Controllable construction of ionic frameworks for multi-site synergetic enhancement of CO2 capture
Yuke Zhang, Hongxue Xu, Haonan Wu, Lijuan Shi, Jiancheng Wang, Qun Yi
Controllable construction of ionic frameworks for multi-site synergetic enhancement of CO2 capture
CO2 capture is one of the key technologies for dealing with the global warming and implementing low-carbon development strategy. The emergence of ionic metal-organic frameworks (I-MOFs) has diversified the field of porous materials, which have been extensively applied for gas adsorption and separation. In this work, amino-functionalized imidazolium ionic liquid as organic monodentate ligand was used for one step synthesis microporous Cu based I-MOFs. Precise tuning of the adsorption properties was obtained by incorporating aromatic anions, such as phenoxy, benzene carboxyl, and benzene sulfonic acid group into the I-MOFs via a facile ion exchange method. The new I-MOFs showed high thermal stability and high capacity of 5.4 mmol·g–1 under atmospheric conditions for selective adsorption of CO2. The active sites of microporous Cu-MOF are the ion basic center and unsaturated metal, and electrostatic attraction and hydroxyl bonding between CO2 and modified functional sulfonic groups are responsible for the adsorption. This work provides a feasible strategy for the design of I-MOF for functional gas capture.
carbon dioxide capture / micropores / ionic liquids / multi-site synergism / ionic metal-organic frameworks
[1] |
Idris I, Abdullah A Z, Shamsudin I K, Othman M R. Comparative analyses of carbon dioxide capture from power plant flue gas surrogate by micro and mesoporous adsorbents. Journal of Environmental Chemical Engineering, 2019, 7(3): 103115
CrossRef
Google scholar
|
[2] |
IEA. Carbon Capture, Utilisation and Storage, 2022, Available online at the website of iea.org
|
[3] |
Zhang Z, Zheng Y, Qian L, Luo D, Dou H, Wen G, Yu A, Chen Z. Emerging trends in sustainable CO2-management materials. Advanced Materials, 2022, 34(29): 2201547
CrossRef
Google scholar
|
[4] |
Kim C H, Lee S Y, Park S J. Efficient micropore sizes for carbon dioxide physisorption of pine cone-based carbonaceous materials at different temperatures. Journal of CO2 Utilization, 2021, 54: 101770
CrossRef
Google scholar
|
[5] |
Justin A, Espín J, Kochetygov I, Asgari M, Trukhina O, Queen W L. A two step postsynthetic modification strategy: appending short chain polyamines to Zn-NH2-BDC MOF for enhanced CO2 adsorption. Inorganic Chemistry, 2021, 60(16): 11720–11729
CrossRef
Google scholar
|
[6] |
Gouveia L G T, Agustini C B, Perez-Lopez O W, Gutterres M. CO2 adsorption using solids with different surface and acid-base properties. Journal of Environmental Chemical Engineering, 2020, 8(4): 103823
CrossRef
Google scholar
|
[7] |
Sai Bhargava Reddy M, Ponnamma D, Sadasivuni K K, Kumar B, Abdullah A M. Carbon dioxide adsorption based on porous materials. RSC Advances, 2021, 11(21): 12658–12681
CrossRef
Google scholar
|
[8] |
Vo T K, Kim W S, Kim J. Ethylenediamine-incorporated MIL-101(Cr)-NH2 metal-organic frameworks for enhanced CO2 adsorption. Korean Journal of Chemical Engineering, 2020, 37(7): 1206–1211
CrossRef
Google scholar
|
[9] |
Zhou Y, Zhang J, Wang L, Cui X, Liu X, Wong S S, An H, Yan N, Xie J, Yu C.
CrossRef
Google scholar
|
[10] |
Cao J, Shan W, Wang Q, Ling X, Li G, Lyu Y, Zhou Y, Wang J. Ordered porous poly(ionic liquid) crystallines: spacing confined ionic surface enhancing selective CO2 capture and fixation. ACS Applied Materials & Interfaces, 2019, 11(6): 6031–6041
CrossRef
Google scholar
|
[11] |
Wang T T, Meng B, Zhou Y, Wang Y, Wang L, Ding L F, Zhou Y, Wang J. Confining organic cations in metal organic framework allows molecular level regulation of CO2 capture. AIChE Journal, 2023, 69(9): e18126
CrossRef
Google scholar
|
[12] |
Zulkifli Z I, Lim K L, Teh L P. Metal-organic frameworks (MOFs) and their applications in CO2 adsorption and conversion. ChemistrySelect, 2022, 7(22): e202200572
CrossRef
Google scholar
|
[13] |
Feng M, Cheng M, Ji X, Zhou L, Dang Y, Bi K, Dai Z, Dai Y. Finding the optimal CO2 adsorption material: prediction of multi-properties of metal-organic frameworks (MOFs) based on DeepFM. Separation and Purification Technology, 2022, 302: 122111
CrossRef
Google scholar
|
[14] |
Ghanbari T, Abnisa F, Wan Daud W M A. A review on production of metal organic frameworks (MOF) for CO2 adsorption. Science of the Total Environment, 2020, 707: 135090
CrossRef
Google scholar
|
[15] |
Yurduşen A, Yürüm Y. A controlled aynthesis atrategy to wnhance the CO2 adsorption capacity of MIL-88B type MOF crystallites by the crucial role of narrow micropores. Industrial & Engineering Chemistry Research, 2019, 58(31): 14058–14072
CrossRef
Google scholar
|
[16] |
Klumpen C, Radakovitsch F, Jess A, Senker J. BILP-19—an ultramicroporous organic network with exceptional carbon dioxide uptake. Molecules, 2017, 22(8): 1343
CrossRef
Google scholar
|
[17] |
Shi Z, Li X, Yao X, Zhang Y B. MOF adsorbents capture CO2 on an industrial scale. Science Bulletin, 2022, 67(9): 885–887
CrossRef
Google scholar
|
[18] |
Qasem N A A, Abuelyamen A, Ben-Mansour R. Enhancing CO2 adsorption capacity and cycling stability of Mg-MOF-74. Arabian Journal for Science and Engineering, 2021, 46(7): 6219–6228
CrossRef
Google scholar
|
[19] |
Mahajan O P, Morishita M, Walker P L Jr. Dynamic adsorption of carbon dioxide on microporous carbons. Carbon, 1970, 8(2): 167–179
CrossRef
Google scholar
|
[20] |
Xie Y, Cui H, Wu H, Lin R B, Zhou W, Chen B. Electrostatically driven selective adsorption of carbon dioxide over acetylene in an ultramicroporous material. Angewandte Chemie International Edition, 2021, 60(17): 9604–9609
CrossRef
Google scholar
|
[21] |
Pal A, Chand S, Elahi S M, Das M C. A microporous MOF with a polar pore surface exhibiting excellent selective adsorption of CO2 from CO2-N2 and CO2-CH4 gas mixtures with high CO2 loading. Dalton Transactions, 2017, 46(44): 15280–15286
CrossRef
Google scholar
|
[22] |
Azmi A A, Aziz M A A. Mesoporous adsorbent for CO2 capture application under mild condition: a review. Journal of Environmental Chemical Engineering, 2019, 7(2): 103022
CrossRef
Google scholar
|
[23] |
An J, Rosi N L. Tuning MOF CO2 adsorption properties via cation exchange. Journal of the American Chemical Society, 2010, 132(16): 5578–5579
CrossRef
Google scholar
|
[24] |
Dutta S, Mukherjee S, Qazvini O T, Gupta A K, Sharma S, Mahato D, Babarao R, Ghosh S K. Three-in-one C2H2-selectivity-guided adsorptive separation across an isoreticular family of cationic square-lattice MOFs. Angewandte Chemie International Edition, 2022, 61(4): e202114132
CrossRef
Google scholar
|
[25] |
Kinik F P, Altintas C, Balci V, Koyuturk B, Uzun A, Keskin S. [BMIM][PF6] incorporation doubles CO2 selectivity of ZIF-8: elucidation of interactions and their consequences on performance. ACS Applied Materials & Interfaces, 2016, 8(45): 30992–31005
CrossRef
Google scholar
|
[26] |
Espín J, Garzón-Tovar L, Boix G, Imaz I, Maspoch D. The photothermal effect in MOFs: covalent post-synthetic modification of MOFs mediated by UV-Vis light under solvent-free conditions. Chemical Communications, 2018, 54(33): 4184–4187
CrossRef
Google scholar
|
[27] |
Zhang Y K, Duan Y Y, Wu H N, Xu H X, Pei F, Shi L J, Wang J C, Yi Q. Ionic-liquid-assisted one-step construction of mesoporous metal-organic frameworks. Langmuir, 2023, 39(7): 2491–2499
CrossRef
Google scholar
|
[28] |
Wu H, Li Q, Zhang Y, Qiu M, Liao Y, Xu H, Shi L, Yi Q. One-step supramolecular fabrication of ionic liquid/ZIF-8 nanocomposites for low-energy CO2 capture from flue gas and conversion. Fuel, 2022, 322: 124175
CrossRef
Google scholar
|
[29] |
Zhang D, Qu R, Zhang H, Zhang F. Differentiation of chemisorption and physisorption of carbon dioxide on imidazolium-type poly(ionic liquid) brushes. Journal of Wuhan University of Technology. Materials Science Edition, 2020, 35(4): 750–757
CrossRef
Google scholar
|
[30] |
Kanj A B, Verma R, Liu M, Helfferich J, Wenzel W, Heinke L. Bunching and immobilization of ionic liquids in nanoporous metal-organic framework. Nano Letters, 2019, 19(3): 2114–2120
CrossRef
Google scholar
|
[31] |
Zhang Y, Qiu M, Li J, Wu H, Shi L, Yi Q. One-step supramolecular construction of Lewis pair poly(ionic liquids) for atmospheric CO2 conversion to cyclic carbonates. Fuel, 2023, 332: 126191
CrossRef
Google scholar
|
[32] |
Zhang Y H, Bai J Q, Chen Y, Kong X J, He T, Xie L H, Li J R A. Zn(II)-based pillar-layered metal-organic framework: synthesis, structure, and CO2 selective adsorption. Polyhedron, 2019, 158: 283–289
CrossRef
Google scholar
|
[33] |
Lei G, Xi G, Liu Z, Li Q, Cheng H, Liu H. Enhancing selective adsorption of CO2 through encapsulating FeTPPs into Cu-BTC. Chemical Engineering Journal, 2023, 461: 141977
CrossRef
Google scholar
|
[34] |
Chen Y, Lv D, Wu J, Xiao J, Xi H, Xia Q, Li Z. A new MOF-505@GO composite with high selectivity for CO2/CH4 and CO2/N2 separation. Chemical Engineering Journal, 2017, 308: 1065–1072
CrossRef
Google scholar
|
[35] |
Liu B, Yao S, Liu X, Li X, Krishna R, Li G, Huo Q, Liu Y. Two analogous polyhedron-based MOFs with high density of lewis basic sites and open metal sites: significant CO2 capture and gas selectivity performance. ACS Applied Materials & Interfaces, 2017, 9(38): 32820–32828
CrossRef
Google scholar
|
[36] |
Lin J B, Nguyen T T T, Vaidhyanathan R, Burner J, Taylor J M, Durekova H, Akhtar F, Mah R K, Ghaffari-Nik O, Marx S.
CrossRef
Google scholar
|
[37] |
Gaikwad S, Kim Y, Gaikwad R, Han S. Enhanced CO2 capture capacity of amine-functionalized MOF-177 metal organic framework. Journal of Environmental Chemical Engineering, 2021, 9(4): 105523
CrossRef
Google scholar
|
[38] |
Ding M, Jiang H L. Incorporation of imidazolium-based poly(ionic liquid)s into a metal-organic framework for CO2 capture and conversion. ACS Catalysis, 2018, 8(4): 3194–3201
CrossRef
Google scholar
|
[39] |
Yang D A, Cho H Y, Kim J, Yang S T, Ahn W S. CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method. Energy & Environmental Science, 2012, 5(4): 6465–6473
CrossRef
Google scholar
|
[40] |
Kim E J, Siegelman R L, Jiang H Z H, Forse A C, Lee J H, Martell J D, Milner P J, Falkowski J M, Neaton J B, Reimer J A.
CrossRef
Google scholar
|
[41] |
Karimi M, Shirzad M, Silva J A C, Rodrigues A E. Carbon dioxide separation and capture by adsorption: a review. Environmental Chemistry Letters, 2023, 21(4): 2041–2084
CrossRef
Google scholar
|
[42] |
Chakraborty A, Roy S, Eswaramoorthy M, Maji T K. Flexible MOF-aminoclay nanocomposites showing tunable stepwise/gated sorption for C2H2, CO2 and separation for CO2/N2 and CO2/CH4. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(18): 8423–8430
CrossRef
Google scholar
|
[43] |
IshiiTKyotani T. Materials Science and Engineering of Carbon. 2nd ed. Oxford: Butterworth-Heinemann, 2016, 287–305
|
[44] |
Langmuir I. The constitution and fundamental properties of solids and liquids. Journal of the Franklin Institute, 1917, 183(1): 102–105
CrossRef
Google scholar
|
[45] |
Freundlich H.. M. Over the Adsorption in Solution. The Journal of Physical Chemistry A, 1906, 57: 385–470
CrossRef
Google scholar
|
[46] |
Wang J, Guo X. Adsorption isotherm models: classification, physical meaning, application and solving method. Chemosphere, 2020, 258: 127279
CrossRef
Google scholar
|
[47] |
Liu X, Gong W, Luo J, Zou C, Yang Y, Yang S. Selective adsorption of cationic dyes from aqueous solution by polyoxometalate-based metal-organic framework composite. Applied Surface Science, 2016, 362: 517–524
CrossRef
Google scholar
|
/
〈 | 〉 |