Controllable construction of ionic frameworks for multi-site synergetic enhancement of CO2 capture

Yuke Zhang , Hongxue Xu , Haonan Wu , Lijuan Shi , Jiancheng Wang , Qun Yi

Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (1) : 4

PDF (8801KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (1) : 4 DOI: 10.1007/s11705-023-2370-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Controllable construction of ionic frameworks for multi-site synergetic enhancement of CO2 capture

Author information +
History +
PDF (8801KB)

Abstract

CO2 capture is one of the key technologies for dealing with the global warming and implementing low-carbon development strategy. The emergence of ionic metal-organic frameworks (I-MOFs) has diversified the field of porous materials, which have been extensively applied for gas adsorption and separation. In this work, amino-functionalized imidazolium ionic liquid as organic monodentate ligand was used for one step synthesis microporous Cu based I-MOFs. Precise tuning of the adsorption properties was obtained by incorporating aromatic anions, such as phenoxy, benzene carboxyl, and benzene sulfonic acid group into the I-MOFs via a facile ion exchange method. The new I-MOFs showed high thermal stability and high capacity of 5.4 mmol·g–1 under atmospheric conditions for selective adsorption of CO2. The active sites of microporous Cu-MOF are the ion basic center and unsaturated metal, and electrostatic attraction and hydroxyl bonding between CO2 and modified functional sulfonic groups are responsible for the adsorption. This work provides a feasible strategy for the design of I-MOF for functional gas capture.

Graphical abstract

Keywords

carbon dioxide capture / micropores / ionic liquids / multi-site synergism / ionic metal-organic frameworks

Cite this article

Download citation ▾
Yuke Zhang, Hongxue Xu, Haonan Wu, Lijuan Shi, Jiancheng Wang, Qun Yi. Controllable construction of ionic frameworks for multi-site synergetic enhancement of CO2 capture. Front. Chem. Sci. Eng., 2024, 18(1): 4 DOI:10.1007/s11705-023-2370-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Idris I, Abdullah A Z, Shamsudin I K, Othman M R. Comparative analyses of carbon dioxide capture from power plant flue gas surrogate by micro and mesoporous adsorbents. Journal of Environmental Chemical Engineering, 2019, 7(3): 103115

[2]

IEA. Carbon Capture, Utilisation and Storage, 2022, Available online at the website of iea.org

[3]

Zhang Z, Zheng Y, Qian L, Luo D, Dou H, Wen G, Yu A, Chen Z. Emerging trends in sustainable CO2-management materials. Advanced Materials, 2022, 34(29): 2201547

[4]

Kim C H, Lee S Y, Park S J. Efficient micropore sizes for carbon dioxide physisorption of pine cone-based carbonaceous materials at different temperatures. Journal of CO2 Utilization, 2021, 54: 101770

[5]

Justin A, Espín J, Kochetygov I, Asgari M, Trukhina O, Queen W L. A two step postsynthetic modification strategy: appending short chain polyamines to Zn-NH2-BDC MOF for enhanced CO2 adsorption. Inorganic Chemistry, 2021, 60(16): 11720–11729

[6]

Gouveia L G T, Agustini C B, Perez-Lopez O W, Gutterres M. CO2 adsorption using solids with different surface and acid-base properties. Journal of Environmental Chemical Engineering, 2020, 8(4): 103823

[7]

Sai Bhargava Reddy M, Ponnamma D, Sadasivuni K K, Kumar B, Abdullah A M. Carbon dioxide adsorption based on porous materials. RSC Advances, 2021, 11(21): 12658–12681

[8]

Vo T K, Kim W S, Kim J. Ethylenediamine-incorporated MIL-101(Cr)-NH2 metal-organic frameworks for enhanced CO2 adsorption. Korean Journal of Chemical Engineering, 2020, 37(7): 1206–1211

[9]

Zhou Y, Zhang J, Wang L, Cui X, Liu X, Wong S S, An H, Yan N, Xie J, Yu C. . Self-assembled iron-containing mordenite monolith for carbon dioxide sieving. Science, 2021, 373(6552): 315–320

[10]

Cao J, Shan W, Wang Q, Ling X, Li G, Lyu Y, Zhou Y, Wang J. Ordered porous poly(ionic liquid) crystallines: spacing confined ionic surface enhancing selective CO2 capture and fixation. ACS Applied Materials & Interfaces, 2019, 11(6): 6031–6041

[11]

Wang T T, Meng B, Zhou Y, Wang Y, Wang L, Ding L F, Zhou Y, Wang J. Confining organic cations in metal organic framework allows molecular level regulation of CO2 capture. AIChE Journal, 2023, 69(9): e18126

[12]

Zulkifli Z I, Lim K L, Teh L P. Metal-organic frameworks (MOFs) and their applications in CO2 adsorption and conversion. ChemistrySelect, 2022, 7(22): e202200572

[13]

Feng M, Cheng M, Ji X, Zhou L, Dang Y, Bi K, Dai Z, Dai Y. Finding the optimal CO2 adsorption material: prediction of multi-properties of metal-organic frameworks (MOFs) based on DeepFM. Separation and Purification Technology, 2022, 302: 122111

[14]

Ghanbari T, Abnisa F, Wan Daud W M A. A review on production of metal organic frameworks (MOF) for CO2 adsorption. Science of the Total Environment, 2020, 707: 135090

[15]

Yurduşen A, Yürüm Y. A controlled aynthesis atrategy to wnhance the CO2 adsorption capacity of MIL-88B type MOF crystallites by the crucial role of narrow micropores. Industrial & Engineering Chemistry Research, 2019, 58(31): 14058–14072

[16]

Klumpen C, Radakovitsch F, Jess A, Senker J. BILP-19—an ultramicroporous organic network with exceptional carbon dioxide uptake. Molecules, 2017, 22(8): 1343

[17]

Shi Z, Li X, Yao X, Zhang Y B. MOF adsorbents capture CO2 on an industrial scale. Science Bulletin, 2022, 67(9): 885–887

[18]

Qasem N A A, Abuelyamen A, Ben-Mansour R. Enhancing CO2 adsorption capacity and cycling stability of Mg-MOF-74. Arabian Journal for Science and Engineering, 2021, 46(7): 6219–6228

[19]

Mahajan O P, Morishita M, Walker P L Jr. Dynamic adsorption of carbon dioxide on microporous carbons. Carbon, 1970, 8(2): 167–179

[20]

Xie Y, Cui H, Wu H, Lin R B, Zhou W, Chen B. Electrostatically driven selective adsorption of carbon dioxide over acetylene in an ultramicroporous material. Angewandte Chemie International Edition, 2021, 60(17): 9604–9609

[21]

Pal A, Chand S, Elahi S M, Das M C. A microporous MOF with a polar pore surface exhibiting excellent selective adsorption of CO2 from CO2-N2 and CO2-CH4 gas mixtures with high CO2 loading. Dalton Transactions, 2017, 46(44): 15280–15286

[22]

Azmi A A, Aziz M A A. Mesoporous adsorbent for CO2 capture application under mild condition: a review. Journal of Environmental Chemical Engineering, 2019, 7(2): 103022

[23]

An J, Rosi N L. Tuning MOF CO2 adsorption properties via cation exchange. Journal of the American Chemical Society, 2010, 132(16): 5578–5579

[24]

Dutta S, Mukherjee S, Qazvini O T, Gupta A K, Sharma S, Mahato D, Babarao R, Ghosh S K. Three-in-one C2H2-selectivity-guided adsorptive separation across an isoreticular family of cationic square-lattice MOFs. Angewandte Chemie International Edition, 2022, 61(4): e202114132

[25]

Kinik F P, Altintas C, Balci V, Koyuturk B, Uzun A, Keskin S. [BMIM][PF6] incorporation doubles CO2 selectivity of ZIF-8: elucidation of interactions and their consequences on performance. ACS Applied Materials & Interfaces, 2016, 8(45): 30992–31005

[26]

Espín J, Garzón-Tovar L, Boix G, Imaz I, Maspoch D. The photothermal effect in MOFs: covalent post-synthetic modification of MOFs mediated by UV-Vis light under solvent-free conditions. Chemical Communications, 2018, 54(33): 4184–4187

[27]

Zhang Y K, Duan Y Y, Wu H N, Xu H X, Pei F, Shi L J, Wang J C, Yi Q. Ionic-liquid-assisted one-step construction of mesoporous metal-organic frameworks. Langmuir, 2023, 39(7): 2491–2499

[28]

Wu H, Li Q, Zhang Y, Qiu M, Liao Y, Xu H, Shi L, Yi Q. One-step supramolecular fabrication of ionic liquid/ZIF-8 nanocomposites for low-energy CO2 capture from flue gas and conversion. Fuel, 2022, 322: 124175

[29]

Zhang D, Qu R, Zhang H, Zhang F. Differentiation of chemisorption and physisorption of carbon dioxide on imidazolium-type poly(ionic liquid) brushes. Journal of Wuhan University of Technology. Materials Science Edition, 2020, 35(4): 750–757

[30]

Kanj A B, Verma R, Liu M, Helfferich J, Wenzel W, Heinke L. Bunching and immobilization of ionic liquids in nanoporous metal-organic framework. Nano Letters, 2019, 19(3): 2114–2120

[31]

Zhang Y, Qiu M, Li J, Wu H, Shi L, Yi Q. One-step supramolecular construction of Lewis pair poly(ionic liquids) for atmospheric CO2 conversion to cyclic carbonates. Fuel, 2023, 332: 126191

[32]

Zhang Y H, Bai J Q, Chen Y, Kong X J, He T, Xie L H, Li J R A. Zn(II)-based pillar-layered metal-organic framework: synthesis, structure, and CO2 selective adsorption. Polyhedron, 2019, 158: 283–289

[33]

Lei G, Xi G, Liu Z, Li Q, Cheng H, Liu H. Enhancing selective adsorption of CO2 through encapsulating FeTPPs into Cu-BTC. Chemical Engineering Journal, 2023, 461: 141977

[34]

Chen Y, Lv D, Wu J, Xiao J, Xi H, Xia Q, Li Z. A new MOF-505@GO composite with high selectivity for CO2/CH4 and CO2/N2 separation. Chemical Engineering Journal, 2017, 308: 1065–1072

[35]

Liu B, Yao S, Liu X, Li X, Krishna R, Li G, Huo Q, Liu Y. Two analogous polyhedron-based MOFs with high density of lewis basic sites and open metal sites: significant CO2 capture and gas selectivity performance. ACS Applied Materials & Interfaces, 2017, 9(38): 32820–32828

[36]

Lin J B, Nguyen T T T, Vaidhyanathan R, Burner J, Taylor J M, Durekova H, Akhtar F, Mah R K, Ghaffari-Nik O, Marx S. . A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture. Science, 2021, 374(6574): 1464–1469

[37]

Gaikwad S, Kim Y, Gaikwad R, Han S. Enhanced CO2 capture capacity of amine-functionalized MOF-177 metal organic framework. Journal of Environmental Chemical Engineering, 2021, 9(4): 105523

[38]

Ding M, Jiang H L. Incorporation of imidazolium-based poly(ionic liquid)s into a metal-organic framework for CO2 capture and conversion. ACS Catalysis, 2018, 8(4): 3194–3201

[39]

Yang D A, Cho H Y, Kim J, Yang S T, Ahn W S. CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method. Energy & Environmental Science, 2012, 5(4): 6465–6473

[40]

Kim E J, Siegelman R L, Jiang H Z H, Forse A C, Lee J H, Martell J D, Milner P J, Falkowski J M, Neaton J B, Reimer J A. . Cooperative carbon capture and steam regeneration with tetraamine-appended metal-organic frameworks. Science, 2020, 369(6502): 392–396

[41]

Karimi M, Shirzad M, Silva J A C, Rodrigues A E. Carbon dioxide separation and capture by adsorption: a review. Environmental Chemistry Letters, 2023, 21(4): 2041–2084

[42]

Chakraborty A, Roy S, Eswaramoorthy M, Maji T K. Flexible MOF-aminoclay nanocomposites showing tunable stepwise/gated sorption for C2H2, CO2 and separation for CO2/N2 and CO2/CH4. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(18): 8423–8430

[43]

IshiiTKyotani T. Materials Science and Engineering of Carbon. 2nd ed. Oxford: Butterworth-Heinemann, 2016, 287–305

[44]

Langmuir I. The constitution and fundamental properties of solids and liquids. Journal of the Franklin Institute, 1917, 183(1): 102–105

[45]

Freundlich H.. M. Over the Adsorption in Solution. The Journal of Physical Chemistry A, 1906, 57: 385–470

[46]

Wang J, Guo X. Adsorption isotherm models: classification, physical meaning, application and solving method. Chemosphere, 2020, 258: 127279

[47]

Liu X, Gong W, Luo J, Zou C, Yang Y, Yang S. Selective adsorption of cationic dyes from aqueous solution by polyoxometalate-based metal-organic framework composite. Applied Surface Science, 2016, 362: 517–524

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (8801KB)

2657

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/