Continuous flow pyrolysis of virgin and waste polyolefins: a comparative study, process optimization and product characterization
Ecrin Ekici , Güray Yildiz , Magdalena Joka Yildiz , Monika Kalinowska , Erol Şeker , Jiawei Wang
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (6) : 70
Continuous flow pyrolysis of virgin and waste polyolefins: a comparative study, process optimization and product characterization
Under optimal process conditions, pyrolysis of polyolefins can yield ca. 90 wt % of liquid product, i.e., combination of light oil fraction and heavier wax. In this work, the experimental findings reported in a selected group of publications concerning the non-catalytic pyrolysis of polyolefins were collected, reviewed, and compared with the ones obtained in a continuously operated bench-scale pyrolysis reactor. Optimized process parameters were used for the pyrolysis of waste and virgin counterparts of high-density polyethylene, low-density polyethylene, polypropylene and a defined mixture of those (i.e., 25:25:50 wt %, respectively). To mitigate temperature drops and enhance heat transfer, an increased feed intake is employed to create a hot melt plastic pool. With 1.5 g·min–1 feed intake, 1.1 L·min–1 nitrogen flow rate, and a moderate pyrolysis temperature of 450 °C, the formation of light hydrocarbons was favored, while wax formation was limited for polypropylene-rich mixtures. Pyrolysis of virgin plastics yielded more liquid (maximum 73.3 wt %) than that of waste plastics (maximum 66 wt %). Blending polyethylenes with polypropylene favored the production of liquids and increased the formation of gasoline-range hydrocarbons. Gas products were mainly composed of C3 hydrocarbons, and no hydrogen production was detected due to moderate pyrolysis temperature.
waste plastics / polyolefins / chemical recycling / pyrolysis / alternative fuels / waste-to-energy
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
ASTM D7611/D7611M–21 “Standard practice for coding plastic manufactured articles for resin identification”. ASTM International, 2022 |
| [64] |
|
| [65] |
ISO 1928:2020 “Solid mineral fuels—determination of gross calorific value by the bomb calorimetric method and calculation of net calorific value”. ISO, 2020 |
| [66] |
|
| [67] |
Phyllis2 ECN Phyllis classification-Plastics. 2023 phyllis.nl/Browse/Standard/ECN-Phyllis#plastic. Accessed 07 Apr 2023 |
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
MERCK IR Spectrum Table & Chart. 2023: www.sigmaaldrich.com/TR/en/technical-documents/technical-article/analytical-chemistry/photometry-and-reflectometry/ir-spectrum-table |
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
Higher Education Press
Supplementary files
/
| 〈 |
|
〉 |