Triboelectric nanogenerators: the beginning of blue dream

Wanli Wang , Dongfang Yang , Xiaoran Yan , Licheng Wang , Han Hu , Kai Wang

Front. Chem. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (6) : 635 -678.

PDF (17707KB)
Front. Chem. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (6) : 635 -678. DOI: 10.1007/s11705-022-2271-y
REVIEW ARTICLE
REVIEW ARTICLE

Triboelectric nanogenerators: the beginning of blue dream

Author information +
History +
PDF (17707KB)

Abstract

Wave energy is inexhaustible renewable energy. Making full use of the huge ocean wave energy resources is the dream of mankind for hundreds of years. Nowadays, the utilization of water wave energy is mainly absorbed and transformed by electromagnetic generators (EMGs) in the form of mechanical energy. However, waves usually have low frequency and uncertainty, which means low power generation efficiency for EMGs. Fortunately, in this slow current and random direction wave case, the triboelectric nanogenerator (TENG) has a relatively stable output power, which is suitable for collecting blue energy. This article summarizes the main research results of TENG in harvesting blue energy. Firstly, based on Maxwell’s displacement current, the basic principle of the nanogenerator is expounded. Then, four working modes and three applications of TENG are introduced, especially the application of TENG in blue energy. TENG currently used in blue energy harvesting is divided into four categories and discussed in detail. After TENG harvests water wave energy, it is meaningless if it cannot be used. Therefore, the modular storage of TENG energy is discussed. The output power of a single TENG unit is relatively low, which cannot meet the demand for high power. Thus, the networking strategy of large-scale TENG is further introduced. TENG’s energy comes from water waves, and each TENG’s output has great randomness, which is very unfavorable for the energy storage after large-scale TENG integration. On this basis, this paper discusses the power management methods of TENG. In addition, in order to further prove its economic and environmental advantages, the economic benefits of TENG are also evaluated. Finally, the development potential of TENG in the field of blue energy and some problems that need to be solved urgently are briefly summarized.

Graphical abstract

Keywords

blue energy / triboelectric nanogenerator / water wave energy / networking strategy / micro/nano-energy / self-powered devices

Cite this article

Download citation ▾
Wanli Wang, Dongfang Yang, Xiaoran Yan, Licheng Wang, Han Hu, Kai Wang. Triboelectric nanogenerators: the beginning of blue dream. Front. Chem. Sci. Eng., 2023, 17(6): 635-678 DOI:10.1007/s11705-022-2271-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Minh N Q, Shirley Meng Y. Future energy, fuel cells, and solid-oxide fuel-cell technology. MRS Bulletin, 2019, 44(9): 682–683

[2]

Wang Z L, Jiang T, Xu L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy, 2017, 39: 9–23

[3]

Erdiwansyah H, Mahidin M. A critical review of the integration of renewable energy sources with various technologies. Protection and Control of Modern Power Systems, 2021, 6(1): 3

[4]

Wang Z L. New wave power. Nature, 2017, 542(7640): 159–160

[5]

Feng Y, Liang X, An J, Jiang T, Wang Z L. Soft-contact cylindrical triboelectric-electromagnetic hybrid nanogenerator based on swing structure for ultra-low frequency water wave energy harvesting. Nano Energy, 2021, 81: 105625

[6]

Gao Q, Xu Y, Yu X, Jing Z, Cheng T, Wang Z L. Gyroscope-structured triboelectric nanogenerator for harvesting multidirectional ocean wave energy. ACS Nano, 2022, 16(4): 6781–6788

[7]

Kim J S, Kim J, Kim J N, Ahn J, Jeong J H, Park I, Kim D, Oh I K. Collectively exhaustive hybrid triboelectric nanogenerator based on flow-induced impacting-sliding cylinder for ocean energy harvesting. Advanced Energy Materials, 2022, 12(3): 2103076

[8]

Li W, Wan L, Lin Y, Liu G, Qu H, Wen H, Ding J, Ning H, Yao H. Synchronous nanogenerator with intermittent sliding friction self-excitation for water wave energy harvesting. Nano Energy, 2022, 95: 106994

[9]

Ren Z, Liang X, Liu D, Li X, Ping J, Wang Z, Wang Z L. Water-wave driven route avoidance warning system for wireless ocean navigation. Advanced Energy Materials, 2021, 11(31): 2101116

[10]

Xu Y, Yang W, Lu X, Yang Y, Li J, Wen J, Cheng T, Wang Z L. Triboelectric nanogenerator for ocean wave graded energy harvesting and condition monitoring. ACS Nano, 2021, 15(10): 16368–16375

[11]

Zhao T, Xu M, Xiao X, Ma Y, Li Z, Wang Z L. Recent progress in blue energy harvesting for powering distributed sensors in ocean. Nano Energy, 2021, 88: 106199

[12]

Chang A, Uy C, Xiao X, Chen J. Self-powered environmental monitoring via a triboelectric nanogenerator. Nano Energy, 2022, 98: 107282

[13]

Noman M, Li G, Wang K, Han B. Electrical control strategy for an ocean energy conversion system. Protection and Control of Modern Power Systems, 2021, 6(1): 12

[14]

Jiang T, Zhang L M, Chen X Y, Han C B, Tang W, Zhang C, Xu L, Wang Z L. Structural optimization of triboelectric nanogenerator for harvesting water wave energy. ACS Nano, 2015, 9(12): 12562–12572

[15]

Yuan Z, Wang C, Xi J, Han X, Li J, Han S T, Gao W, Pan C. Spherical triboelectric nanogenerator with dense point contacts for harvesting multidirectional water wave and vibration energy. ACS Energy Letters, 2021, 6(8): 2809–2816

[16]

Zhang Q, Liang Q, Nandakumar D K, Qu H, Shi Q, Alzakia F I, Tay D J J, Yang L, Zhang X, Suresh L, Lee C, Wee A T S, Tan S C. Shadow enhanced self-charging power system for wave and solar energy harvesting from the ocean. Nature Communications, 2021, 12(1): 616

[17]

Zhao B, Li Z, Liao X, Qiao L, Li Y, Dong S, Zhang Z, Zhang B. A heaving point absorber-based ocean wave energy convertor hybridizing a multilayered soft-brush cylindrical triboelectric generator and an electromagnetic generator. Nano Energy, 2021, 89: 106381

[18]

Qu Z, Huang M, Chen C, An Y, Liu H, Zhang Q, Wang X, Liu Y, Yin W, Li X. Spherical triboelectric nanogenerator based on eccentric structure for omnidirectional low frequency water wave energy harvesting. Advanced Functional Materials, 2022, 32(29): 2202048

[19]

Salter S H. Wave power. Nature, 1974, 249(5459): 720–724

[20]

Falcão A. Wave energy utilization: a review of the technologies. Renewable & Sustainable Energy Reviews, 2010, 14(3): 899–918

[21]

Liu S H, Wang L F, Feng X L, Wang Z, Xu Q, Bai S, Qin Y, Wang Z L. Ultrasensitive 2D ZnO piezotronic transistor array for high resolution tactile imaging. Advanced Materials, 2017, 29(16): 1606346

[22]

Cui X, Xu Q, Ni X, Zhang Y, Qin Y. Atomic-thick 2D MoS2/insulator interjection structures for enhancing nanogenerator output. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2018, 6(4): 899–906

[23]

Hu C X, Cheng L, Wang Z, Zheng Y B, Bai S, Qin Y. A transparent antipeep piezoelectric nanogenerator to harvest tapping energy on screen. Small, 2016, 12(10): 1315–1321

[24]

Tian G, Deng W L, Gao Y Y, Xiong D, Yan C, He X B, Yang T, Jin L, Chu X, Zhang H T, Yan W, Yang W. Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training. Nano Energy, 2019, 59: 574–581

[25]

Xu Q, Qin Y. Theoretical study of enhancing the piezoelectric nanogenerator’s output power by optimizing the external force’s shape. APL Materials, 2017, 5(7): 074101

[26]

Deng W, Zhou Y, Libanori A, Chen G, Yang W, Chen J. Piezoelectric nanogenerators for personalized healthcare. Chemical Society Reviews, 2022, 51(9): 3380–3435

[27]

Shaukat R A, Saqib Q M, Kim J, Song H, Khan M U, Chougale M Y, Bae J, Choi M J. Ultra-robust tribo- and piezo-electric nanogenerator based on metal organic frameworks (MOF-5) with high environmental stability. Nano Energy, 2022, 96: 107128

[28]

Zhou Y X, Lin Y T, Huang S M, Chen G T, Chen S W, Wu H S, Ni I C, Pan W P, Tsai M L, Wu C I, Yang P K. Tungsten disulfide nanosheets for piezoelectric nanogenerator and human-machine interface applications. Nano Energy, 2022, 97: 107172

[29]

Yu Z, Zhang Y, Wang Y, Zheng J, Fu Y, Chen D, Wang G, Cui J, Yu S, Zheng L, Zhou H, Li D. Integrated piezo-tribo hybrid acoustic-driven nanogenerator based on porous MWCNTs/PVDF-TrFE aerogel bulk with embedded pdms tympanum structure for broadband sound energy harvesting. Nano Energy, 2022, 97: 107205

[30]

Chen C, Zhao S, Pan C, Zi Y, Wang F, Yang C, Wang Z L. A method for quantitatively separating the piezoelectric component from the as-received “piezoelectric” signal. Nature Communications, 2022, 13(1): 1391

[31]

Jiang F, Zhou X, Lv J, Chen J, Chen J, Kongcharoen H, Zhang Y, Lee P S. Stretchable, breathable, and stable lead-free perovskite/polymer nanofiber composite for hybrid triboelectric and piezoelectric energy harvesting. Advanced Materials, 2022, 34(17): 2200042

[32]

Wang C, Lai S K, Wang Z C, Wang J M, Yang W Q, Ni Y Q. A low-frequency, broadband and tri-hybrid energy harvester with septuple-stable nonlinearity-enhanced mechanical frequency up-conversion mechanism for powering portable electronics. Nano Energy, 2019, 64: 103943

[33]

Xi Y, Guo H Y, Zi Y L, Li X G, Wang J, Deng J N, Li S M, Hu C G, Cao X, Wang Z L. Multifunctional TENG for blue energy scavenging and self-powered wind-speed sensor. Advanced Energy Materials, 2017, 7(12): 1602397

[34]

Zhou L, Liu D, Li S, Zhao Z, Zhang C, Yin X, Liu L, Cui S, Wang Z L, Wang J. Rationally designed dual-mode triboelectric nanogenerator for harvesting mechanical energy by both electrostatic induction and dielectric breakdown effects. Advanced Energy Materials, 2020, 10(24): 2000965

[35]

Zhao Z, Zhou L, Li S, Liu D, Li Y, Gao Y, Liu Y, Dai Y, Wang J, Wang Z L. Selection rules of triboelectric materials for direct-current triboelectric nanogenerator. Nature Communications, 2021, 12(1): 4686

[36]

Feng X, Li Q, Wang K. Waste plastic triboelectric nanogenerators using recycled plastic bags for power generation. ACS Applied Materials & Interfaces, 2021, 13(1): 400–410

[37]

Cheng G, Lin Z H, Du Z L, Wang Z L. Increase output energy and operation frequency of a triboelectric nanogenerator by two grounded electrodes approach. Advanced Functional Materials, 2014, 24(19): 2892–2898

[38]

Lingam D, Parikh A R, Huang J, Jain A, Minary-Jolandan M. Nano/microscale pyroelectric energy harvesting: challenges and opportunities. International Journal of Smart and Nano Materials, 2013, 4(4): 229–245

[39]

Bowen C R, Taylor J, LeBoulbar E, Zabek D, Chauhan A, Vaish R. Pyroelectric materials and devices for energy harvesting applications. Energy & Environmental Science, 2014, 7(12): 3836–3856

[40]

Wang Z N, Yu R M, Pan C F, Li Z L, Yang J, Yi F, Wang Z L. Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing. Nature Communications, 2015, 6(1): 8401

[41]

Askari H, Xu N, Groenner Barbosa B H, Huang Y, Chen L, Khajepour A, Chen H, Wang Z L. Intelligent systems using triboelectric, piezoelectric, and pyroelectric nanogenerators. Materials Today, 2022, 52: 188–206

[42]

Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312(5771): 242–246

[43]

Wang X D, Song J H, Liu J, Wang Z L. Direct-current nanogenerator driven by ultrasonic waves. Science, 2007, 316(5821): 102–105

[44]

Xu S, Qin Y, Xu C, Wei Y G, Yang R S, Wang Z L. Self-powered nanowire devices. Nature Nanotechnology, 2010, 5(5): 366–373

[45]

Xiao L, Wu S Y, Yang S L. Parametric study on the thermoelectric conversion performance of a concentrated solar-driven thermionic-thermoelectric hybrid generator. International Journal of Energy Research, 2018, 42(2): 656–672

[46]

Yuan M M, Cheng L, Xu Q, Wu W W, Bai S, Gu L, Wang Z, Lu J, Li H P, Qin Y, Jing T, Wang Z L. Biocompatible nanogenerators through high piezoelectric coefficient 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 nanowires for in-vivo applications. Advanced Materials, 2014, 26(44): 7432–7437

[47]

Huang X Y, Sun B, Zhu Y K, Li S T, Jiang P K. High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Progress in Materials Science, 2019, 100: 187–225

[48]

FanF RTianZ QWangZ L. Flexible triboelectric generator! Nano Energy, 2012, 1(12): 328–334

[49]

Wang Z L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano, 2013, 7(11): 9533–9557

[50]

Yang L, Wu S Q, Lin B J, Huang T X, Chen X P, Yan X M, Han S F. A targetable nanogenerator of nitric oxide for light-triggered cytotoxicity. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2013, 1(44): 6115–6122

[51]

Zhu G, Bai P, Chen J, Wang Z L. Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics. Nano Energy, 2013, 2(5): 688–692

[52]

Shao Y, Luo C, Deng B W, Yin B, Yang M B. Flexible porous silicone rubber-nanofiber nanocomposites generated by supercritical carbon dioxide foaming for harvesting mechanical energy. Nano Energy, 2020, 67: 104290

[53]

Yan C, Gao Y Y, Zhao S L, Zhang S L, Zhou Y H, Deng W L, Li Z W, Jiang G, Jin L, Tian G, Yang T, Chu X, Xiong D, Wang Z, Li Y, Yang W, Chen J. A linear-to-rotary hybrid nanogenerator for high-performance wearable biomechanical energy harvesting. Nano Energy, 2020, 67: 104235

[54]

Jing Q S, Xie Y N, Zhu G, Han R P S, Wang Z L. Self-powered thin-film motion vector sensor. Nature Communications, 2015, 6(1): 8031

[55]

Jing Q S, Zhu G, Bai P, Xie Y N, Chen J, Han R P S, Wang Z L. Case-encapsulated triboelectric nanogenerator for harvesting energy from reciprocating sliding motion. ACS Nano, 2014, 8(4): 3836–3842

[56]

Zhong J W, Zhang Y, Zhong Q Z, Hu Q Y, Hu B, Wang Z L, Zhou J. Fiber-based generator for wearable electronics and mobile medication. ACS Nano, 2014, 8(6): 6273–6280

[57]

Yang W Q, Chen J, Zhu G, Yang J, Bai P, Su Y J, Jing Q S, Cao X, Wang Z L. Harvesting energy from the natural vibration of human walking. ACS Nano, 2013, 7(12): 11317–11324

[58]

Cheng B, Ma J, Li G, Bai S, Xu Q, Cui X, Cheng L, Qin Y, Wang Z L. Mechanically asymmetrical triboelectric nanogenerator for self-powered monitoring of in vivo microscale weak movement. Advanced Energy Materials, 2020, 10(27): 2000827

[59]

Li C, Liu D, Xu C, Wang Z, Shu S, Sun Z, Tang W, Wang Z L. Sensing of joint and spinal bending or stretching via a retractable and wearable badge reel. Nature Communications, 2021, 12(1): 2950

[60]

Zhao J, Li F, Wang Z, Dong P, Xia G, Wang K. Flexible PVDF nanogenerator-driven motion sensors for human body motion energy tracking and monitoring. Journal of Materials Science Materials in Electronics, 2021, 32(11): 14715–14727

[61]

Zhang X, Li Z, Du W, Zhao Y, Wang W, Pang L, Chen L, Yu A, Zhai J. Self-powered triboelectric-mechanoluminescent electronic skin for detecting and differentiating multiple mechanical stimuli. Nano Energy, 2022, 96: 107115

[62]

Ye C, Yang S, Ren J, Dong S, Cao L, Pei Y, Ling S. Electroassisted core-spun triboelectric nanogenerator fabrics for intellisense and artificial intelligence perception. ACS Nano, 2022, 16(3): 4415–4425

[63]

Zhang H L, Yang Y, Su Y J, Chen J, Adams K, Lee S, Hu C G, Wang Z L. Triboelectric nanogenerator for harvesting vibration energy in full space and as self-powered acceleration sensor. Advanced Functional Materials, 2014, 24(10): 1401–1407

[64]

Yang W Q, Chen J, Zhu G, Wen X N, Bai P, Su Y J, Lin Y, Wang Z L. Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator. Nano Research, 2013, 6(12): 880–886

[65]

Chen J, Zhu G, Yang W Q, Jing Q S, Bai P, Yang Y, Hou T C, Wang Z L. Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Advanced Materials, 2013, 25(42): 6094–6099

[66]

Yang J, Chen J, Yang Y, Zhang H L, Yang W Q, Bai P, Su Y J, Wang Z L. Broadband vibrational energy harvesting based on a triboelectric nanogenerator. Advanced Energy Materials, 2014, 4(6): 1301322

[67]

Yang W Q, Chen J, Jing Q S, Yang J, Wen X N, Su Y J, Zhu G, Bai P, Wang Z L. 3D stack integrated triboelectric nanogenerator for harvesting vibration energy. Advanced Functional Materials, 2014, 24(26): 4090–4096

[68]

Hu Y F, Yang J, Jing Q S, Niu S M, Wu W Z, Wang Z L. Triboelectric nanogenerator built on suspended 3D spiral structure as vibration and positioning sensor and wave energy harvester. ACS Nano, 2013, 7(11): 10424–10432

[69]

Lin L, Wang S H, Xie Y N, Jing Q S, Niu S M, Hu Y F, Wang Z L. Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Letters, 2013, 13(6): 2916–2923

[70]

Zhu G, Chen J, Zhang T J, Jing Q S, Wang Z L. Radial-arrayed rotary electrification for high performance triboelectric generator. Nature Communications, 2014, 5(1): 3426

[71]

Bai P, Zhu G, Liu Y, Chen J, Jing Q S, Yang W Q, Ma J S, Zhang G, Wang Z L. Cylindrical rotating triboelectric nanogenerator. ACS Nano, 2013, 7(7): 6361–6366

[72]

Bai Q, Liao X W, Chen Z W, Gan C Z, Zou H X, Wei K X, Gu Z, Zheng X J. Snap-through triboelectric nanogenerator with magnetic coupling buckled bistable mechanism for harvesting rotational energy. Nano Energy, 2022, 96: 107118

[73]

Lin L, Xie Y N, Niu S M, Wang S H, Yang P K, Wang Z L. Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of similar to 55%. ACS Nano, 2015, 9(1): 922–930

[74]

Hu J, Pu X J, Yang H M, Zeng Q X, Tang Q, Zhang D Z, Hu C G, Xi Y. A flutter-effect-based triboelectric nanogenerator for breeze energy collection from arbitrary directions and self-powered wind speed sensor. Nano Research, 2019, 12(12): 3018–3023

[75]

Yang Y, Zhu G, Zhang H L, Chen J, Zhong X D, Lin Z H, Su Y J, Bai P, Wen X N, Wang Z L. Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano, 2013, 7(10): 9461–9468

[76]

Xie Y N, Wang S H, Lin L, Jing Q S, Lin Z H, Niu S M, Wu Z Y, Wang Z L. Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano, 2013, 7(8): 7119–7125

[77]

Meng X S, Zhu G, Wang Z L. Robust thin-film generator based on segmented contact-electrification for harvesting wind energy. ACS Applied Materials & Interfaces, 2014, 6(11): 8011–8016

[78]

Zhang H L, Wang J, Xie Y H, Yao G, Yan Z C, Huang L, Chen S H, Pan T S, Wang L P, Su Y J, Yang W, Lin Y. Self-powered, wireless, remote meteorologic monitoring based on triboelectric nanogenerator operated by scavenging wind energy. ACS Applied Materials & Interfaces, 2016, 8(48): 32649–32654

[79]

Ren Z, Wang Z, Liu Z, Wang L, Guo H, Li L, Li S, Chen X, Tang W, Wang Z L. Energy harvesting from breeze wind (0.7–6 m·s–1) using ultra-stretchable triboelectric nanogenerator. Advanced Energy Materials, 2020, 10(36): 2001770

[80]

Yong S, Wang J, Yang L, Wang H, Luo H, Liao R, Wang Z L. Auto-switching self-powered system for efficient broad-band wind energy harvesting based on dual-rotation shaft triboelectric nanogenerator. Advanced Energy Materials, 2021, 11(26): 2101194

[81]

Yang J, Chen J, Su Y J, Jing Q S, Li Z L, Yi F, Wen X N, Wang Z N, Wang Z L. Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition. Advanced Materials, 2015, 27(8): 1316–1326

[82]

Liu J M, Cui N Y, Gu L, Chen X B, Bai S, Zheng Y B, Hu C X, Qin Y. A three-dimensional integrated nanogenerator for effectively harvesting sound energy from the environment. Nanoscale, 2016, 8(9): 4938–4944

[83]

Gu L, Cui N Y, Liu J M, Zheng Y B, Bai S, Qin Y. Packaged triboelectric nanogenerator with high endurability for severe environments. Nanoscale, 2015, 7(43): 18049–18053

[84]

Cui N Y, Jia X F, Lin A N, Liu J M, Bai S, Zhang L, Qin Y, Yang R S, Zhou F, Li Y Q. Piezoelectric nanofiber/polymer composite membrane for noise harvesting and active acoustic wave detection. Nanoscale Advances, 2019, 1(12): 4909–4914

[85]

Xi Y, Wang J, Zi Y L, Li X G, Han C B, Cao X, Hu C G, Wang Z L. High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator. Nano Energy, 2017, 38: 101–108

[86]

Fan X, Chen J, Yang J, Bai P, Li Z L, Wang Z L. Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording. ACS Nano, 2015, 9(4): 4236–4243

[87]

Yang J, Chen J, Liu Y, Yang W Q, Su Y J, Wang Z L. Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano, 2014, 8(3): 2649–2657

[88]

Lee D M, Rubab N, Hyun I, Kang W, Kim Y J, Kang M, Choi B O, Kim S W. Ultrasound-mediated triboelectric nanogenerator for powering on-demand transient electronics. Science Advances, 2022, 8(1): eabl8423

[89]

Park J, Kang D H, Chae H, Ghosh S K, Jeong C, Park Y, Cho S, Lee Y, Kim J, Ko Y, Kim J J, Ko H. Frequency-selective acoustic and haptic smart skin for dual-mode dynamic/static human-machine interface. Science Advances, 2022, 8(12): eabj9220

[90]

Wang J, Ma L, He J, Yao Y, Zhu X, Peng L, Yang J, Li K, Qu M. Superwettable hybrid dielectric based multimodal triboelectric nanogenerator with superior durability and efficiency for biomechanical energy and hydropower harvesting. Chemical Engineering Journal, 2022, 431: 134002

[91]

Lee J H, Kim S, Kim T Y, Khan U, Kim S W. Water droplet-driven triboelectric nanogenerator with superhydrophobic surfaces. Nano Energy, 2019, 58: 579–584

[92]

Liu L, Shi Q F, Ho J S, Lee C. Study of thin film blue energy harvester based on triboelectric nanogenerator and seashore IoT applications. Nano Energy, 2019, 66: 104167

[93]

Zhong W, Xu L, Wang H M, Li D, Wang Z L. Stacked pendulum-structured triboelectric nanogenerators for effectively harvesting low-frequency water wave energy. Nano Energy, 2019, 66: 104108

[94]

Wu M, Wang Y X, Gao S J, Wang R X, Ma C X, Tang Z Y, Bao N, Wu W X, Fan F R, Wu W Z. Solution-synthesized chiral piezoelectric selenium nanowires for wearable self-powered human-integrated monitoring. Nano Energy, 2019, 56: 693–699

[95]

Nie J H, Jiang T, Shao J J, Ren Z W, Bai Y, Iwamoto M, Chen X Y, Wang Z L. Motion behavior of water droplets driven by triboelectric nanogenerator. Applied Physics Letters, 2018, 112(18): 183701

[96]

Pang Y K, Chen S E, Chu Y H, Wang Z L, Cao C Y. Matryoshka-inspired hierarchically structured triboelectric nanogenerators for wave energy harvesting. Nano Energy, 2019, 66: 104131

[97]

Jiang T, Pang H, An J, Lu P, Feng Y, Liang X, Zhong W, Wang Z L. Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Advanced Energy Materials, 2020, 10(23): 2000064

[98]

Xia K, Fu J, Xu Z. Multiple-frequency high-output triboelectric nanogenerator based on a water balloon for all-weather water wave energy harvesting. Advanced Energy Materials, 2020, 10(28): 2000426

[99]

Zhang C, Zhou L, Cheng P, Liu D, Zhang C, Li X, Li S, Wang J, Wang Z L. Bifilar-pendulum-assisted multilayer-structured triboelectric nanogenerators for wave energy harvesting. Advanced Energy Materials, 2021, 11(12): 2003616

[100]

Wu H, Mendel N, Ham S, Shui L, Zhou G, Mugele F. Charge trapping-based electricity generator (CTEG): an ultrarobust and high efficiency nanogenerator for energy harvesting from water droplets. Advanced Materials, 2020, 32(33): 2001699

[101]

Zhang D, Yang W, Gong W, Ma W, Hou C, Li Y, Zhang Q, Wang H. Abrasion resistant/waterproof stretchable triboelectric yarns based on fermat spirals. Advanced Materials, 2021, 33(26): 2100782

[102]

Cai C, Luo B, Liu Y, Fu Q, Liu T, Wang S, Nie S. Advanced triboelectric materials for liquid energy harvesting and emerging application. Materials Today, 2022, 52: 299–326

[103]

Li H, Shin K, Henkelman G. Effects of ensembles, ligand, and strain on adsorbate binding to alloy surfaces. Journal of Chemical Physics, 2018, 149(17): 174705

[104]

Li A Y, Zi Y L, Guo H Y, Wang Z L, Fernandez F M. Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry. Nature Nanotechnology, 2017, 12(5): 481–487

[105]

Li H, Guo S J, Shin K, Wong M S, Henkelman G. Design of a Pd-Au nitrite reduction catalyst by identifying and optimizing active ensembles. ACS Catalysis, 2019, 9(9): 7957–7966

[106]

Feng Y, Han J, Xu M, Liang X, Jiang T, Li H, Wang Z L. Blue energy for green hydrogen fuel: a self-powered electrochemical conversion system driven by triboelectric nanogenerators. Advanced Energy Materials, 2022, 12(1): 2103143

[107]

Liu X, Mo J, Wu W, Song H, Nie S. Triboelectric pulsed direct-current enhanced radical generation for efficient degradation of organic pollutants in wastewater. Applied Catalysis B: Environmental, 2022, 312: 121422

[108]

Wang J, Li S M, Yi F, Zi Y L, Lin J, Wang X F, Xu Y L, Wang Z L. Sustainably powering wearable electronics solely by biomechanical energy. Nature Communications, 2016, 7(1): 12744

[109]

Dong K, Peng X, Wang Z L. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Advanced Materials, 2020, 32(5): 1902549

[110]

Luo J, Gao W, Wang Z L. The triboelectric nanogenerator as an innovative technology toward intelligent sports. Advanced Materials, 2021, 33(17): 2004178

[111]

Tan P, Han X, Zou Y, Qu X, Xue J, Li T, Wang Y, Luo R, Cui X, Xi Y, Wu L, Xue B, Luo D, Fan Y, Chen X, Li Z, Wang Z L. Self-powered gesture recognition wristband enabled by machine learning for full keyboard and multicommand input. Advanced Materials, 2022, 34(21): 2200793

[112]

Zhang Z, Wang Z, Chen Y, Feng Y, Dong S, Zhou H, Wang Z L, Zhang C. Semiconductor contact-electrification-dominated tribovoltaic effect for ultrahigh power generation. Advanced Materials, 2022, 34(20): 2200146

[113]

Dong K, Peng X, Cheng R, Ning C, Jiang Y, Zhang Y, Wang Z L. Advances in high-performance autonomous energy and self-powered sensing textiles with novel 3D fabric structures. Advanced Materials, 2022, 34(21): 2109355

[114]

Wu H, He W, Shan C, Wang Z, Fu S, Tang Q, Guo H, Du Y, Liu W, Hu C. Achieving remarkable charge density via self-polarization of polar high-k material in a charge-excitation triboelectric nanogenerator. Advanced Materials, 2022, 34(13): 2109918

[115]

Pullano S A, Critello D C, Fiorillo A S. Triboelectric-induced pseudo-ICG for cardiovascular risk assessment on flexible electronics. Nano Energy, 2020, 67: 104278

[116]

Huo H N, Liu F, Luo Y X, Gu Q, Liu Y, Wang Z Z, Chen R Y, Ji L H, Lu Y J, Yao R, Cheng J. Triboelectric nanogenerators for electro-assisted cell printing. Nano Energy, 2020, 67: 104150

[117]

Lim G B. Pacemaker powered by cardiac motion. Nature Reviews. Cardiology, 2019, 16(7): 386–386

[118]

Zheng Q, Zou Y, Zhang Y L, Liu Z, Shi B J, Wang X X, Jin Y M, Ouyang H, Li Z, Wang Z L. Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Science Advances, 2016, 2(3): e1501478

[119]

Liu Z, Nie J, Miao B, Li J, Cui Y, Wang S, Zhang X, Zhao G, Deng Y, Wu Y, Li Z, Li L, Wang Z L. Self-powered intracellular drug delivery by a biomechanical energy-driven triboelectric nanogenerator. Advanced Materials, 2019, 31(12): 1807795

[120]

Jin F, Li T, Yuan T, Du L, Lai C, Wu Q, Zhao Y, Sun F, Gu L, Wang T, Feng Z Q. Physiologically self-regulated, fully implantable, battery-free system for peripheral nerve restoration. Advanced Materials, 2021, 33(48): 2104175

[121]

Song Q, Zheng C, Jia J, Zhao H, Feng Q, Zhang H, Wang L, Zhang Z, Zhang Y. A probiotic spore-based oral autonomous nanoparticles generator for cancer therapy. Advanced Materials, 2019, 31(43): 1903793

[122]

Huo Z Y, Kim Y J, Suh I Y, Lee D M, Lee J H, Du Y, Wang S, Yoon H J, Kim S W. Triboelectrification induced self-powered microbial disinfection using nanowire-enhanced localized electric field. Nature Communications, 2021, 12(1): 3693

[123]

Wu S, Dong P, Cui X, Zhang Y. The strategy of circuit design for high performance nanogenerator based self-powered heart rate monitor system. Nano Energy, 2022, 96: 107136

[124]

Yao S, Zhao X, Wang X, Huang T, Ding Y, Zhang J, Zhang Z, Wang Z L, Li L. Bioinspired electron polarization of nanozymes with a human self-generated electric field for cancer catalytic therapy. Advanced Materials, 2022, 34(15): 2109568

[125]

Jiang P, Zhang L, Guo H, Chen C, Wu C, Zhang S, Wang Z L. Signal output of triboelectric nanogenerator at oil-water-solid multiphase interfaces and its application for dual-signal chemical sensing. Advanced Materials, 2019, 31(39): 1902793

[126]

Li S, Zhao Z, Liu D, An J, Gao Y, Zhou L, Li Y, Cui S, Wang J, Wang Z L. A self-powered dual-type signal vector sensor for smart robotics and automatic vehicles. Advanced Materials, 2022, 34(14): 2110363

[127]

Zou Y, Tan P, Shi B, Ouyang H, Jiang D, Liu Z, Li H, Yu M, Wang C, Qu X, Zhao L, Fan Y, Wang Z L, Li Z. A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nature Communications, 2019, 10(1): 2695

[128]

Zhang C, Chen J, Xuan W, Huang S, You B, Li W, Sun L, Jin H, Wang X, Dong S, Luo J, Flewitt A J, Wang Z L. Conjunction of triboelectric nanogenerator with induction coils as wireless power sources and self-powered wireless sensors. Nature Communications, 2020, 11(1): 58

[129]

Hao Y, Wen J, Gao X, Nan D, Pan J, Yang Y, Chen B, Wang Z L. Self-rebound cambered triboelectric nanogenerator array for self-powered sensing in kinematic analytics. ACS Nano, 2022, 16(1): 1271–1279

[130]

Shrestha K, Sharma S, Pradhan G B, Bhatta T, Maharjan P, Rana S S, Lee S, Seonu S, Shin Y, Park J Y. A siloxene/ecoflex nanocomposite-based triboelectric nanogenerator with enhanced charge retention by MoS2/LIG for self-powered touchless sensor applications. Advanced Functional Materials, 2022, 32(27): 2113005

[131]

Wei X, Wang B, Wu Z, Wang Z L. An open-environment tactile sensing system: toward simple and efficient material identification. Advanced Materials, 2022, 34(29): 2203073

[132]

Yang Y, Zhang H L, Chen J, Jing Q S, Zhou Y S, Wen X N, Wang Z L. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano, 2013, 7(8): 7342–7351

[133]

Wang Z L. Triboelectric nanogenerator (TENG)-sparking an energy and sensor revolution. Advanced Energy Materials, 2020, 10(17): 2000137

[134]

Wu H, Wang J, Wu Z, Kang S, Wei X, Wang H, Luo H, Yang L, Liao R, Wang Z L. Multi-parameter optimized triboelectric nanogenerator based self-powered sensor network for broadband aeolian vibration online-monitoring of transmission lines. Advanced Energy Materials, 2022, 12(13): 2103654

[135]

Luo J, Wang Z, Xu L, Wang A C, Han K, Jiang T, Lai Q, Bai Y, Tang W, Fan F R, Wang Z L. Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nature Communications, 2019, 10(1): 5147

[136]

Zhou W, Du H, Kang L, Du X, Shi Y, Qiang X, Li H, Zhao J. Microstructure evolution and improved permeability of ceramic waste-based bricks. Materials, 2022, 15(3): 1130

[137]

Zhou Y S, Zhu G, Niu S M, Liu Y, Bai P S, Jing Q, Wang Z L. Nanometer resolution self-powered static and dynamic motion sensor based on micro-grated triboelectrification. Advanced Materials, 2014, 26(11): 1719–1724

[138]

Sun J, Zhang L, Li Z, Tang Q, Chen J, Huang Y, Hu C, Guo H, Peng Y, Wang Z L. A mobile and self-powered micro-flow pump based on triboelectricity driven electroosmosis. Advanced Materials, 2021, 33(34): 2102765

[139]

Jing Q S, Zhu G, Wu W Z, Bai P, Xie Y N, Han R P S, Wang Z L. Self-powered triboelectric velocity sensor for dual-mode sensing of rectified linear and rotary motions. Nano Energy, 2014, 10: 305–312

[140]

Lin Z H, Zhu G, Zhou Y S, Yang Y, Bai P, Chen J, Wang Z L. A self-powered triboelectric nanosensor for mercury ion detection. Angewandte Chemie International Edition, 2013, 52(19): 5065–5069

[141]

Zhang H L, Yang Y, Su Y J, Chen J, Hu C G, Wu Z K, Liu Y, Wong C P, Bando Y, Wang Z L. Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol. Nano Energy, 2013, 2(5): 693–701

[142]

Lin Z H, Cheng G, Wu W Z, Pradel K C, Wang Z L. Dual-mode triboelectric nanogenerator for harvesting water energy and as a self-powered ethanol nanosensor. ACS Nano, 2014, 8(6): 6440–6448

[143]

Zhang L, Bai S, Su C, Zheng Y B, Qin Y, Xu C, Wang Z L. A high-reliability kevlar fiber-ZnO nanowires hybrid nanogenerator and its application on self-powered UV detection. Advanced Functional Materials, 2015, 25(36): 5794–5798

[144]

Cheng L, Zheng Y B, Xu Q, Qin Y. A light sensitive nanogenerator for self-powered UV detection with two measuring ranges. Advanced Optical Materials, 2017, 5(1): 1600623

[145]

Zheng Y B, Cheng L, Yuan M M, Wang Z, Zhang L, Qin Y, Jing T. An electrospun nanowire-based triboelectric nanogenerator and its application in a fully self-powered UV detector. Nanoscale, 2014, 6(14): 7842–7846

[146]

Bai S, Wu W W, Qin Y, Cui N Y, Bayerl D J, Wang X D. High-performance integrated ZnO nanowire UV sensors on rigid and flexible substrates. Advanced Functional Materials, 2011, 21(23): 4464–4469

[147]

Li G D, Sun Z, Zhang D Y, Xu Q, Meng L X, Qin Y. Mechanism of sensitivity enhancement of a ZnO nanofilm gas sensor by UV light illumination. ACS Sensors, 2019, 4(6): 1577–1585

[148]

Zhu G, Yang W Q, Zhang T J, Jing Q S, Chen J, Zhou Y S, Bai P, Wang Z L. Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Letters, 2014, 14(6): 3208–3213

[149]

Hua Q L, Sun J L, Liu H T, Bao R R, Yu R M, Zhai J Y, Pan C F, Wang Z L. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nature Communications, 2018, 9(1): 244

[150]

Li X H, Lin Z H, Cheng G, Wen X N, Liu Y, Niu S M, Wang Z L. 3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor. ACS Nano, 2014, 8(10): 10674–10681

[151]

Wang L Y, Daoud W A. Hybrid conductive hydrogels for washable human motion energy harvester and self-powered temperature-stress dual sensor. Nano Energy, 2019, 66: 104080

[152]

Lai J, Ke Y, Cao Z, Xu W, Pan J, Dong Y, Zhou Q, Meng G, Pan C, Xia F. Bimetallic strip based triboelectric nanogenerator for self-powered high temperature alarm system. Nano Today, 2022, 43: 101437

[153]

Jiang T, Chen X Y, Han C B, Tang W, Wang Z L. Theoretical study of rotary freestanding triboelectric nanogenerators. Advanced Functional Materials, 2015, 25(19): 2928–2938

[154]

Xie Y N, Wang S H, Niu S M, Lin L, Jing Q S, Yang J, Wu Z Y, Wang Z L. Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency. Advanced Materials, 2014, 26(38): 6599–6607

[155]

Zi Y L, Guo H Y, Wen Z, Yeh M H, Hu C G, Wang Z L. Harvesting low-frequency (< 5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator. ACS Nano, 2016, 10(4): 4797–4805

[156]

Chen P, An J, Shu S, Cheng R, Nie J, Jiang T, Wang Z L. Super-durable, low-wear, and high-performance fur-brush triboelectric nanogenerator for wind and water energy harvesting for smart agriculture. Advanced Energy Materials, 2021, 11(9): 2003066

[157]

Wu H, Wang Z, Zi Y. Multi-mode water-tube-based triboelectric nanogenerator designed for low-frequency energy harvesting with ultrahigh volumetric charge density. Advanced Energy Materials, 2021, 11(16): 2100038

[158]

Maxwell J C. XXV. On physical lines of force: Part I.—The theory of molecular vortices applied to magnetic phenomena. London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 1861, 21(139): 161–175

[159]

Wang Z L. On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Materials Today, 2017, 20(2): 74–82

[160]

Gao P X, Ding Y, Mai W J, Hughes W L, Lao C S, Wang Z L. Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science, 2005, 309(5741): 1700–1704

[161]

Kong X Y, Ding Y, Yang R, Wang Z L. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science, 2004, 303(5662): 1348–1351

[162]

Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science, 2001, 291(5510): 1947–1949

[163]

Guo W Z, Tan C X, Shi K M, Li J W, Wang X X, Sun B, Huang X Y, Long Y Z, Jiang P K. Wireless piezoelectric devices based on electrospun PVDF/BaTiO3 NW nanocomposite fibers for human motion monitoring. Nanoscale, 2018, 10(37): 17751–17760

[164]

Shi K M, Huang X Y, Sun B, Wu Z Y, He J L, Jiang P K. Cellulose/BaTiO3 aerogel paper based flexible piezoelectric nanogenerators and the electric coupling with triboelectricity. Nano Energy, 2019, 57: 450–458

[165]

Yang R S, Qin Y, Dai L M, Wang Z L. Power generation with laterally packaged piezoelectric fine wires. Nature Nanotechnology, 2009, 4(1): 34–39

[166]

Wu W Z, Wang Z L. Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics. Nature Reviews. Materials, 2016, 1(7): 16031

[167]

Wu W Z, Wang L, Li Y L, Zhang F, Lin L, Niu S M, Chenet D, Zhang X, Hao Y F, Heinz T F, Hone J, Wang Z L. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature, 2014, 514(7523): 470–474

[168]

Li W, Torres D, Diaz R, Wang Z J, Wu C S, Wang C, Wang Z L, Sepulveda N. Nanogenerator-based dual-functional and self-powered thin patch loudspeaker or microphone for flexible electronics. Nature Communications, 2017, 8(1): 15310

[169]

Pan C F, Dong L, Zhu G, Niu S M, Yu R M, Yang Q, Liu Y, Wang Z L. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nature Photonics, 2013, 7(9): 752–758

[170]

Xu S, Hansen B J, Wang Z L. Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nature Communications, 2010, 1(1): 93

[171]

Qin Y, Wang X D, Wang Z L. Microfibre-nanowire hybrid structure for energy scavenging. Nature, 2008, 451(7180): 809–813

[172]

Matsunaga M, Hirotani J, Kishimoto S, Ohno Y. High-output, transparent, stretchable triboelectric nanogenerator based on carbon nanotube thin film toward wearable energy harvesters. Nano Energy, 2020, 67: 104297

[173]

Wu C S, Wang A C, Ding W B, Guo H Y, Wang Z L. Triboelectric nanogenerator: a foundation of the energy for the new era. Advanced Energy Materials, 2019, 9(1): 1802906

[174]

Zou H Y, Zhang Y, Guo L T, Wang P H, He X, Dai G Z, Zheng H W, Chen C Y, Wang A C, Xu C, Wang Z L. Quantifying the triboelectric series. Nature Communications, 2019, 10(1): 1427

[175]

Wang Z L. Triboelectric nanogenerators as new energy technology and self-powered sensors—principles, problems and perspectives. Faraday Discussions, 2014, 176: 447–458

[176]

Dong J, Huang S, Luo J, Zhao J, Fan F R, Tian Z Q. Supercapacitor-inspired triboelectric nanogenerator based on electrostatic double layer. Nano Energy, 2022, 95: 106971

[177]

Guo H J, Jia X T, Liu L, Cao X, Wang N, Wang Z L. Freestanding triboelectric nanogenerator enables noncontact motion-tracking and positioning. ACS Nano, 2018, 12(4): 3461–3467

[178]

Yu Y H, Li Z D, Wang Y M, Gong S Q, Wang X D. Sequential infiltration synthesis of doped polymer films with tunable electrical properties for efficient triboelectric nanogenerator development. Advanced Materials, 2015, 27(33): 4938–4944

[179]

Wang Z L, Lin L, Chen J, Niu S, Zi Y. Triboelectric nanogenerator: vertical contact-separation mode. In: Triboelectric Nanogenerators. Cham, Switzerland: Springer International Publishing, 2016, 23–47

[180]

Abu Nahian S, Cheedarala R K, Ahn K K. A study of sustainable green current generated by the fluid-based triboelectric nanogenerator (FluTENG) with a comparison of contact and sliding mode. Nano Energy, 2017, 38: 458–466

[181]

Zhang Z C, Zhang J W, Zhang H, Wang H G, Hu Z W, Xuan W P, Dong S R, Luo J K. A portable triboelectric nanogenerator for real-time respiration monitoring. Nanoscale Research Letters, 2019, 14(1): 354

[182]

Rahman M T, Salauddin M, Maharjan P, Rasel M S, Cho H, Park J Y. Natural wind-driven ultra-compact and highly efficient hybridized nanogenerator for self-sustained wireless environmental monitoring system. Nano Energy, 2019, 57: 256–268

[183]

Tang Q, Pu X J, Zeng Q X, Yang H M, Li J, Wu Y, Guo H Y, Huang Z Y, Hu C G. A strategy to promote efficiency and durability for sliding energy harvesting by designing alternating magnetic stripe arrays in triboelectric nanogenerator. Nano Energy, 2019, 66: 104087

[184]

Wang S H, Lin L, Xie Y N, Jing Q S, Niu S M, Wang Z L. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Letters, 2013, 13(5): 2226–2233

[185]

Khandelwal G, Minocha T, Yadav S K, Chandrasekhar A, Maria Joseph Raj N P, Gupta S C, Kim S J. All edible materials derived biocompatible and biodegradable triboelectric nanogenerator. Nano Energy, 2019, 65: 104016

[186]

Chen J, Guo H Y, Wu Z Y, Xu G Q, Zi Y L, Hu C G, Wang Z L. Actuation and sensor integrated self-powered cantilever system based on TENG technology. Nano Energy, 2019, 64: 103920

[187]

Paosangthong W, Wagih M, Torah R, Beeby S. Textile-based triboelectric nanogenerator with alternating positive and negative freestanding grating structure. Nano Energy, 2019, 66: 104148

[188]

Zhang D H, Shi J W, Si Y L, Li T. Multi-grating triboelectric nanogenerator for harvesting low-frequency ocean wave energy. Nano Energy, 2019, 61: 132–140

[189]

Bai Z Q, Zhang Z, Li J Y, Guo J S. Textile-based triboelectric nanogenerators with high-performance via optimized functional elastomer composited tribomaterials as wearable power source. Nano Energy, 2019, 65: 104012

[190]

Ankanahalli Shankaregowda S, Sagade Muktar Ahmed R F, Nanjegowda C B, Wang J, Guan S, Puttaswamy M, Amini A, Zhang Y, Kong D, Sannathammegowda K, Wang F, Cheng C. Single-electrode triboelectric nanogenerator based on economical graphite coated paper for harvesting waste environmental energy. Nano Energy, 2019, 66: 104141

[191]

Wu Y H, Luo Y, Qu J K, Daoud W A, Qi T. Liquid single-electrode triboelectric nanogenerator based on graphene oxide dispersion for wearable electronics. Nano Energy, 2019, 64: 103948

[192]

Niu S M, Liu Y, Chen X Y, Wang S H, Zhou Y S, Lin L, Xie Y N, Wang Z L. Theory of freestanding triboelectric-layer-based nanogenerators. Nano Energy, 2015, 12: 760–774

[193]

Shao H Y, Wen Z, Cheng P, Sun N, Shen Q Q, Zhou C J, Peng M F, Yang Y Q, Xie X K, Sun X H. Multifunctional power unit by hybridizing contact-separate triboelectric nanogenerator, electromagnetic generator and solar cell for harvesting blue energy. Nano Energy, 2017, 39: 608–615

[194]

Chen Y L, Wang Y C, Zhang Y, Zou H Y, Lin Z M, Zhang G B, Zou C W, Wang Z L. Elastic-beam triboelectric nanogenerator for high-performance multifunctional applications: sensitive scale, acceleration/force/vibration sensor, and intelligent keyboard. Advanced Energy Materials, 2018, 8(29): 1802159

[195]

Wang S H, Xie Y N, Niu S M, Lin L, Wang Z L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Advanced Materials, 2014, 26(18): 2818–2824

[196]

Wen Z, Yeh M H, Guo H Y, Wang J, Zi Y L, Xu W D, Deng J N, Zhu L, Wang X, Hu C G, Zhu L, Sun X, Wang Z L. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Science Advances, 2016, 2(10): e1600097

[197]

Pu X J, Guo H Y, Chen J, Wang X, Xi Y, Hu C G, Wang Z L. Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Science Advances, 2017, 3(7): e1700694

[198]

Liu C R, Wang Y S, Zhang N, Yang X, Wang Z K, Zhao L B, Yang W H, Dong L X, Che L F, Wang G F, Zhou X. A self-powered and high sensitivity acceleration sensor with V-Q-a model based on triboelectric nanogenerators (TENGs). Nano Energy, 2020, 67: 104228

[199]

Wang J, Zhang H L, Xie X Y, Gao M, Yang W Q, Lin Y. Water energy harvesting and self-powered visible light communication based on triboelectric nanogenerator. Energy Technology, 2018, 6(10): 1929–1934

[200]

Wu Y, Zeng Q X, Tang Q, Liu W L, Liu G L, Zhang Y, Wu J, Hu C G, Wang X. A teeterboard-like hybrid nanogenerator for efficient harvesting of low-frequency ocean wave energy. Nano Energy, 2020, 67: 104205

[201]

Liu G L, Guo H Y, Xu S X, Hu C G, Wang Z L. Oblate spheroidal triboelectric nanogenerator for all-weather blue energy harvesting. Advanced Energy Materials, 2019, 9(26): 1900801

[202]

Sun H, Sun J, Zhao K, Wang L, Wang K. Data-driven ICA-Bi-LSTM-combined lithium battery SOH estimation. Mathematical Problems in Engineering, 2022, 2022: 9645892

[203]

Li D, Li S, Zhang S, Sun J, Wang L, Wang K. Aging state prediction for supercapacitors based on heuristic Kalman filter optimization extreme learning machine. Energy, 2022, 250: 123773

[204]

Li Q, Li D, Zhao K, Wang L, Wang K. State of health estimation of lithium-ion battery based on improved ant lion optimization and support vector regression. Journal of Energy Storage, 2022, 50: 104215

[205]

Abd El-Kareem A H, Abd Elhameed M, Elkholy M M. Effective damping of local low frequency oscillations in power systems integrated with bulk PV generation. Protection and Control of Modern Power Systems, 2021, 6(1): 41

[206]

Injeti S K, Thunuguntla V K. Optimal integration of DGs into radial distribution network in the presence of plug-in electric vehicles to minimize daily active power losses and to improve the voltage profile of the system using bio-inspired optimization algorithms. Protection and Control of Modern Power Systems, 2020, 5(1): 3

[207]

Li D, Wang L, Duan C, Li Q, Wang K. Temperature prediction of lithium-ion batteries based on electrochemical impedance spectrum: a review. International Journal of Energy Research, 2022, 46(8): 10372–10388

[208]

Cui Z, Dai J, Sun J, Li D, Wang L, Wang K. Hybrid methods using neural network and kalman filter for the state of charge estimation of lithium-ion battery. Mathematical Problems in Engineering, 2022, 2022: 9616124

[209]

Liu C, Li D, Wang L, Li L, Wang K. Strong robustness and high accuracy in predicting remaining useful life of supercapacitors. APL Materials, 2022, 10(6): 061106

[210]

Bozorg M, Bracale A, Caramia P, Carpinelli G, Carpita M, De Falco P. Bayesian bootstrap quantile regression for probabilistic photovoltaic power forecasting. Protection and Control of Modern Power Systems, 2020, 5(1): 21

[211]

Guchhait P K, Banerjee A. Stability enhancement of wind energy integrated hybrid system with the help of static synchronous compensator and symbiosis organisms search algorithm. Protection and Control of Modern Power Systems, 2020, 5(1): 11

[212]

Cui Z, Wang L, Li Q, Wang K. A comprehensive review on the state of charge estimation for lithium-ion battery based on neural network. International Journal of Energy Research, 2022, 46(5): 5423–5440

[213]

Liu C, Zhang Y, Sun J, Cui Z, Wang K. Stacked bidirectional LSTM RNN to evaluate the remaining useful life of supercapacitor. International Journal of Energy Research, 2022, 46(3): 3034–3043

[214]

Yi Z, Zhao K, Sun J, Wang L, Wang K, Ma Y. Prediction of the remaining useful life of supercapacitors. Mathematical Problems in Engineering, 2022, 2022: 7620382

[215]

Zhang L, Cheng L, Bai S, Su C, Chen X B, Qin Y. Controllable fabrication of ultrafine oblique organic nanowire arrays and their application in energy harvesting. Nanoscale, 2015, 7(4): 1285–1289

[216]

Wang Y, Yang Y, Wang Z L. Triboelectric nanogenerators as flexible power sources. npj Flexible Electronics, 2017, 1(1): 10

[217]

Jin L, Zhang B B, Zhang L, Yang W Q. Nanogenerator as new energy technology for self-powered intelligent transportation system. Nano Energy, 2019, 66: 104086

[218]

Gai Y, Bai Y, Cao Y, Wang E, Xue J, Qu X, Liu Z, Luo D, Li Z. A gyroscope nanogenerator with frequency up-conversion effect for fitness and energy harvesting. Small, 2022, 18(14): 2108091

[219]

Liu D, Yin X, Guo H Y, Zhou L L, Li X Y, Zhang C L, Wang J, Wang Z L. A constant current triboelectric nanogenerator arising from electrostatic breakdown. Science Advances, 2019, 5(4): eaav6437

[220]

Liu J M, Gu L, Cui N Y, Xu Q, Qin Y, Yang R S. Fabric-based triboelectric nanogenerators. Research, 2019, 2019: 1091632

[221]

Qi J B, Wang A C, Yang W F, Zhang M Y, Hou C Y, Zhang Q H, Li Y G, Wang H Z. Hydrogel-based hierarchically wrinkled stretchable nanofibrous membrane for high performance wearable triboelectric nanogenerator. Nano Energy, 2020, 67: 104206

[222]

Chen J, Huang Y, Zhang N N, Zou H Y, Liu R Y, Tao C Y, Fan X, Wang Z L. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nature Energy, 2016, 1(10): 16138

[223]

Guo H Y, Pu X J, Chen J, Meng Y, Yeh M H, Liu G L, Tang Q, Chen B D, Liu D, Qi S, Wu C, Hu C, Wang J, Wang Z L. A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Science Robotics, 2018, 3(20): eaat2516

[224]

Zhang L, Su C, Cheng L, Cui N Y, Gu L, Qin Y, Yang R S, Zhou F. Enhancing the performance of textile triboelectric nanogenerators with oblique microrod arrays for wearable energy harvesting. ACS Applied Materials & Interfaces, 2019, 11(30): 26824–26829

[225]

Wang X X, Yu G F, Zhang J, Yu M, Ramakrishna S, Long Y Z. Conductive polymer ultrafine fibers via electrospinning: preparation, physical properties and applications. Progress in Materials Science, 2021, 115: 100704

[226]

Dudem B, Dharmasena R D I G, Riaz R, Vivekananthan V, Wijayantha K G U, Lugli P, Petti L, Silva S R P. Wearable triboelectric nanogenerator from waste materials for autonomous information transmission via morse code. ACS Applied Materials & Interfaces, 2022, 14(4): 5328–5337

[227]

Ouyang H, Liu Z, Li N, Shi B J, Zou Y, Xie F, Ma Y, Li Z, Li H, Zheng Q, Qu X, Fan Y, Wang Z L, Zhang H, Li Z. Symbiotic cardiac pacemaker. Nature Communications, 2019, 10(1): 1821

[228]

Wang W, Pang J, Su J, Li F, Li Q, Wang X, Wang J, Ibarlucea B, Liu X, Li Y, Zhou W, Wang K, Han Q, Liu L, Zang R, Rümmeli M H, Li Y, Liu H, Hu H, Cuniberti G. Applications of nanogenerators for biomedical engineering and healthcare systems. InfoMat, 2022, 4(2): e12262

[229]

Yang F, Guo J M, Zhao L, Shang W Y, Gao Y Y, Zhang S, Gu G Q, Zhang B, Cui P, Cheng G, Du Z. Tuning oxygen vacancies and improving UV sensing of ZnO nanowire by micro-plasma powered by a triboelectric nanogenerator. Nano Energy, 2020, 67: 104210

[230]

Han Q K, Ding Z, Qin Z Y, Wang T Y, Xu X P, Chu F L. A triboelectric rolling ball bearing with self-powering and self-sensing capabilities. Nano Energy, 2020, 67: 104277

[231]

Zhang D Z, Xu Z Y, Yang Z M, Song X S. High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator. Nano Energy, 2020, 67: 104251

[232]

Wen F, Wang H, He T Y Y, Shi Q F, Sun Z D, Zhu M L, Zhang Z X, Cao Z G, Dai Y B, Zhang T, Lee C. Battery-free short-range self-powered wireless sensor network (SS-WSN) using TENG based direct sensory transmission (TDST) mechanism. Nano Energy, 2020, 67: 104266

[233]

Bu C, Li F, Yin K, Pang J, Wang L, Wang K. Research progress and prospect of triboelectric nanogenerators as self-powered human body sensors. ACS Applied Electronic Materials, 2020, 2(4): 863–878

[234]

Lei W, Lu S, Wanga Q, Yuan P, Yu H. A method of measuring weak-charge of self-powered sensors based on triboelectric nanogenerator. Nano Energy, 2022, 95: 106997

[235]

Li C, Liu X, Yang D, Liu Z. Triboelectric nanogenerator based on a moving bubble in liquid for mechanical energy harvesting and water level monitoring. Nano Energy, 2022, 95: 106998

[236]

Zhao C, Liu D, Wang Y, Hu Z, Zhang Q, Zhang Z, Wang H, Du T, Zou Y, Yuan H, Pan X, Mi J, Xu M. Highly-stretchable rope-like triboelectric nanogenerator for self-powered monitoring in marine structures. Nano Energy, 2022, 94: 106926

[237]

Zhang X Q, Yu M, Ma Z R, Ouyang H, Zou Y, Zhang S L, Niu H K, Pan X X, Xu M Y, Li Z, Wang Z L. Self-powered distributed water level sensors based on liquid−solid triboelectric nanogenerators for ship draft detecting. Advanced Functional Materials, 2019, 29(41): 1900327

[238]

Xiao X, Zhang X Q, Wang S Y, Ouyang H, Chen P F, Song L G, Yuan H C, Ji Y L, Wang P H, Li Z, Xu M, Wang Z L. Honeycomb structure inspired triboelectric nanogenerator for highly effective vibration energy harvesting and self-powered engine condition monitoring. Advanced Energy Materials, 2019, 9(40): 1902460

[239]

Lee J W, Jung S, Lee T W, Jo J, Chae H Y, Choi K, Kim J J, Lee J H, Yang C, Baik J M. High-output triboelectric nanogenerator based on dual inductive and resonance effects-controlled highly transparent polyimide for self-powered sensor network systems. Advanced Energy Materials, 2019, 9(36): 1901987

[240]

Qian C C, Li L H, Gao M, Yang H Y, Cai Z R, Chen B D, Xiang Z Y, Zhang Z J, Song Y L. All-printed 3D hierarchically structured cellulose aerogel based triboelectric nanogenerator for multi-functional sensors. Nano Energy, 2019, 63: 103885

[241]

Chen C, Wen Z, Wei A M, Xie X K, Zhai N N, Wei X L, Peng M F, Liu Y N, Sun X H, Yeow J T W. Self-powered on-line ion concentration monitor in water transportation driven by triboelectric nanogenerator. Nano Energy, 2019, 62: 442–448

[242]

Ahn J H, Hwang J Y, Kim C G, Nam G H, Ahn K K. Unsteady streaming flow based teng using hydrophobic film tube with different charge affinity. Nano Energy, 2020, 67: 104269

[243]

Chen Y, Xie B, Long J, Kuang Y, Chen X, Hou M, Gao J, Zhou S, Fan B, He Y, Zhang Y T, Wong C P, Wang Z, Zhao N. Interfacial laser-induced graphene enabling high-performance liquid−solid triboelectric nanogenerator. Advanced Materials, 2021, 33(44): 2104290

[244]

Zhang Q, Li Y, Cai H, Yao M, Zhang H, Guo L, Lv Z, Li M, Lu X, Ren C, Zhang P, Zhang Y, Shi X, Ding G, Yao J, Yang Z, Wang Z L. A single-droplet electricity generator achieves an ultrahigh output over 100 V without pre-charging. Advanced Materials, 2021, 33(51): 2105761

[245]

Nie J, Ren Z, Xu L, Lin S, Zhan F, Chen X, Wang Z L. Probing contact-electrification-induced electron and ion transfers at a liquid−solid interface. Advanced Materials, 2020, 32(2): 1905696

[246]

Nie J, Wang Z, Ren Z, Li S, Chen X, Wang Z L. Power generation from the interaction of a liquid droplet and a liquid membrane. Nature Communications, 2019, 10(1): 2264

[247]

Lin S, Xu L, Chi Wang A, Wang Z L. Quantifying electron-transfer in liquid−solid contact electrification and the formation of electric double-layer. Nature Communications, 2020, 11(1): 399

[248]

Zhao X J, Kuang S Y, Wang Z L, Zhu G. Highly adaptive solid-liquid interfacing triboelectric nanogenerator for harvesting diverse water wave energy. ACS Nano, 2018, 12(5): 4280–4285

[249]

Zhang Q, Liang Q, Liao Q, Ma M, Gao F, Zhao X, Song Y, Song L, Xun X, Zhang Y. An amphiphobic hydraulic triboelectric nanogenerator for a self-cleaning and self-charging power system. Advanced Functional Materials, 2018, 28(35): 1803117

[250]

Tang W, Jiang T, Fan F R, Yu A F, Zhang C, Cao X, Wang Z L. Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Advanced Functional Materials, 2015, 25(24): 3718–3725

[251]

Zhou H, Dong J, Liu H, Zhu L, Xu C, He X, Zhang S, Song Q. The coordination of displacement and conduction currents to boost the instantaneous power output of a water-tube triboelectric nanogenerator. Nano Energy, 2022, 95: 107050

[252]

Choi D, Kim D W, Yoo D, Cha K J, La M, Kim D S. Spontaneous occurrence of liquid–solid contact electrification in nature: toward a robust triboelectric nanogenerator inspired by the natural lotus leaf. Nano Energy, 2017, 36: 250–259

[253]

Li X Y, Tao J, Wang X D, Zhu J, Pan C F, Wang Z L. Networks of high performance triboelectric nanogenerators based on liquid−solid interface contact electrification for harvesting low-frequency blue energy. Advanced Energy Materials, 2018, 8(21): 1800705

[254]

Jiang D Y, Guo F, Xu M Y, Cai J C, Cong S, Jia M, Chen G J, Song Y C. Conformal fluorine coated carbon paper for an energy harvesting water wheel. Nano Energy, 2019, 58: 842–851

[255]

Liu Y P, Zheng Y B, Li T H, Wang D A, Zhou F. Water−solid triboelectrification with self-repairable surfaces for water-flow energy harvesting. Nano Energy, 2019, 61: 454–461

[256]

Cho H, Kim I, Park J, Kim D. A waterwheel hybrid generator with disk triboelectric nanogenerator and electromagnetic generator as a power source for an electrocoagulation system. Nano Energy, 2022, 95: 107048

[257]

Xie Y N, Wang S H, Niu S M, Lin L, Jing Q S, Su Y J, Wu Z Y, Wang Z L. Multi-layered disk triboelectric nanogenerator for harvesting hydropower. Nano Energy, 2014, 6: 129–136

[258]

Chun J S, Ye B U, Lee J W, Choi D, Kang C Y, Kim S W, Wang Z L, Baik J M. Boosted output performance of triboelectric nanogenerator via electric double layer effect. Nature Communications, 2016, 7(1): 12985

[259]

Xu X, Wang Y, Li P, Xu W, Wei L, Wang Z, Yang Z. A leaf-mimic rain energy harvester by liquid−solid contact electrification and piezoelectricity. Nano Energy, 2021, 90: 106573

[260]

Cheng G, Lin Z H, Du Z L, Wang Z L. Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator. ACS Nano, 2014, 8(2): 1932–1939

[261]

Tao K, Yi H P, Yang Y, Chang H L, Wu J, Tang L H, Yang Z S, Wang N, Hu L X, Fu Y Q, Miao J, Yuan W. Origami-inspired electret-based triboelectric generator for biomechanical and ocean wave energy harvesting. Nano Energy, 2020, 67: 104197

[262]

Zhang C, Zhao Z, Yang O, Yuan W, Zhou L, Yin X, Liu L, Li Y, Wang Z L, Wang J. Bionic-fin-structured triboelectric nanogenerators for undersea energy harvesting. Advanced Materials Technologies, 2020, 5(9): 2000531

[263]

Yang H M, Wang M F, Deng M M, Guo H Y, Zhang W, Yang H K, Xi Y, Li X G, Hu C G, Wang Z L. A full-packaged rolling triboelectric−electromagnetic hybrid nanogenerator for energy harvesting and building up self-powered wireless systems. Nano Energy, 2019, 56: 300–306

[264]

Zhang B, Zhang C, Yuan W, Yang O, Liu Y, He L, Hu Y, Zhou L, Wang J, Wang Z L. Highly stable and eco-friendly marine self-charging power systems composed of conductive polymer supercapacitors with seawater as an electrolyte. ACS Applied Materials & Interfaces, 2022, 14(7): 9046–9056

[265]

Zhong W, Xu L, Yang X, Tang W, Shao J, Chen B, Wang Z L. Open-book-like triboelectric nanogenerators based on low-frequency roll-swing oscillators for wave energy harvesting. Nanoscale, 2019, 11(15): 7199–7208

[266]

Lei R, Zhai H, Nie J, Zhong W, Bai Y, Liang X, Xu L, Jiang T, Chen X, Wang Z L. Butterfly-inspired triboelectric nanogenerators with spring-assisted linkage structure for water wave energy harvesting. Advanced Materials Technologies, 2019, 4(3): 1800514

[267]

Tan D, Zeng Q, Wang X, Yuan S, Luo Y, Zhang X, Tan L, Hu C, Liu G. Anti-overturning fully symmetrical triboelectric nanogenerator based on an elliptic cylindrical structure for all-weather blue energy harvesting. Nano-Micro Letters, 2022, 14(1): 124

[268]

Liu L, Yang X, Zhao L, Hong H, Cui H, Duan J, Yang Q, Tang Q. Nodding duck structure multi-track directional freestanding triboelectric nanogenerator toward low-frequency ocean wave energy harvesting. ACS Nano, 2021, 15(6): 9412–9421

[269]

Chen J, Yang J, Li Z L, Fan X, Zi Y L, Jing Q S, Guo H Y, Wen Z, Pradel K C, Niu S M, Wang Z L. Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy. ACS Nano, 2015, 9(3): 3324–3331

[270]

Wang X F, Niu S M, Yin Y J, Yi F, You Z, Wang Z L. Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy. Advanced Energy Materials, 2015, 5(24): 1501467

[271]

Cheng P, Guo H Y, Wen Z, Zhang C L, Yin X, Li X Y, Liu D, Song W X, Sun X H, Wang J, Wang Z L. Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure. Nano Energy, 2019, 57: 432–439

[272]

Xu L, Jiang T, Lin P, Shao J J, He C, Zhong W, Chen X Y, Wang Z L. Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting. ACS Nano, 2018, 12(2): 1849–1858

[273]

Wu C S, Liu R Y, Wang J, Zi Y L, Lin L, Wang Z L. A spring-based resonance coupling for hugely enhancing the performance of triboelectric nanogenerators for harvesting low-frequency vibration energy. Nano Energy, 2017, 32: 287–293

[274]

Jiang T, Yao Y Y, Xu L, Zhang L M, Xiao T X, Wang Z L. Spring-assisted triboelectric nanogenerator for efficiently harvesting water wave energy. Nano Energy, 2017, 31: 560–567

[275]

Zhou T, Zhang L M, Xue F, Tang W, Zhang C, Wang Z L. Multilayered electret films based triboelectric nanogenerator. Nano Research, 2016, 9(5): 1442–1451

[276]

Zhang L M, Han C B, Jiang T, Zhou T, Li X H, Zhang C, Wang Z L. Multilayer wavy-structured robust triboelectric nanogenerator for harvesting water wave energy. Nano Energy, 2016, 22: 87–94

[277]

Tantraviwat D, Buarin P, Suntalelat S, Sripumkhai W, Pattamang P, Rujijanagul G, Inceesungvorn B. Highly dispersed porous polydimethylsiloxane for boosting power-generating performance of triboelectric nanogenerators. Nano Energy, 2020, 67: 104214

[278]

Liu W, Wang Z, Wang G, Liu G, Chen J, Pu X, Xi Y, Wang X, Guo H, Hu C, Wang Z L. Integrated charge excitation triboelectric nanogenerator. Nature Communications, 2019, 10(1): 1426

[279]

Wang J, Wu C S, Dai Y J, Zhao Z H, Wang A, Zhang T J, Wang Z L. Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nature Communications, 2017, 8(1): 88

[280]

Ma M Y, Liao Q L, Zhang G J, Zhang Z, Liang Q J, Zhang Y. Self-recovering triboelectric nanogenerator as active multifunctional sensors. Advanced Functional Materials, 2015, 25(41): 6489–6494

[281]

Xu L, Pang Y K, Zhang C, Jiang T, Chen X Y, Luo J J, Tang W, Cao X, Wang Z L. Integrated triboelectric nanogenerator array based on air-driven membrane structures for water wave energy harvesting. Nano Energy, 2017, 31: 351–358

[282]

Xu Z, Bao K, Di K, Chen H, Tan J, Xie X, Shao Y, Cai J, Lin S, Cheng T, e S, Liu K, Wang Z L. High-performance dielectric elastomer nanogenerator for efficient energy harvesting and sensing via alternative current method. Advanced Science, 2022, 9(18): 2201098

[283]

Li H Y, Su L, Kuang S Y, Pan C F, Zhu G, Wang Z L. Significant enhancement of triboelectric charge density by fluorinated surface modification in nanoscale for converting mechanical energy. Advanced Functional Materials, 2015, 25(35): 5691–5697

[284]

Xu M Y, Zhao T C, Wang C, Zhang S L, Li Z, Pan X X, Wang Z L. High power density tower-like triboelectric nanogenerator for harvesting arbitrary directional water wave energy. ACS Nano, 2019, 13(2): 1932–1939

[285]

Zhao L M, Zheng Q, Ouyang H, Li H, Yan L, Shi B J, Li Z. A size-unlimited surface microstructure modification method for achieving high performance triboelectric nanogenerator. Nano Energy, 2016, 28: 172–178

[286]

Wang Y, Liu X, Wang Y, Wang H, Wang H, Zhang S L, Zhao T, Xu M, Wang Z L. Flexible seaweed-like triboelectric nanogenerator as a wave energy harvester powering marine internet of things. ACS Nano, 2021, 15(10): 15700–15709

[287]

Zhang C, He L, Zhou L, Yang O, Yuan W, Wei X, Liu Y, Lu L, Wang J, Wang Z L. Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy. Joule, 2021, 5(6): 1613–1623

[288]

Ryu H, Yoon H J, Kim S W. Hybrid energy harvesters: toward sustainable energy harvesting. Advanced Materials, 2019, 31(34): 1802898

[289]

Ma Z, Ai J, Shi Y, Wang K, Su B. A superhydrophobic droplet-based magnetoelectric hybrid system to generate electricity and collect water simultaneously. Advanced Materials, 2020, 32(50): 2006839

[290]

Liu S, Liu X, Zhou G, Qin F, Jing M, Li L, Song W, Sun Z. A high-efficiency bioinspired photoelectric-electromechanical integrated nanogenerator. Nature Communications, 2020, 11(1): 6158

[291]

Zhang C, Yuan W, Zhang B, Yang O, Liu Y, He L, Wang J, Wang Z L. High space efficiency hybrid nanogenerators for effective water wave energy harvesting. Advanced Functional Materials, 2022, 32(18): 2111775

[292]

Wang H Y, Zhu Q Y, Ding Z Y, Li Z L, Zheng H W, Fu J J, Diao C L, Zhang X A, Tian J J, Zi Y L. A fully-packaged ship-shaped hybrid nanogenerator for blue energy harvesting toward seawater self-desalination and self-powered positioning. Nano Energy, 2019, 57: 616–624

[293]

Zhang Q, Liang Q J, Liao Q L, Yi F, Zheng X, Ma M Y, Gao F F, Zhang Y. Service behavior of multifunctional triboelectric nanogenerators. Advanced Materials, 2017, 29(17): 1606703

[294]

Feng L, Liu G L, Guo H Y, Tang Q, Pu X J, Chen J, Wang X, Xi Y, Hu C G. Hybridized nanogenerator based on honeycomb-like three electrodes for efficient ocean wave energy harvesting. Nano Energy, 2018, 47: 217–223

[295]

Liang X, Jiang T, Liu G X, Xiao T X, Xu L, Li W, Xi F B, Zhang C, Wang Z L. Triboelectric nanogenerator networks integrated with power management module for water wave energy harvesting. Advanced Functional Materials, 2019, 29(41): 1807241

[296]

Wen Z, Chen J, Yeh M H, Guo H Y, Li Z L, Fan X, Zhang T J, Zhu L P, Wang Z L. Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer. Nano Energy, 2015, 16: 38–46

[297]

Li S M, Wang S H, Zi Y L, Wen Z, Lin L, Zhang G, Wang Z L. Largely improving the robustness and lifetime of triboelectric nanogenerators through automatic transition between contact and noncontact working states. ACS Nano, 2015, 9(7): 7479–7487

[298]

Zheng F, Sun Y, Wei X, Chen J, Yuan Z, Jin X, Tao L, Wu Z. A hybridized water wave energy harvester with a swing magnetic structure toward intelligent fishing ground. Nano Energy, 2021, 90: 106631

[299]

Xia K Q, Tang H C, Fu J M, Tian Y, Xu Z W, Lu J G, Zhu Z Y. A high strength triboelectric nanogenerator based on rigid-flexible coupling design for energy storage system. Nano Energy, 2020, 67: 104259

[300]

Yang Z, Yang Y, Wang H, Liu F, Lu Y, Ji L, Wang Z L, Cheng J. Charge pumping for sliding-mode triboelectric nanogenerator with voltage stabilization and boosted current. Advanced Energy Materials, 2021, 11(28): 2101147

[301]

Zhuang P, Sun Y, Li L, Chee M O L, Dong P, Pei L, Chu H, Sun Z, Shen J, Ye M, Ajayan P M. FIB-patterned nano-supercapacitors: minimized size with ultrahigh performances. Advanced Materials, 2020, 32(14): 1908072

[302]

Cheng L, Xu Q, Zheng Y, Jia X, Qin Y. A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed. Nature Communications, 2018, 9(1): 3773

[303]

He W, Liu W, Chen J, Wang Z, Liu Y, Pu X, Yang H, Tang Q, Yang H, Guo H, Hu C. Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect. Nature Communications, 2020, 11(1): 4277

[304]

Feng X, Zhang Y, Kang L, Wang L, Duan C, Yin K, Pang J, Wang K. Integrated energy storage system based on triboelectric nanogenerator in electronic devices. Frontiers of Chemical Science and Engineering, 2021, 15(2): 238–250

[305]

Wang K, Pang J, Li L, Zhou S, Li Y, Zhang T. Synthesis of hydrophobic carbon nanotubes/reduced graphene oxide composite films by flash light irradiation. Frontiers of Chemical Science and Engineering, 2018, 12(3): 376–382

[306]

Zhang M, Liu Y, Li D, Cui X, Wang L, Li L, Wang K. Electrochemical impedance spectroscopy: a new chapter in the fast and accurate estimation of the state of health for lithium-ion batteries. Energies, 2023, 16: 1599

[307]

Xia G, Huang Y, Li F, Wang L, Pang J, Li L, Wang K. A thermally flexible and multi-site tactile sensor for remote 3D dynamic sensing imaging. Frontiers of Chemical Science and Engineering, 2020, 14(6): 1039–1051

[308]

Zhang M, Wang W, Xia G, Wang L, Wang K. Self-powered electronic skin for remote human–machine synchronization. ACS Applied Electronic Materials, 2023, 5(1): 498–508

[309]

Feng D, Du H, Ran H, Lu T, Xia S, Xu L, Wang Z, Ma C. Antiferroelectric stability and energy storage properties of Co-doped AgNbO3 ceramics. Journal of Solid State Chemistry, 2022, 310: 123081

[310]

Li X, Su J, Li Z, Zhao Z, Zhang F, Zhang L, Ye W, Li Q, Wang K, Wang X, Li H, Hu H, Yan S, Miao G X, Li Q. Revealing interfacial space charge storage of Li+/Na+/K+ by operando magnetometry. Science Bulletin, 2022, 67(11): 1145–1153

[311]

Fu Y, Wang H, Tian G, Li Z, Hu H. Two-agent stochastic flow shop deteriorating scheduling via a hybrid multi-objective evolutionary algorithm. Journal of Intelligent Manufacturing, 2019, 30(5): 2257–2272

[312]

Sun H, Yang D, Wang L, Wang K. A method for estimating the aging state of lithium-ion batteries based on a multi-linear integrated model. International Journal of Energy Research, 2022, 46(15): 24091–24104

[313]

Li D, Yang D, Li L, Wang L, Wang K. Electrochemical impedance spectroscopy based on the state of health estimation for lithium-ion batteries. Energies, 2022, 15(18): 6665

[314]

Cheng J, Ding W B, Zi Y L, Lu Y J, Ji L H, Liu F, Wu C S, Wang Z L. Triboelectric microplasma powered by mechanical stimuli. Nature Communications, 2018, 9(1): 3733

[315]

Kim J, Cho H, Han M, Jung Y, Kwak S S, Yoon H J, Park B, Kim H, Kim H, Park J, Kim S W. Ultrahigh power output from triboelectric nanogenerator based on serrated electrode via spark discharge. Advanced Energy Materials, 2020, 10(44): 2002312

[316]

Zhou L, Liu D, Zhao Z, Li S, Liu Y, Liu L, Gao Y, Wang Z L, Wang J. Simultaneously enhancing power density and durability of sliding-mode triboelectric nanogenerator via interface liquid lubrication. Advanced Energy Materials, 2020, 10(45): 2002920

[317]

Xia X, Fu J, Zi Y. A universal standardized method for output capability assessment of nanogenerators. Nature Communications, 2019, 10(1): 4428

[318]

Wang H, Xu L, Bai Y, Wang Z L. Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling. Nature Communications, 2020, 11(1): 4203

[319]

Zhao Z, Dai Y, Liu D, Zhou L, Li S, Wang Z L, Wang J. Rationally patterned electrode of direct-current triboelectric nanogenerators for ultrahigh effective surface charge density. Nature Communications, 2020, 11(1): 6186

[320]

Cui Z, Kang L, Li L, Wang L, Wang K. A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF. Energy, 2022, 259: 124933

[321]

Liang X Q, Qi R J, Zhao M, Zhang Z L, Liu M Y, Pu X, Wang Z L, Lu X M. Ultrafast lithium-ion capacitors for efficient storage of energy generated by triboelectric nanogenerators. Energy Storage Materials, 2020, 24: 297–303

[322]

Chen J, Guo H Y, Pu X J, Wang X, Xi Y, Hu C G. Traditional weaving craft for one-piece self-charging power textile for wearable electronics. Nano Energy, 2018, 50: 536–543

[323]

Hinchet R, Yoon H J, Ryu H, Kim M K, Choi E K, Kim D S, Kim S W. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science, 2019, 365(6452): 491–494

[324]

Sun H, Zhang Y, Zhang J, Sun X M, Peng H S. Energy harvesting and storage in 1D devices. Nature Reviews. Materials, 2017, 2(6): 17023

[325]

Liang X, Jiang T, Feng Y, Lu P, An J, Wang Z L. Triboelectric nanogenerator network integrated with charge excitation circuit for effective water wave energy harvesting. Advanced Energy Materials, 2020, 10(40): 2002123

[326]

Guo Y, Yu P, Zhu C, Zhao K, Wang L, Wang K. A state-of-health estimation method considering capacity recovery of lithium batteries. International Journal of Energy Research, 2022, 46(15): 23730–23745

[327]

Zi Y L, Wang J, Wang S H, Li S M, Wen Z, Guo H Y, Wang Z L. Effective energy storage from a triboelectric nanogenerator. Nature Communications, 2016, 7(1): 10987

[328]

Pomerantseva E, Bonaccorso F, Feng X L, Cui Y, Gogotsi Y. Energy storage: the future enabled by nanomaterials. Science, 2019, 366(6468): 969–681

[329]

Li X, Yin X, Zhao Z, Zhou L, Liu D, Zhang C, Zhang C, Zhang W, Li S, Wang J, Wang Z L. Long-lifetime triboelectric nanogenerator operated in conjunction modes and low crest factor. Advanced Energy Materials, 2020, 10(7): 1903024

[330]

Wu H, Wang S, Wang Z, Zi Y. Achieving ultrahigh instantaneous power density of 10 MW·m–2 by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG). Nature Communications, 2021, 12(1): 5470

[331]

Liu W, Wang Z, Wang G, Zeng Q, He W, Liu L, Wang X, Xi Y, Guo H, Hu C, Wang Z L. Switched-capacitor-convertors based on fractal design for output power management of triboelectric nanogenerator. Nature Communications, 2020, 11(1): 1883

[332]

Cui Z, Kang L, Li L, Wang L, Wang K. A hybrid neural network model with improved input for state of charge estimation of lithium-ion battery at low temperatures. Renewable Energy, 2022, 98: 1328–1340

[333]

Lin Z M, Zhang B B, Guo H Y, Wu Z Y, Zou H Y, Yang J, Wang Z L. Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy. Nano Energy, 2019, 64: 103908

[334]

Peng F, Liu D, Zhao W, Zheng G Q, Ji Y X, Dai K, Mi L W, Zhang D B, Liu C T, Shen C Y. Facile fabrication of triboelectric nanogenerator based on low-cost thermoplastic polymeric fabrics for large-area energy harvesting and self-powered sensing. Nano Energy, 2019, 65: 104068

[335]

Yang X D, Xu L, Lin P, Zhong W, Bai Y, Luo J J, Chen J, Wang Z L. Macroscopic self-assembly network of encapsulated high-performance triboelectric nanogenerators for water wave energy harvesting. Nano Energy, 2019, 60: 404–412

[336]

Jiang Q, Wu C S, Wang Z J, Wang A C, He J H, Wang Z L, Alshareef H N. Mxene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit. Nano Energy, 2018, 45: 266–272

[337]

Zhao K, Yang Y, Liu X, Wang Z L. Triboelectrification-enabled self-charging lithium-ion batteries. Advanced Energy Materials, 2017, 7(21): 1700103

[338]

Hou H D, Xu Q K, Pang Y K, Li L, Wang J L, Zhang C, Sun C W. Efficient storing energy harvested by triboelectric nanogenerators using a safe and durable all-solid-state sodium-ion battery. Advanced Science, 2017, 4(8): 1700072

[339]

Qin H F, Cheng G, Zi Y L, Gu G Q, Zhang B, Shang W Y, Yang F, Yang J J, Du Z L, Wang Z L. High energy storage efficiency triboelectric nanogenerators with unidirectional switches and passive power management circuits. Advanced Functional Materials, 2018, 28(51): 1805216

[340]

Yang J J, Yang F, Zhao L, Shang W Y, Qin H F, Wang S J, Jiang X H, Cheng G, Du Z L. Managing and optimizing the output performances of a triboelectric nanogenerator by a self-powered electrostatic vibrator switch. Nano Energy, 2018, 46: 220–228

[341]

Ahmed A, Hassan I, Ibn-Mohammed T, Mostafa H, Reaney I M, Koh L S C, Zu J, Wang Z L. Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators. Energy & Environmental Science, 2017, 10(3): 653–671

[342]

Peng J, Kang S D, Snyder G J. Optimization principles and the figure of merit for triboelectric generators. Science Advances, 2017, 3(12): eaap8576

[343]

Zi Y L, Niu S M, Wang J, Wen Z, Tang W, Wang Z L. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nature Communications, 2015, 6(1): 8376

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (17707KB)

3757

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/