The CatMath: an online predictive platform for thermal + electrocatalysis
Heng Liu, Hao Zheng, Zhenhe Jia, Binghui Zhou, Yan Liu, Xuelu Chen, Yajun Feng, Li Wei, Weijie Yang, Hao Li
The CatMath: an online predictive platform for thermal + electrocatalysis
The catalytic volcano activity models are the quantified and visualized tools of the Sabatier principle for heterogeneous catalysis, which can depict the intrinsic activity optima and trends of a catalytic reaction as a function of the reaction descriptors, i.e., the bonding strengths of key reaction species. These models can be derived by microkinetic modeling and/or free energy changes in combination with the scaling relations among the reaction intermediates. Herein, we introduce the CatMath—an online platform for generating a variety of common and industrially important thermal + electrocatalysis. With the CatMath, users can request the volcano models for available reactions and analyze their materials of interests as potential catalysts. Besides, the CatMath provides the function of the online generation of Surface Pourbaix Diagram for surface state analysis under electrocatalytic conditions, which is an essential step before analyzing the activity of an electrocatalytic surface. All the model generation and analysis processes are realized by cloud computing via a user-friendly interface.
CatMath / catalysis / volcano activity plots / Surface Pourbaix Diagrams / online platform
[1] |
Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Nørskov J K, Jaramillo T F. Combining theory and experiment in electrocatalysis: insights into materials design. Science, 2017, 355(6321): eaad4998
CrossRef
Google scholar
|
[2] |
Medford A J, Vojvodic A, Hummelshøj J S, Voss J, Abild-Pedersen F, Studt F, Bligaard T, Nilsson A, Nørskov J K. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. Journal of Catalysis, 2015, 328: 36–42
CrossRef
Google scholar
|
[3] |
Medford A J, Moses P G, Jacobsen K W, Peterson A A. A career in catalysis: Jens Kehlet Nørskov. ACS Catalysis, 2022, 12(15): 9679–9689
CrossRef
Google scholar
|
[4] |
Hammer B, Nørskov J K. Theoretical surface science and catalysis—calculations and concepts. Advances in Catalysis, 2000, 45: 71–129
CrossRef
Google scholar
|
[5] |
Nørskov J K, Abild-Pedersen F, Studt F, Bligaard T. Density functional theory in surface chemistry and catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(3): 937–943
CrossRef
Google scholar
|
[6] |
Jones G, Bligaard T, Abild-Pedersen F, Nørskov J K. Using scaling relations to understand trends in the catalytic activity of transition metals. Journal of Physics Condensed Matter, 2008, 20(6): 064239
CrossRef
Google scholar
|
[7] |
Nørskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S, Stimming U. Trends in the exchange current for hydrogen evolution. Journal of the Electrochemical Society, 2005, 152(3): J23–J26
CrossRef
Google scholar
|
[8] |
Nørskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin J R, Bligaard T, Jónsson H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. Journal of Physical Chemistry B, 2004, 108(46): 17886–17892
CrossRef
Google scholar
|
[9] |
Falsig H, Hvolbæk B, Kristensen I S, Jiang T, Bligaard T, Christensen C H, Nørskov J K. Trends in the catalytic CO oxidation activity of nanoparticles. Angewandte Chemie International Edition, 2008, 47(26): 4835–4839
CrossRef
Google scholar
|
[10] |
Dickens C F, Kirk C, Nørskov J K. Insights into the electrochemical oxygen evolution reaction with ab initio calculations and microkinetic modeling: beyond the limiting potential volcano. Journal of Physical Chemistry C, 2019, 123(31): 18960–18977
CrossRef
Google scholar
|
[11] |
Hansen H A, Varley J B, Peterson A A, Nørskov J K. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. Journal of Physical Chemistry Letters, 2013, 4(3): 388–392
CrossRef
Google scholar
|
[12] |
Pan S, Li H, Liu D, Huang R, Pan X, Ren D, Li J, Shakouri M, Zhang Q X, Wang M J.
CrossRef
Google scholar
|
[13] |
Man I C, Su H Y, Calle-Vallejo F, Hansen H A, Martínez J I, Inoglu N G, Kitchin J, Jaramillo T F, Nørskov J K, Rossmeisl J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem, 2011, 3(7): 1159–1165
CrossRef
Google scholar
|
[14] |
Liu H, Zhang D, Holmes S M, D’Agostino C, Li H. Origin of the superior oxygen reduction activity of zirconium nitride in alkaline media. Chemical Science, 2023, 14(34): 9000–9009
CrossRef
Google scholar
|
[15] |
Xu H, Zhu L, Nan Y, Xie Y, Cheng D. Revisit the role of metal dopants in enhancing the selectivity of Ag-catalyzed ethylene epoxidation: optimizing oxophilicity of reaction site via cocatalytic mechanism. ACS Catalysis, 2021, 11(6): 3371–3383
CrossRef
Google scholar
|
[16] |
Liu X, Xiao J, Peng H, Hong X, Chan K, Nørskov J K. Understanding trends in electrochemical carbon dioxide reduction rates. Nature Communications, 2017, 8(1): 15438
CrossRef
Google scholar
|
[17] |
Nørskov J K, Bligaard T, Rossmeisl J, Christensen C H. Towards the computational design of solid catalysts. Nature Chemistry, 2009, 1(1): 37–46
CrossRef
Google scholar
|
[18] |
Kelly S R, Kirk C, Chan K, Nørskov J K. Electric field effects in oxygen reduction kinetics: rationalizing pH dependence at the Pt(111), Au(111), and Au(100) Electrodes. Journal of Physical Chemistry C, 2020, 124(27): 14581–14591
CrossRef
Google scholar
|
[19] |
Medford A J, Shi C, Hoffmann M J, Lausche A C, Fitzgibbon S R, Bligaard T, Nørskov J K. CatMAP: a software package for descriptor-based microkinetic mapping of catalytic trends. Catalysis Letters, 2015, 145(3): 794–807
CrossRef
Google scholar
|
[20] |
Liu H, Jia X, Cao A, Wei L, D’Agostino C, Li H. The surface states of transition metal X-ides under electrocatalytic conditions. Journal of Chemical Physics, 2023, 158(12): 124705
CrossRef
Google scholar
|
[21] |
Hansen H A, Rossmeisl J, Nørskov J K. Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Physical Chemistry Chemical Physics, 2008, 10(25): 3722–3730
CrossRef
Google scholar
|
[22] |
Vinogradova O, Krishnamurthy D, Pande V, Viswanathan V. Quantifying confidence in DFT-predicted surface pourbaix diagrams of transition-metal electrode-electrolyte interfaces. Langmuir, 2018, 34(41): 12259–12269
CrossRef
Google scholar
|
[23] |
Yang W, Jia Z, Zhou B, Wei L, Gao Z, Li H. Surface states of dual-atom catalysts should be considered for analysis of electrocatalytic activity. Communications Chemistry, 2023, 6(1): 6
CrossRef
Google scholar
|
/
〈 | 〉 |