Mg-Al-hydrotalcite with alkaline sites protects Ni/KIT-6 from formation of amorphous coke in glycerol steam reforming via tailoring reaction intermediates
Yunyu Guo , Yiran Wang , Yuewen Shao , Shu Zhang , Yi Wang , Song Hu , Jun Xiang , Xun Hu
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (4) : 38
Mg-Al-hydrotalcite with alkaline sites protects Ni/KIT-6 from formation of amorphous coke in glycerol steam reforming via tailoring reaction intermediates
During steam reforming, the performance of a catalyst and amount/property of coke are closely related to reaction intermediates reaching surface of a catalyst. Herein, modification of reaction intermediates by placing Mg-Al-hydrotalcite above Ni/KIT-6 catalyst in steam reforming of glycerol was conducted at 300 to 600 °C. The results revealed that the catalytic activity of Ni/KIT-6 in the lower bed was enhanced with either Mg1-Al5-hydrotalcite (containing more acidic sites) or Mg5-Al1-hydrotalcite (containing more alkaline sites) as upper-layer catalyst. The in situ infrared characterization of steam reforming demonstrated that Mg-Al-hydrotalcite catalyzed the deoxygenation of glycerol, facilitating the reforming of the partially deoxygenated intermediates over Ni/KIT-6. Mg-Al-hydrotalcite as protective catalyst, however, did not protect the Ni/KIT-6 from formation of more coke. Nonetheless, this did not lead to further deactivation of Ni/KIT-6 while Mg5-Al1-hydrotalcite even substantially enhanced the catalytic stability, even though the coke was much more significant than that in the use of single Ni/KIT-6 (52.7% vs. 28.6%). The reason beneath this was change of the property of coke from more aliphatic to more aromatic. Mg5-Al1-hydrotalcite catalyzed dehydration of glycerol, producing dominantly reaction intermediates bearing C=C, which formed the catalytic coke of with carbon nanotube as the main form with smooth outer walls as well as higher aromaticity, C/H ratio, crystallinity, crystal carbon size, thermal stability, and resistivity toward oxidation on Ni/KIT-6 in the lower bed. In comparison, the abundance of acidic sites on Mg1-Al5-hydrotalcite catalyzed the formation of more oxygen-containing species, leading to the formation of carbon nanotubes of rough surface on Ni/KIT-6.
steam reforming of glycerol / Mg-Al-hydrotalcite / sacrificial catalyst / reaction intermediates / property of coke
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
Higher Education Press
Supplementary files
/
| 〈 |
|
〉 |