Enhanced permeability and biofouling mitigation of forward osmosis membranes via grafting graphene quantum dots
Nan Li, Yumeng Zhang, Peng Li, Bo Zhu, Wei Wang, Zhiwei Xu
Enhanced permeability and biofouling mitigation of forward osmosis membranes via grafting graphene quantum dots
In this paper, graphene oxide quantum dots with amino groups (NH2-GOQDs) were tailored to the surface of a thin-film composite (TFC) membrane surface for optimizing forward osmosis (FO) membrane performance using the amide coupling reaction. The results jointly demonstrated hydrophilicity and surface roughness of the membrane enhanced after grafting NH2-GOQDs, leading to the optimized affinity and the contact area between the membrane and water molecules. Therefore, grafting of the membrane with a concentration of 100 ppm (TFC-100) exhibited excellent permeability performance (58.32 L·m–2·h–1) compared with TFC membrane (16.94 L·m–2·h–1). In the evaluation of static antibacterial properties of membranes, TFC-100 membrane destroyed the cell morphology of Escherichia coli (E. coli) and reduced the degree of bacterial adsorption. In the dynamic biofouling experiment, TFC-100 membrane showed a lower flux decline than TFC membrane. After the physical cleaning, the flux of TFC-100 membrane could recover to 96% of the initial flux, which was notably better than that of TFC membrane (63%). Additionally, the extended Derjaguin–Landau–Verwey–Overbeek analysis of the affinity between pollutants and membrane surface verified that NH2-GOQDs alleviates E. coli contamination of membrane. This work highlights the potential applications of NH2-GOQDs for optimizing permeability and biofouling mitigation of FO membranes.
forward osmosis membrane / graphene oxide quantum dots / graft modification / anti-fouling membrane / XDLVO theory
[1] |
Li P, Teng K, Guo C, Shi H, Li B, Pei X, Wang W, Xu Z. Synergistic effect of polyvinyl alcohol sub-layer and graphene oxide condiment from active layer on desalination behavior of forward osmosis membrane. Journal of the Taiwan Institute of Chemical Engineers, 2020, 112: 366–376
CrossRef
Google scholar
|
[2] |
Andrzejewski A, Krajewska M, Nowak-Grzebyta J, Szczygiełda M, Stachowska E, Prochaska K. Concentration of pectin solution: forward osmosis performance and fouling analysis. Journal of Membrane Science, 2022, 653: 120503
CrossRef
Google scholar
|
[3] |
Yu F, Shi H, Shi J, Teng K, Xu Z, Qian X. High-performance forward osmosis membrane with ultra-fast water transport channel and ultra-thin polyamide layer. Journal of Membrane Science, 2020, 616: 118611
CrossRef
Google scholar
|
[4] |
Yao X, Gonzales R R, Sasaki Y, Lin Y, Shen Q, Zhang P, Shintani T, Nakagawa K, Matsuyama H. Surface modification of FO membrane for improving ammoniacal nitrogen (NH4+-N) rejection: investigating the factors influencing NH4+-N rejection. Journal of Membrane Science, 2022, 650: 120429
CrossRef
Google scholar
|
[5] |
Mahat N A, Shamsudin S A, Jullok N, Ma’radzi A H. Carbon quantum dots embedded polysulfone membranes for antibacterial performance in the process of forward osmosis. Desalination, 2020, 493: 114618
CrossRef
Google scholar
|
[6] |
Perreault F, Tousley M, Elimelech M. Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets. Environmental Science & Technology Letters, 2013, 1(1): 71–76
CrossRef
Google scholar
|
[7] |
Hegab H M, Elmekawy A, Barclay T G, Michelmore A, Zou L, Saint C P, Ginic-Markovic M. Effective in-situ chemical surface modification of forward osmosis membranes with polydopamine—induced graphene oxide for biofouling mitigation. Desalination, 2016, 385: 126–137
CrossRef
Google scholar
|
[8] |
Akther N, Yuan Z, Chen Y, Lim S, Phuntsho S, Ghaffour N, Matsuyama H, Shon H. Influence of graphene oxide lateral size on the properties and performances of forward osmosis membrane. Desalination, 2020, 484: 114421
CrossRef
Google scholar
|
[9] |
Ma X H, Yang Z, Yao Z K, Guo H, Xu Z L, Tang C Y Y. Interfacial polymerization with electrosprayed microdroplets: toward controllable and ultrathin polyamide membranes. Environmental Science & Technology Letters, 2018, 5(2): 117–122
CrossRef
Google scholar
|
[10] |
Shao D D, Yang W J, Xiao H F, Wang Z Y, Zhou C, Cao X L, Sun S P. Self-cleaning nanofiltration membranes by coordinated regulation of carbon quantum dots and polydopamine. ACS Applied Materials & Interfaces, 2020, 12(1): 580–590
CrossRef
Google scholar
|
[11] |
Lin Y Q, Shen Q, Kawabata Y, Segawa J, Cao X Z, Guan K C, Istirokhatun T, Yoshioka T, Matsuyama H. Graphene quantum dots (GQDs)-assembled membranes with intrinsic functionalized nanochannels for high-performance nanofiltration. Chemical Engineering Journal, 2021, 420: 127602
CrossRef
Google scholar
|
[12] |
Zeng H, He S, Hosseini S S, Zhu B, Shao L. Emerging nanomaterial incorporated membranes for gas separation and pervaporation towards energetic-efficient applications. Advanced Membranes, 2022, 2: 100015
CrossRef
Google scholar
|
[13] |
Gu Q, Ng T C A, Zain I, Liu X, Zhang L, Zhang Z, Lyu Z, He Z, Ng H Y, Wang J. Chemical-grafting of graphene oxide quantum dots (GOQDs) onto ceramic microfiltration membranes for enhanced water permeability and anti-organic fouling potential. Applied Surface Science, 2020, 502: 144128
CrossRef
Google scholar
|
[14] |
Wang D, Zhang Y, Cai Z, You S, Sun Y, Dai Y, Wang R, Shao S, Zou J. Corn stalk-derived carbon quantum dots with abundant amino groups as a selective-layer modifier for enhancing chlorine resistance of membranes. ACS Applied Materials & Interfaces, 2021, 13(19): 22621–22634
CrossRef
Google scholar
|
[15] |
Xu Z, Li P, Li N, Wang W, Guo C, Shan M, Qian X. Constructing dense and hydrophilic forward osmosis membrane by cross-linking reaction of graphene quantum dots with monomers for enhanced selectivity and stability. Journal of Colloid and Interface Science, 2021, 589: 486–499
CrossRef
Google scholar
|
[16] |
Feng Y, Han G, Chung T S, Weber M, Widjojo N, Maletzko C. Effects of polyethylene glycol on membrane formation and properties of hydrophilic sulfonated polyphenylenesulfone (sPPSU) membranes. Journal of Membrane Science, 2017, 531: 27–35
CrossRef
Google scholar
|
[17] |
Shabani Z, Mohammadi T, Kasiri N, Sahebi S. Development of high-performance thin-film composite FO membrane by tailoring co-deposition of dopamine and m-phenylenediamine for the caspian seawater desalination. Desalination, 2022, 527: 115577
CrossRef
Google scholar
|
[18] |
Akther N, Kawabata Y, Lim S, Yoshioka T, Phuntsho S, Matsuyama H, Shon H K. Effect of graphene oxide quantum dots on the interfacial polymerization of a thin-film nanocomposite forward osmosis membrane: an experimental and molecular dynamics study. Journal of Membrane Science, 2021, 630: 119309
CrossRef
Google scholar
|
[19] |
Tiraferri A, Vecitis C D, Elimelech M. Covalent binding of single-walled carbon nanotubes to polyamide membranes for antimicrobial surface properties. ACS Applied Materials & Interfaces, 2011, 3(8): 2869–2877
CrossRef
Google scholar
|
[20] |
Grabarek Z, Gergely J. Zero-length crosslinking procedure with the use of active esters. Analytical Biochemistry, 1990, 185(1): 131–135
CrossRef
Google scholar
|
[21] |
Staros J V, Wright R W, Swingle D M. Enhancement by n-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions. Analytical Biochemistry, 1986, 156(1): 220–222
CrossRef
Google scholar
|
[22] |
Tetsuka H, Asahi R, Nagoya A, Okamoto K, Tajima I, Ohta R, Okamoto A. Optically tunable amino-functionalized graphene quantum dots. Advanced Materials, 2012, 24(39): 5333–5338
CrossRef
Google scholar
|
[23] |
Sun H, Gao N, Wu L, Ren J, Wei W, Qu X. Highly photoluminescent amino-functionalized graphene quantum dots used for sensing copper ions. Chemistry, 2013, 19(40): 13362–13368
CrossRef
Google scholar
|
[24] |
Fathizadeh M, Tien H N, Khivantsev K, Song Z, Zhou F, Yu M. Polyamide/nitrogen-doped graphene oxide quantum dots (N-GOQD) thin film nanocomposite reverse osmosis membranes for high flux desalination. Desalination, 2019, 451: 125–132
CrossRef
Google scholar
|
[25] |
Wang Y, Fang Z, Zhao S, Ng D, Zhang J, Xie Z. Dopamine incorporating forward osmosis membranes with enhanced selectivity and antifouling properties. RSC Advances, 2018, 8(40): 22469–22481
CrossRef
Google scholar
|
[26] |
Li Y, Hu Y, Zhao Y, Shi G Q, Deng L E, Hou Y B, Qu L T. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Advanced Materials, 2011, 23(6): 776–780
CrossRef
Google scholar
|
[27] |
Veríssimo S, Peinemann K V, Bordado J. Influence of the diamine structure on the nanofiltration performance, surface morphology and surface charge of the composite polyamide membranes. Journal of Membrane Science, 2006, 279(1): 266–275
CrossRef
Google scholar
|
[28] |
Xu L, Xu J, Shan B, Wang X, Gao C. Novel thin-film composite membranes via manipulating the synergistic interaction of dopamine and m-phenylenediamine for highly efficient forward osmosis desalination. Journal of Materials Chemistry A, 2017, 5(17): 7920–7932
CrossRef
Google scholar
|
[29] |
Xu Z, Zhang J, Shan M, Li Y, Li B, Niu J, Zhou B, Qian X. Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes. Journal of Membrane Science, 2014, 458: 1–13
CrossRef
Google scholar
|
[30] |
Wang J, Sun X A J E, Science E. Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy & Environmental Science, 2012, 5(1): 5163–5185
CrossRef
Google scholar
|
[31] |
Song X, Wang Y, Jiao C, Huang M, Wang G H, Jiang H. Microstructure regulation of polyamide nanocomposite membrane by functional mesoporous polymer for high-efficiency desalination. Journal of Membrane Science, 2020, 597: 117783
CrossRef
Google scholar
|
[32] |
Hu X W, Wang Y, Yang J O, Li Y, Wu P, Zhang H J, Yuan D Z, Liu Y, Wu Z Y, Liu Z R. Synthesis of graphene oxide nanoribbons/chitosan composite membranes for the removal of uranium from aqueous solutions. Frontiers of Chemical Science and Engineering, 2020, 14(6): 1029–1038
CrossRef
Google scholar
|
[33] |
Hegab H M, Elmekawy A, Barclay T G, Michelmore A, Zou L, Saint C P, Ginic-Markovic M. Fine-tuning the surface of forward osmosis membranes via grafting graphene oxide: performance patterns and biofouling propensity. ACS Applied Materials & Interfaces, 2015, 7(32): 18004–18016
CrossRef
Google scholar
|
[34] |
Zeng Z, Yu D, He Z, Liu J, Xiao F X, Zhang Y, Wang R, Bhattacharyya D, Tan T T. Graphene oxide quantum dots covalently functionalized PVDF membrane with significantly-enhanced bactericidal and antibiofouling performances. Scientific Reports, 2016, 6(1): 20142
CrossRef
Google scholar
|
[35] |
Miller D J, Araújo P A, Correia P B, Ramsey M M, Kruithof J C, van Loosdrecht M C M, Freeman B D, Paul D R, Whiteley M, Vrouwenvelder J S. Short-term adhesion and long-term biofouling testing of polydopamine and poly(ethylene glycol) surface modifications of membranes and feed spacers for biofouling control. Water Research, 2012, 46(12): 3737–3753
CrossRef
Google scholar
|
[36] |
Bernstein R, Freger V, Lee J H, Kim Y G, Lee J, Herzberg M. ‘Should I stay or should I go?’ Bacterial attachment vs biofilm formation on surface-modified membranes. Biofouling, 2014, 30(3): 367–376
CrossRef
Google scholar
|
[37] |
Wang D, Li S, Li F, Li J, Li N, Wang Z. Thin film nanocomposite membrane with triple-layer structure for enhanced water flux and antibacterial capacity. Science of the Total Environment, 2021, 770: 145370
CrossRef
Google scholar
|
[38] |
Chen H, Zheng S, Meng L, Chen G, Luo X, Huang M. Comparison of novel functionalized nanofiber forward osmosis membranes for application in antibacterial activity and TRGs rejection. Journal of Hazardous Materials, 2020, 392: 122250
CrossRef
Google scholar
|
[39] |
Seyedpour S F, Rahimpour A, Shamsabadi A A, Soroush M. Improved performance and antifouling properties of thin-film composite polyamide membranes modified with nano-sized bactericidal graphene quantum dots for forward osmosis. Chemical Engineering Research & Design, 2018, 139: 321–334
CrossRef
Google scholar
|
[40] |
Dai C, Zhao D, Wang Y, Zhao R, Wang H, Wu X, Liu S, Zhu H, Fu J, Zhang M, Ding H. Impact of graphene oxide on properties and structure of thin-film composite forward osmosis membranes. Polymers, 2022, 14(18): 3874
CrossRef
Google scholar
|
[41] |
Shakeri A, Salehi H, Rastgar M. Antifouling electrically conductive membrane for forward osmosis prepared by polyaniline/graphene nanocomposite. Journal of Water Process Engineering, 2019, 32: 100932
CrossRef
Google scholar
|
[42] |
Saeedi-Jurkuyeh A, Jafari A J, Kalantary R R, Esrafili A. A novel synthetic thin-film nanocomposite forward osmosis membrane modified by graphene oxide and polyethylene glycol for heavy metals removal from aqueous solutions. Reactive & Functional Polymers, 2020, 146: 104397
CrossRef
Google scholar
|
[43] |
Emadzadeh D, Lau W J, Matsuura T, Ismail A F, Rahbari-Sisakht M. Synthesis and characterization of thin film nanocomposite forward osmosis membrane with hydrophilic nanocomposite support to reduce internal concentration polarization. Journal of Membrane Science, 2014, 449: 74–85
CrossRef
Google scholar
|
[44] |
Cui Y, Liu X Y, Chung T S, Weber M, Staudt C, Maletzko C. Removal of organic micro-pollutants (phenol, aniline and nitrobenzene) via forward osmosis (FO) process: evaluation of fo as an alternative method to reverse osmosis (RO). Water Research, 2016, 91: 104–114
CrossRef
Google scholar
|
[45] |
Chen Y C, Ge Q C. A bifunctional zwitterion that serves as both a membrane modifier and a draw solute for forward osmosis wastewater treatment. ACS Applied Materials & Interfaces, 2019, 11(39): 36118–36129
CrossRef
Google scholar
|
[46] |
Qiu M, He C J. Novel zwitterion-silver nanocomposite modified thin-film composite forward osmosis membrane with simultaneous improved water flux and biofouling resistance property. Applied Surface Science, 2018, 455: 492–501
CrossRef
Google scholar
|
[47] |
Soroush A, Ma W, Silvino Y, Rahaman M S. Surface modification of thin film composite forward osmosis membrane by silver-decorated graphene-oxide nanosheets. Environmental Science Nano, 2015, 2(4): 395–405
CrossRef
Google scholar
|
[48] |
Liu C, Lee J, Ma J, Elimelech M. Antifouling thin-film composite membranes by controlled architecture of zwitterionic polymer brush layer. Environmental Science & Technology, 2017, 51(4): 2161–2169
CrossRef
Google scholar
|
/
〈 | 〉 |