] |
Shang K , Gao J , Yin X , Ding Y , Wen Z . An overview of flexible electrode materials/substrates for flexible electrochemical energy storage/conversion devices. European Journal of Inorganic Chemistry, 2021, 7(7): 606–619
CrossRef
Google scholar
|
[99] |
Li N , Chen Z , Ren W , Li F , Cheng H M . Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(43): 17360–17365
CrossRef
Google scholar
|
[100] |
Wu F , Gao X , Xu X , Jiang Y , Gao X , Yin R , Shi W , Liu W , Lu G , Cao X . Carbon cloth for flexible aqueous zinc-ion batteries. ChemSusChem, 2020, 13(6): 1537–1545
CrossRef
Google scholar
|
[101] |
Shi H , Wen G , Nie Y , Zhang G , Duan H . Flexible 3D carbon cloth as a high-performing electrode for energy storage and conversion. Nanoscale, 2020, 12(9): 5261–5285
CrossRef
Google scholar
|
[102] |
Kordek K , Jiang L , Fan K , Zhu Z , Xu L , Al-Mamun M , Dou Y , Chen S , Liu P , Yin H , Rutkowski P , Zhao H . Two-step activated carbon cloth with oxygen-rich functional groups as a high-performance additive-free air electrode for flexible zinc-air batteries. Advanced Energy Materials, 2019, 9(4): 1802936
CrossRef
Google scholar
|
[103] |
Balogun M S , Qiu W , Lyu F , Luo Y , Meng H , Li J , Mai W , Mai L , Tong Y . All-flexible lithium ion battery based on thermally-etched porous carbon cloth anode and cathode. Nano Energy, 2016, 26: 446–455
CrossRef
Google scholar
|
[104] |
Balogun M S , Yang H , Luo Y , Qiu W , Huang Y , Liu Z Q , Tong Y . Achieving high gravimetric energy density for flexible lithium-ion batteries facilitated by core-double-shell electrodes. Energy & Environmental Science, 2018, 11(7): 1859–1869
CrossRef
Google scholar
|
[105] |
Zhu S , Sheng J , Chen Y , Ni J , Li Y . Carbon nanotubes for flexible batteries: recent progress and future perspective. National Science Review, 2021, 8(5): nwaa261
CrossRef
Google scholar
|
[106] |
Fang B , Chang D , Xu Z , Gao C . A review on graphene fibers: expectations, advances, and prospects. Advanced Materials, 2020, 32(5): 1902664
CrossRef
Google scholar
|
[107] |
Hu L , Wu H , La M F , Yang Y , Cui Y . Thin, flexible secondary Li-ion paper batteries. ACS Nano, 2010, 4(10): 5843–5848
CrossRef
Google scholar
|
[108] |
Hu J W , Wu Z P , Zhong S W , Zhang W B , Suresh S , Mehta A , Koratkar N . Folding insensitive, high energy density lithium-ion battery featuring carbon nanotube current collectors. Carbon, 2015, 87: 292–298
CrossRef
Google scholar
|
[109] |
Wang K , Luo S , Wu Y , He X , Zhao F , Wang J , Jiang K , Fan S . Super-aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries. Advanced Functional Materials, 2013, 23(7): 846–853
CrossRef
Google scholar
|
[110] |
Gaikwad A M , Khau B V , Davies G , Hertzberg B , Steingart D A , Arias A C . A high areal capacity flexible lithium-ion battery with a strain-compliant design. Advanced Energy Materials, 2015, 5(3): 1401389
CrossRef
Google scholar
|
[111] |
Zhang M , Li J , Sun C , Wang Z , Li Y , Zhang D . Durable flexible dual-layer and free-standing silicon/carbon composite anode for lithium-ion batteries. Journal of Alloys and Compounds, 2023, 932: 167687
CrossRef
Google scholar
|
[112] |
Balogun M S , Yu M , Huang Y , Li C , Fang P , Liu Y , Lu X , Tong Y . Binder-free Fe2N nanoparticles on carbon textile with high power density as novel anode for high-performance flexible lithium ion batteries. Nano Energy, 2015, 11: 348–355
CrossRef
Google scholar
|
[113] |
Balogun M S , Wu Z , Luo Y , Qiu W , Fan X , Long B , Huang M , Liu P , Tong Y . High power density nitridated hematite (α-Fe2O3) nanorods as anode for high-performance flexible lithium ion batteries. Journal of Power Sources, 2016, 308: 7–17
CrossRef
Google scholar
|
[114] |
Hwang C , Song W J , Han J G , Bae S , Song G , Choi N S , Park S , Song H K . Foldable electrode architectures based on silver-nanowire-wound or carbon-nanotube-webbed micrometer-scale fibers of polyethylene terephthalate mats for flexible lithium-ion batteries. Advanced Materials, 2018, 30(7): 1705445
CrossRef
Google scholar
|
[115] |
Mo F , Liang G , Huang Z , Li H , Wang D , Zhi C . An overview of fiber-shaped batteries with a focus on multifunctionality, scalability, and technical difficulties. Advanced Materials, 2020, 32(5): 1902151
CrossRef
Google scholar
|
[116] |
Fang Z , Wang J , Wu H , Li Q , Fan S , Wang J . Progress and challenges of flexible lithium ion batteries. Journal of Power Sources, 2020, 454: 227932
CrossRef
Google scholar
|
[117] |
Ke R , Du L , Han B , Xu H , Meng H , Zeng H , Zheng Z , Deng Y . Biobased self-growing approach toward tailored, integrated high-performance flexible lithium-ion battery. Nano Letters, 2022, 22(23): 9327–9334
CrossRef
Google scholar
|
[118] |
Qian W , Wang L , Mao X , Yang Y , Yan L , Zeng S , Zhao K , Huang Q , Liu M , Liu X .
CrossRef
Google scholar
|
[119] |
Nyamaa O , Seo D H , Lee J S , Jeong H M , Huh S C , Yang J H , Dolgor E , Noh J P . High electrochemical performance silicon thin-film free-standing electrodes based on bucky paper for flexible lithium-ion batteries. Materials, 2021, 14(8): 2053
CrossRef
Google scholar
|
[120] |
Chen Z , Kim G T , Wang Z , Bresser D , Qin B , Geiger D , Kaiser U , Wang X , Shen Z X , Passerini S . 4-V flexible all-solid-state lithium polymer batteries. Nano Energy, 2019, 64: 103986
CrossRef
Google scholar
|
[121] |
Wang D , Han C , Mo F , Yang Q , Zhao Y , Li Q , Liang G , Dong B , Zhi C . Energy density issues of flexible energy storage devices. Energy Storage Materials, 2020, 28: 264–292
CrossRef
Google scholar
|
[122] |
Wu Z , Liu K , Lv C , Zhong S , Wang Q , Liu T , Liu X , Yin Y , Hu Y , Wei D .
CrossRef
Google scholar
|
[123] |
Leijonmarck S , Cornell A , Lindbergh G , Wågbergbc L . Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(15): 4671–4677
CrossRef
Google scholar
|
[124] |
Liao X , Shi C , Wang T , Qie B , Chen Y , Yang P , Cheng Q , Zhai H , Chen M , Wang X .
CrossRef
Google scholar
|
[125] |
Chun S J , Choi E S , Lee E H , Kim J H , Lee S Y , Lee S Y . Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22(32): 16618–16626
CrossRef
Google scholar
|
[126] |
Deimede V , Elmasides C . Separators for lithium-ion batteries: a review on the production processes and recent developments. Energy Technology, 2015, 3(5): 453–468
CrossRef
Google scholar
|
[127] |
Zhu Y , Cao K , Cheng W , Zeng S , Dou S , Chen W , Zhao D , Yu H . A non-newtonian fluidic cellulose-modified glass microfiber separator for flexible lithium-ion batteries. EcoMat, 2021, 3(4): e12126
CrossRef
Google scholar
|
[128] |
Stephan A M , Nahm K S . Review on composite polymer electrolytes for lithium batteries. Polymer, 2006, 47(16): 5952–5964
CrossRef
Google scholar
|
[129] |
Xu Q , Kong Q , Liu Z , Zhang J , Wang X , Liu R , Yue L , Cui G . Polydopamine-coated cellulose micro fibrillated membrane as high performance lithium-ion battery separator. RSC Advances, 2014, 4(16): 7845–7850
CrossRef
Google scholar
|
[130] |
Liu T , Cheng X , Yu H , Zhu H , Peng N , Zheng R , Zhang J , Shui M , Cui Y , Shu J . An overview and future perspectives of aqueous rechargeable polyvalent ion batteries. Energy Storage Materials, 2019, 18: 68–91
CrossRef
Google scholar
|
[131] |
Alias N , Mohamad A A . Advances of aqueous rechargeable lithium-ion battery: a review. Journal of Power Sources, 2015, 274: 237–251
CrossRef
Google scholar
|
[132] |
Song W J , Lee S , Song G , Park S . Stretchable aqueous batteries: progress and prospects. ACS Energy Letters, 2019, 4(1): 177–186
CrossRef
Google scholar
|
[133] |
Zeng X , Hao J , Wang Z , Mao J , Guo Z . Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Storage Materials, 2019, 20: 410–437
CrossRef
Google scholar
|
[134] |
Peng J , Snyder G J . A figure of merit for flexibility. Science, 2019, 36(6466): 690–691
CrossRef
Google scholar
|
[135] |
Liu W , Yi C , Li L , Liu S , Gui Q , Ba D , Li Y , Peng D , Liu J . Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries. Angewandte Chemie International Edition, 2021, 60(23): 12931–12940
CrossRef
Google scholar
|
[136] |
Chang J , Huang Q , Zheng Z . A figure of merit for flexible batteries. Joule, 2020, 7(4): 1346–1349
CrossRef
Google scholar
|
[137] |
Betz J , Bieker G , Meister P , Placke T , Winter M , Schmuch R . Theoretical versus practical energy: a plea for more transparency in the energy calculation of different rechargeable battery systems. Advanced Energy Materials, 2019, 9(6): 1803170
CrossRef
Google scholar
|
[138] |
Zheng J , Myeong S , Cho W , Yan P , Xiao J , Wang C , Cho J , Zhang J G . Li- and Mn-rich cathode materials: challenges to commercialization. Advanced Energy Materials, 2017, 7(6): 1601284
CrossRef
Google scholar
|
[139] |
He J , Lu C , Jiang H , Han F , Shi X , Wu J , Wang L , Chen T , Wang J , Zhang Y .
CrossRef
Google scholar
|
[140] |
Ghadi B M , Yuan M , Ardebili H . Stretchable fabric-based LiCoO2, electrode for lithium ion batteries. Extreme Mechanics Letters, 2019, 32: 32100532
CrossRef
Google scholar
|
[141] |
Ghadi B M , Hekmatnia B , Fu Q , Ardebili H . Stretchable fabric-based lithium-ion battery. Extreme Mechanics Letters, 2023, 6: 61102026
|
[142] |
Thakur A , Devi P . Paper-based flexible devices for energy harvesting, conversion, and storage applications: a review. Nano Energy, 2022, 94: 106927
CrossRef
Google scholar
|
[143] |
Lyu P , Liu X , Qu J , Zhao J , Huo Y , Qu Z , Rao Z . Recent advances of thermal safety of lithium ion battery for energy storage. Energy Storage Materials, 2020, 31: 195–220
CrossRef
Google scholar
|
[144] |
Parekh M H , Li B , Palanisamy M , Adams T E , Tomar V , Pol V G . In situ thermal runaway detection in lithium-ion batteries with an integrated internal sensor. ACS Applied Energy Materials, 2020, 3(8): 7997–8008
CrossRef
Google scholar
|
[145] |
Yang S J , Yao N , Jiang F N , Xie J , Sun S Y , Chen X , Yuan H , Cheng X B , Huang J Q , Zhang Q . Thermally stable polymer-rich solid electrolyte interphase for safe lithium metal pouch cells. Angewandte Chemie International Edition, 2022, 61(51): e202214545
CrossRef
Google scholar
|
[146] |
Ye Y , Chou L Y , Liu Y , Wang H , Kwee L H , Huang W , Wan J , Liu K , Zhou G , Yang Y .
CrossRef
Google scholar
|
[147] |
Wang J , Yamada Y , Sodeyama K , Watanabe E , Takada K , Tateyama Y , Yamada A . Fire-extinguishing organic electrolytes for safe batteries. Nature Energy, 2018, 3(1): 22–29
CrossRef
Google scholar
|
[148] |
Yang H , Li Q , Guo C , Naveed A , Yang J , Nuli Y , Wang J . Safer lithium-sulfur battery based on nonflammable electrolyte with sulfur composite cathode. Chemical Communications, 2018, 54(33): 4132–4135
CrossRef
Google scholar
|
[149] |
Li L , Xu C , Chang R , Yang C , Jia C , Wang L , Song J , Li Z , Zhang F , Fang B .
CrossRef
Google scholar
|
[150] |
Malik R . Thermal runaway of lithium-ion batteries without internal short circuit. Joule, 2018, 2(10): 2047–2064
CrossRef
Google scholar
|
[151] |
Zhang C , Li H , Wang S , Cao Y , Yang H , Ai X , Zhong F . A polyethylene microsphere-coated separator with rapid thermal shutdown function for lithium-ion batteries. Journal of Energy Chemistry, 2020, 44: 33–40
CrossRef
Google scholar
|
/
〈 | 〉 |