Mg-Al-hydrotalcite with alkaline sites protects Ni/KIT-6 from formation of amorphous coke in glycerol steam reforming via tailoring reaction intermediates

Yunyu Guo, Yiran Wang, Yuewen Shao, Shu Zhang, Yi Wang, Song Hu, Jun Xiang, Xun Hu

PDF(13271 KB)
PDF(13271 KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (4) : 38. DOI: 10.1007/s11705-024-2399-z
RESEARCH ARTICLE

Mg-Al-hydrotalcite with alkaline sites protects Ni/KIT-6 from formation of amorphous coke in glycerol steam reforming via tailoring reaction intermediates

Author information +
History +

Abstract

During steam reforming, the performance of a catalyst and amount/property of coke are closely related to reaction intermediates reaching surface of a catalyst. Herein, modification of reaction intermediates by placing Mg-Al-hydrotalcite above Ni/KIT-6 catalyst in steam reforming of glycerol was conducted at 300 to 600 °C. The results revealed that the catalytic activity of Ni/KIT-6 in the lower bed was enhanced with either Mg1-Al5-hydrotalcite (containing more acidic sites) or Mg5-Al1-hydrotalcite (containing more alkaline sites) as upper-layer catalyst. The in situ infrared characterization of steam reforming demonstrated that Mg-Al-hydrotalcite catalyzed the deoxygenation of glycerol, facilitating the reforming of the partially deoxygenated intermediates over Ni/KIT-6. Mg-Al-hydrotalcite as protective catalyst, however, did not protect the Ni/KIT-6 from formation of more coke. Nonetheless, this did not lead to further deactivation of Ni/KIT-6 while Mg5-Al1-hydrotalcite even substantially enhanced the catalytic stability, even though the coke was much more significant than that in the use of single Ni/KIT-6 (52.7% vs. 28.6%). The reason beneath this was change of the property of coke from more aliphatic to more aromatic. Mg5-Al1-hydrotalcite catalyzed dehydration of glycerol, producing dominantly reaction intermediates bearing C=C, which formed the catalytic coke of with carbon nanotube as the main form with smooth outer walls as well as higher aromaticity, C/H ratio, crystallinity, crystal carbon size, thermal stability, and resistivity toward oxidation on Ni/KIT-6 in the lower bed. In comparison, the abundance of acidic sites on Mg1-Al5-hydrotalcite catalyzed the formation of more oxygen-containing species, leading to the formation of carbon nanotubes of rough surface on Ni/KIT-6.

Graphical abstract

Keywords

steam reforming of glycerol / Mg-Al-hydrotalcite / sacrificial catalyst / reaction intermediates / property of coke

Cite this article

Download citation ▾
Yunyu Guo, Yiran Wang, Yuewen Shao, Shu Zhang, Yi Wang, Song Hu, Jun Xiang, Xun Hu. Mg-Al-hydrotalcite with alkaline sites protects Ni/KIT-6 from formation of amorphous coke in glycerol steam reforming via tailoring reaction intermediates. Front. Chem. Sci. Eng., 2024, 18(4): 38 https://doi.org/10.1007/s11705-024-2399-z

References

[1]
Ismaila A , Chen X , Gao X , Fan X . Thermodynamic analysis of steam reforming of glycerol for hydrogen production at atmospheric pressure. Frontiers of Chemical Science and Engineering, 2021, 15(1): 60–71
CrossRef Google scholar
[2]
Zhang J , Wang Y , Muldoon V L , Deng S . Crude glycerol and glycerol as fuels and fuel additives in combustion applications. Renewable & Sustainable Energy Reviews, 2022, 159: 112206
CrossRef Google scholar
[3]
Thyssen V , Maia T A , Assaf E M . Ni supported on La2O3–SiO2 used to catalyze glycerol steam reforming. Fuel, 2013, 105: 358–363
CrossRef Google scholar
[4]
Chen M , Zhou Z , Wang Y , Liang T , Li X , Yang Z , Chen M , Wang J . Effects of attapulgite-supported transition metals catalysts on glycerol steam reforming for hydrogen production. International Journal of Hydrogen Energy, 2018, 43(45): 20451–20464
CrossRef Google scholar
[5]
Cheng W , Wang Y , Chen M , Liang D , Li C , Yang Z , Wang J . Hydrogen production from aqueous phase reforming of glycerol over attapulgite-supported nickel catalysts: effect of acid/base treatment and Fe additive. International Journal of Hydrogen Energy, 2022, 47(11): 7082–7099
CrossRef Google scholar
[6]
Bac S , Keskin S , Avci A . Recent advances in materials for high purity H2 production by ethanol and glycerol steam reforming. Industrial & Engineering Chemistry Research, 2020, 45(60): 34888–34917
[7]
Wu G , Zhang C , Li S , Han Z , Wang T , Ma X , Gong J . Hydrogen production via glycerol steam reforming over Ni/Al2O3: influence of nickel precursors. ACS Sustainable Chemistry & Engineering, 2013, 1(8): 1052–1062
CrossRef Google scholar
[8]
Iriondo A , Barrio V L , Cambra J F , Arias P L , Guemez M B , Sanchez-Sanchez M C , Navarro R M , Fierro J L G . Glycerol steam reforming over Ni catalysts supported on ceria and ceria-promoted alumina. International Journal of Hydrogen Energy, 2010, 35(20): 11622–11633
CrossRef Google scholar
[9]
Rahmat N , Abdullah A Z , Mohamed A R . Recent progress on innovative and potential technologies for glycerol transformation into fuel additives: a critical review. Renewable & Sustainable Energy Reviews, 2010, 14(3): 987–1000
CrossRef Google scholar
[10]
Crabtree R H . Transfer hydrogenation with glycerol as H-donor: catalyst activation, deactivation and homogeneity. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 15845–15853
CrossRef Google scholar
[11]
Gupta M , Kumar N . Scope and opportunities of using glycerol as an energy source. Renewable & Sustainable Energy Reviews, 2012, 16(7): 4551–4556
CrossRef Google scholar
[12]
Díaz-Álvarez A E , Francos J , Lastra-Barreira B , Crochet P , Cadierno V . Glycerol and derived solvents: new sustainable reaction media for organic synthesis. Chemical Communications, 2011, 47(22): 6208–6227
CrossRef Google scholar
[13]
Stošić D , Bennici S , Couturier J L , Dubois J L , Auroux A . Influence of surface acid-base properties of zirconia and titania based catalysts on the product selectivity in gas phase dehydration of glycerol. Chemical Communications, 2012, 17: 23–28
[14]
Feng R , Qi Y , Liu S , Cui L , Dai Q , Bai C . Production of renewable 1,3-pentadiene over LaPO4 via dehydration of 2,3-pentanediol derived from 2,3-pentanedione. Applied Catalysis A: General, 2022, 633: 118514
CrossRef Google scholar
[15]
Ren J , Liu Y L . Promoting syngas production from steam reforming of toluene using a highly stable Ni/(Mg, Al)Ox catalyst. Applied Catalysis B: Environmental, 2022, 300: 120743
CrossRef Google scholar
[16]
Choong C K , Huang L , Zhong Z , Lin J , Hong L , Chen L . Effect of calcium addition on catalytic ethanol steam reforming of Ni/Al2O3: II. Acidity/basicity, water adsorption and catalytic activity. Applied Catalysis A: General, 2011, 407(1–2): 155–162
CrossRef Google scholar
[17]
Da Costa-Serra J F , Navarro M T , Rey F , Chica A . Bioethanol steam reforming on Ni-based modified mordenite. Effect of mesoporosity, acid sites and alkaline metals. International Journal of Hydrogen Energy, 2012, 37(8): 7101–7108
CrossRef Google scholar
[18]
Zhang Z , Wang Y , Sun K , Shao Y , Zhang L , Zhang S , Zhang X , Liu Q , Chen Z , Hu X . Steam reforming of acetic acid over Ni–Ba/Al2O3 catalysts: impacts of barium addition on coking behaviors and formation of reaction intermediates. Journal of Energy Chemistry, 2020, 43: 208–219
CrossRef Google scholar
[19]
Zhang Z , Zhang L , Gao Z , Sun K , Shao Y , Zhang S , Liu Q , Gao G , Wei T , Hu X . Catalyst experiencing distinct reaction histories in one reactor bed results in coke of different properties in steam reforming. Fuel, 2020, 269: 117427
CrossRef Google scholar
[20]
Gao Z , Li C , Shao Y , Gao G , Xu Q , Tian H , Zhang S , Hu X . Sequence of Ni/SiO2 and Cu/SiO2 in dual catalyst bed significantly impacts coke properties in glycerol steam reforming. International Journal of Hydrogen Energy, 2021, 46(52): 26367–26380
CrossRef Google scholar
[21]
He F , Luo J , Liu S . Novel metal loaded KIT-6 catalysts and their applications in the catalytic combustion of chlorobenzene. Chemical Engineering Journal, 2016, 294: 362–370
CrossRef Google scholar
[22]
Shao Y , Wang J , Sun K , Gao G , Li C , Zhang L , Zhang S , Xu L , Hu G , Hu X . Selective hydrogenation of furfural and its derivative over bimetallic NiFe-based catalysts: understanding the synergy between Ni sites and Ni–Fe alloy. Renewable Energy, 2021, 170: 1114–1128
CrossRef Google scholar
[23]
Li X , Zhang L , Zhang S , Xu L , Hu X . Steam reforming of sugar and its derivatives: functionality dictates thermal properties and morphologies of coke. Fuel, 2022, 307: 121798
CrossRef Google scholar
[24]
Bkangmo Kontchouo F M , Shao Y , Zhang S , Gholizadeh M , Hu X . Steam reforming of ethanol, acetaldehyde, acetone and acetic acid: understanding the reaction intermediates and nature of coke. Chemical Engineering Science, 2023, 265: 118257
CrossRef Google scholar
[25]
Goula M A , Charisiou N D , Papageridis K N , Delimitis A , Pachatouridou E , Iliopoulou E F . Nickel on alumina catalysts for the production of hydrogen rich mixtures via the biogas dry reforming reaction: influence of the synthesis method. International Journal of Hydrogen Energy, 2015, 40(30): 9183–9200
CrossRef Google scholar
[26]
Gai C , Zhang F , Guo Y , Liu Z . A novel strategy for the fabrication of highly active and stable hydrochar-based catalysts for efficient dry reforming of methane. Chemical Engineering Journal, 2023, 475: 146437
CrossRef Google scholar
[27]
Zhang H , Li M , Xiao P , Liu D , Zou C J . Structure and catalytic performance of Mg-SBA-15-supported nickel catalysts for CO2 reforming of methane to syngas. Chemical Engineering & Technology, 2013, 36(10): 1701–1707
CrossRef Google scholar
[28]
Nie R , Lei H , Pan S , Wang L , Fei J , Hou Z . Core–shell structured CuO–ZnO@H-ZSM-5 catalysts for CO hydrogenation to dimethyl ether. Fuel, 2012, 96: 419–425
CrossRef Google scholar
[29]
Ramírez-Hernández G Y , Viveros-García T , Fuentes-Ramírez R , Galindo-Esquivel I R . Promoting behavior of yttrium over nickel supported on alumina-yttria catalysts in the ethanol steam reforming reaction. International Journal of Hydrogen Energy, 2016, 41(22): 9332–9343
CrossRef Google scholar
[30]
Wang Y , Lu Z , Chen M , Liang D , Wang J . Hydrogen production from catalytic steam reforming of toluene over trace Fe and Mn doping Ni/attapulgite. Journal of Analytical and Applied Pyrolysis, 2022, 165: 105584
CrossRef Google scholar
[31]
Bkangmo Kontchouo F M , Sun K , Li C , Fu Z , Zhang S , Xu L , Hu X . Steam reforming of acetone and isopropanol: investigation of correlation of ketone and alcohol functional groups with properties of coke. Journal of the Energy Institute, 2022, 101: 32–44
CrossRef Google scholar
[32]
Tang W , Cao J P , Wang Z Y , Jiang W , Zhao X Y , He Z M , Wang Z H , Bai H C . Preparation of highly dispersed lignite-char-supported cobalt catalyst for stably steam reforming of biomass tar at low temperature. Fuel, 2023, 334: 126814
CrossRef Google scholar
[33]
Du Z Y , Zhang Z H , Xu C , Wang X B , Li W Y . Low-temperature steam reforming of toluene and biomass tar over biochar-supported Ni nanoparticles. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 3111–3119
CrossRef Google scholar
[34]
Wang Y , Chen M , Yang Z , Liang T , Liu S , Zhou Z , Li X . Bimetallic Ni-M (M = Co, Cu and Zn) supported on attapulgite as catalysts for hydrogen production from glycerol steam reforming. Applied Catalysis A: General, 2018, 550: 214–227
CrossRef Google scholar
[35]
Wang Y , Li N , Chen M , Liang D , Li C , Liu Q , Yang Z L , Wang J . Glycerol steam reforming over hydrothermal synthetic Ni–Ca/attapulgite for green hydrogen generation. Chinese Journal of Chemical Engineering, 2022, 48: 176–190
CrossRef Google scholar
[36]
Wang Z H , Cao J P , Tang W , He Z M , Yang F L , Wang Z Y , Zhao X Y . Facile synthesis of low-cost Co–Cu/C alloy catalysts for hydrogen-rich syngas production from low-temperature steam reforming of biomass tar. Chemical Engineering Science, 2023, 267: 118370
CrossRef Google scholar
[37]
Wang F , Han K , Yu W , Zhao L , Wang Y , Wang X , Yu H , Shi W . Low temperature CO2 reforming with methane reaction over CeO2-modified Ni@SiO2 catalysts. ACS Applied Materials & Interfaces, 2020, 12(31): 35022–35034
CrossRef Google scholar
[38]
Manoj B . Investigation of nanocrystalline structure in selected carbonaceous materials. International Journal of Minerals Metallurgy and Materials, 2014, 21(9): 940–946
CrossRef Google scholar
[39]
Maximiano R V , Beams R , Novotny L , Jorio A , Cançado L . Mechanism of near-field Raman enhancement in two-dimensional systems. Physical Review B: Condensed Matter and Materials Physics, 2012, 85(23): 235434
CrossRef Google scholar
[40]
Li X , Shao Y , Zhang S , Wang Y , Xiang J , Hu S , Xu L , Hu X . Pore diameters of Ni/ZrO2 catalysts affect properties of the coke in steam reforming of acetic acid. International Journal of Hydrogen Energy, 2021, 46(46): 23642–23657
CrossRef Google scholar
[41]
Wang Z , Bao B . Investigation on coking performance with sulfur/phosphorous-containing additive and anti-coking SiO2/S coating during thermal cracking of light naphtha. Energy Procedia, 2017, 105: 5122–5127
CrossRef Google scholar
[42]
Charisiou N D , Siakavelas G I , Dou B , Shao Y , Sebastian V , Hinder S J , Baker M A , Polychronopoulou K , Goula M A . Nickel supported on AlCeO3 as a highly selective and stable catalyst for hydrogen production via the glycerol steam reforming reaction. Catalysts, 2019, 9(5): 411
CrossRef Google scholar
[43]
Wang C , Wang Y , Chen M , Liang D , Cheng W , Li C , Yang Z L , Wang J . Understanding relationship of sepiolite structure tailoring and the catalytic behaviors in glycerol steam reforming over Co/sepiolite derived Co-phyllosilicate catalyst. Renewable Energy, 2022, 183: 304–320
CrossRef Google scholar
[44]
Purushothaman R , Palanichamy M , Mohammed Bilal I . Functionalized KIT‐6/terpolyimide composites with ultra‐low dielectric constant. Journal of Applied Polymer Science, 2014, 131(15): 40508
CrossRef Google scholar
[45]
Wang Y , Hu X , Mourant D , Song Y , Zhang L , Lievens C , Xiang J , Li C Z . Evolution of aromatic structures during the reforming of bio-oil: importance of the interactions among bio-oil components. Fuel, 2013, 111: 805–812
CrossRef Google scholar
[46]
Bkangmo Kontchouo F M , Fan M , Inkoua S , Sun Y , Zhang S , Hu X . Steam reforming of toluene: impacts of externally added oxygen-containing intermediates on property of coke. International Journal of Hydrogen Energy, 2023, 48(43): 16206–16222
CrossRef Google scholar
[47]
Bkangmo Kontchouo F M , Zhang L , Zhang S , Hu G , Hu X . Distinct coking depth in steam reforming of oxygen-containing organics and hydrocarbons. Journal of Colloid and Interface Science, 2023, 639: 385–400
CrossRef Google scholar

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 52276195), the Program for Supporting Innovative Research of Jinan (Grant No. 202228072), and the Program for Agricultural Development of Shandong (Grant No. SD2019NJ015).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-024-2399-z and is accessible for authorized users.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(13271 KB)

Accesses

Citations

Detail

Sections
Recommended

/