Synergetic PVA degradation and H2 evolution in photocatalytic fuel cells using Ag@Fe2O3 cathode
Likun Sun , Kesi Xiong , Baoning Zhang , Jinghong Fang , Yingchao He , Min Wang , Zhixing Gan , Fanglin Du , Qiong Sun , Liyan Yu , Lifeng Dong
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (1) : 8
Synergetic PVA degradation and H2 evolution in photocatalytic fuel cells using Ag@Fe2O3 cathode
In a dual-chamber photocatalytic fuel cell device, polyvinyl alcohol degradation and H2 evolution were concurrently achieved. The setup involved commercial P25 as the photoanode and Ag@Fe2O3 nanoparticles as the cathode. Additionally, the feasibility of a Fenton-like reaction in the cathode, utilizing Fe2+ ions and pumped O2, was demonstrated. Different cathode materials, polyvinyl alcohol types, and pH values’ effects were assessed on device performance. Quenching tests highlighted photoinduced holes (h+) and OH· radicals as pivotal contributions to polyvinyl alcohol degradation. Long-term stability of the device was established through cycling experiments.
photocatalytic fuel cell / PVA / Ag@Fe2O3 / cathode materials / Fenton-like reaction
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
Higher Education Press
/
| 〈 |
|
〉 |