Triboelectric nanogenerators: the beginning of blue dream
Wanli Wang, Dongfang Yang, Xiaoran Yan, Licheng Wang, Han Hu, Kai Wang
Triboelectric nanogenerators: the beginning of blue dream
Wave energy is inexhaustible renewable energy. Making full use of the huge ocean wave energy resources is the dream of mankind for hundreds of years. Nowadays, the utilization of water wave energy is mainly absorbed and transformed by electromagnetic generators (EMGs) in the form of mechanical energy. However, waves usually have low frequency and uncertainty, which means low power generation efficiency for EMGs. Fortunately, in this slow current and random direction wave case, the triboelectric nanogenerator (TENG) has a relatively stable output power, which is suitable for collecting blue energy. This article summarizes the main research results of TENG in harvesting blue energy. Firstly, based on Maxwell’s displacement current, the basic principle of the nanogenerator is expounded. Then, four working modes and three applications of TENG are introduced, especially the application of TENG in blue energy. TENG currently used in blue energy harvesting is divided into four categories and discussed in detail. After TENG harvests water wave energy, it is meaningless if it cannot be used. Therefore, the modular storage of TENG energy is discussed. The output power of a single TENG unit is relatively low, which cannot meet the demand for high power. Thus, the networking strategy of large-scale TENG is further introduced. TENG’s energy comes from water waves, and each TENG’s output has great randomness, which is very unfavorable for the energy storage after large-scale TENG integration. On this basis, this paper discusses the power management methods of TENG. In addition, in order to further prove its economic and environmental advantages, the economic benefits of TENG are also evaluated. Finally, the development potential of TENG in the field of blue energy and some problems that need to be solved urgently are briefly summarized.
blue energy / triboelectric nanogenerator / water wave energy / networking strategy / micro/nano-energy / self-powered devices
[1] |
Minh N Q, Shirley Meng Y. Future energy, fuel cells, and solid-oxide fuel-cell technology. MRS Bulletin, 2019, 44(9): 682–683
CrossRef
Google scholar
|
[2] |
Wang Z L, Jiang T, Xu L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy, 2017, 39: 9–23
CrossRef
Google scholar
|
[3] |
Erdiwansyah H, Mahidin M. A critical review of the integration of renewable energy sources with various technologies. Protection and Control of Modern Power Systems, 2021, 6(1): 3
CrossRef
Google scholar
|
[4] |
Wang Z L. New wave power. Nature, 2017, 542(7640): 159–160
CrossRef
Google scholar
|
[5] |
Feng Y, Liang X, An J, Jiang T, Wang Z L. Soft-contact cylindrical triboelectric-electromagnetic hybrid nanogenerator based on swing structure for ultra-low frequency water wave energy harvesting. Nano Energy, 2021, 81: 105625
CrossRef
Google scholar
|
[6] |
Gao Q, Xu Y, Yu X, Jing Z, Cheng T, Wang Z L. Gyroscope-structured triboelectric nanogenerator for harvesting multidirectional ocean wave energy. ACS Nano, 2022, 16(4): 6781–6788
CrossRef
Google scholar
|
[7] |
Kim J S, Kim J, Kim J N, Ahn J, Jeong J H, Park I, Kim D, Oh I K. Collectively exhaustive hybrid triboelectric nanogenerator based on flow-induced impacting-sliding cylinder for ocean energy harvesting. Advanced Energy Materials, 2022, 12(3): 2103076
CrossRef
Google scholar
|
[8] |
Li W, Wan L, Lin Y, Liu G, Qu H, Wen H, Ding J, Ning H, Yao H. Synchronous nanogenerator with intermittent sliding friction self-excitation for water wave energy harvesting. Nano Energy, 2022, 95: 106994
CrossRef
Google scholar
|
[9] |
Ren Z, Liang X, Liu D, Li X, Ping J, Wang Z, Wang Z L. Water-wave driven route avoidance warning system for wireless ocean navigation. Advanced Energy Materials, 2021, 11(31): 2101116
CrossRef
Google scholar
|
[10] |
Xu Y, Yang W, Lu X, Yang Y, Li J, Wen J, Cheng T, Wang Z L. Triboelectric nanogenerator for ocean wave graded energy harvesting and condition monitoring. ACS Nano, 2021, 15(10): 16368–16375
CrossRef
Google scholar
|
[11] |
Zhao T, Xu M, Xiao X, Ma Y, Li Z, Wang Z L. Recent progress in blue energy harvesting for powering distributed sensors in ocean. Nano Energy, 2021, 88: 106199
CrossRef
Google scholar
|
[12] |
Chang A, Uy C, Xiao X, Chen J. Self-powered environmental monitoring via a triboelectric nanogenerator. Nano Energy, 2022, 98: 107282
CrossRef
Google scholar
|
[13] |
Noman M, Li G, Wang K, Han B. Electrical control strategy for an ocean energy conversion system. Protection and Control of Modern Power Systems, 2021, 6(1): 12
CrossRef
Google scholar
|
[14] |
Jiang T, Zhang L M, Chen X Y, Han C B, Tang W, Zhang C, Xu L, Wang Z L. Structural optimization of triboelectric nanogenerator for harvesting water wave energy. ACS Nano, 2015, 9(12): 12562–12572
CrossRef
Google scholar
|
[15] |
Yuan Z, Wang C, Xi J, Han X, Li J, Han S T, Gao W, Pan C. Spherical triboelectric nanogenerator with dense point contacts for harvesting multidirectional water wave and vibration energy. ACS Energy Letters, 2021, 6(8): 2809–2816
CrossRef
Google scholar
|
[16] |
Zhang Q, Liang Q, Nandakumar D K, Qu H, Shi Q, Alzakia F I, Tay D J J, Yang L, Zhang X, Suresh L, Lee C, Wee A T S, Tan S C. Shadow enhanced self-charging power system for wave and solar energy harvesting from the ocean. Nature Communications, 2021, 12(1): 616
CrossRef
Google scholar
|
[17] |
Zhao B, Li Z, Liao X, Qiao L, Li Y, Dong S, Zhang Z, Zhang B. A heaving point absorber-based ocean wave energy convertor hybridizing a multilayered soft-brush cylindrical triboelectric generator and an electromagnetic generator. Nano Energy, 2021, 89: 106381
CrossRef
Google scholar
|
[18] |
Qu Z, Huang M, Chen C, An Y, Liu H, Zhang Q, Wang X, Liu Y, Yin W, Li X. Spherical triboelectric nanogenerator based on eccentric structure for omnidirectional low frequency water wave energy harvesting. Advanced Functional Materials, 2022, 32(29): 2202048
CrossRef
Google scholar
|
[19] |
Salter S H. Wave power. Nature, 1974, 249(5459): 720–724
CrossRef
Google scholar
|
[20] |
Falcão A. Wave energy utilization: a review of the technologies. Renewable & Sustainable Energy Reviews, 2010, 14(3): 899–918
CrossRef
Google scholar
|
[21] |
Liu S H, Wang L F, Feng X L, Wang Z, Xu Q, Bai S, Qin Y, Wang Z L. Ultrasensitive 2D ZnO piezotronic transistor array for high resolution tactile imaging. Advanced Materials, 2017, 29(16): 1606346
CrossRef
Google scholar
|
[22] |
Cui X, Xu Q, Ni X, Zhang Y, Qin Y. Atomic-thick 2D MoS2/insulator interjection structures for enhancing nanogenerator output. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2018, 6(4): 899–906
CrossRef
Google scholar
|
[23] |
Hu C X, Cheng L, Wang Z, Zheng Y B, Bai S, Qin Y. A transparent antipeep piezoelectric nanogenerator to harvest tapping energy on screen. Small, 2016, 12(10): 1315–1321
CrossRef
Google scholar
|
[24] |
Tian G, Deng W L, Gao Y Y, Xiong D, Yan C, He X B, Yang T, Jin L, Chu X, Zhang H T, Yan W, Yang W. Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training. Nano Energy, 2019, 59: 574–581
CrossRef
Google scholar
|
[25] |
Xu Q, Qin Y. Theoretical study of enhancing the piezoelectric nanogenerator’s output power by optimizing the external force’s shape. APL Materials, 2017, 5(7): 074101
CrossRef
Google scholar
|
[26] |
Deng W, Zhou Y, Libanori A, Chen G, Yang W, Chen J. Piezoelectric nanogenerators for personalized healthcare. Chemical Society Reviews, 2022, 51(9): 3380–3435
CrossRef
Google scholar
|
[27] |
Shaukat R A, Saqib Q M, Kim J, Song H, Khan M U, Chougale M Y, Bae J, Choi M J. Ultra-robust tribo- and piezo-electric nanogenerator based on metal organic frameworks (MOF-5) with high environmental stability. Nano Energy, 2022, 96: 107128
CrossRef
Google scholar
|
[28] |
Zhou Y X, Lin Y T, Huang S M, Chen G T, Chen S W, Wu H S, Ni I C, Pan W P, Tsai M L, Wu C I, Yang P K. Tungsten disulfide nanosheets for piezoelectric nanogenerator and human-machine interface applications. Nano Energy, 2022, 97: 107172
CrossRef
Google scholar
|
[29] |
Yu Z, Zhang Y, Wang Y, Zheng J, Fu Y, Chen D, Wang G, Cui J, Yu S, Zheng L, Zhou H, Li D. Integrated piezo-tribo hybrid acoustic-driven nanogenerator based on porous MWCNTs/PVDF-TrFE aerogel bulk with embedded pdms tympanum structure for broadband sound energy harvesting. Nano Energy, 2022, 97: 107205
CrossRef
Google scholar
|
[30] |
Chen C, Zhao S, Pan C, Zi Y, Wang F, Yang C, Wang Z L. A method for quantitatively separating the piezoelectric component from the as-received “piezoelectric” signal. Nature Communications, 2022, 13(1): 1391
CrossRef
Google scholar
|
[31] |
Jiang F, Zhou X, Lv J, Chen J, Chen J, Kongcharoen H, Zhang Y, Lee P S. Stretchable, breathable, and stable lead-free perovskite/polymer nanofiber composite for hybrid triboelectric and piezoelectric energy harvesting. Advanced Materials, 2022, 34(17): 2200042
CrossRef
Google scholar
|
[32] |
Wang C, Lai S K, Wang Z C, Wang J M, Yang W Q, Ni Y Q. A low-frequency, broadband and tri-hybrid energy harvester with septuple-stable nonlinearity-enhanced mechanical frequency up-conversion mechanism for powering portable electronics. Nano Energy, 2019, 64: 103943
CrossRef
Google scholar
|
[33] |
Xi Y, Guo H Y, Zi Y L, Li X G, Wang J, Deng J N, Li S M, Hu C G, Cao X, Wang Z L. Multifunctional TENG for blue energy scavenging and self-powered wind-speed sensor. Advanced Energy Materials, 2017, 7(12): 1602397
CrossRef
Google scholar
|
[34] |
Zhou L, Liu D, Li S, Zhao Z, Zhang C, Yin X, Liu L, Cui S, Wang Z L, Wang J. Rationally designed dual-mode triboelectric nanogenerator for harvesting mechanical energy by both electrostatic induction and dielectric breakdown effects. Advanced Energy Materials, 2020, 10(24): 2000965
CrossRef
Google scholar
|
[35] |
Zhao Z, Zhou L, Li S, Liu D, Li Y, Gao Y, Liu Y, Dai Y, Wang J, Wang Z L. Selection rules of triboelectric materials for direct-current triboelectric nanogenerator. Nature Communications, 2021, 12(1): 4686
CrossRef
Google scholar
|
[36] |
Feng X, Li Q, Wang K. Waste plastic triboelectric nanogenerators using recycled plastic bags for power generation. ACS Applied Materials & Interfaces, 2021, 13(1): 400–410
CrossRef
Google scholar
|
[37] |
Cheng G, Lin Z H, Du Z L, Wang Z L. Increase output energy and operation frequency of a triboelectric nanogenerator by two grounded electrodes approach. Advanced Functional Materials, 2014, 24(19): 2892–2898
CrossRef
Google scholar
|
[38] |
Lingam D, Parikh A R, Huang J, Jain A, Minary-Jolandan M. Nano/microscale pyroelectric energy harvesting: challenges and opportunities. International Journal of Smart and Nano Materials, 2013, 4(4): 229–245
CrossRef
Google scholar
|
[39] |
Bowen C R, Taylor J, LeBoulbar E, Zabek D, Chauhan A, Vaish R. Pyroelectric materials and devices for energy harvesting applications. Energy & Environmental Science, 2014, 7(12): 3836–3856
CrossRef
Google scholar
|
[40] |
Wang Z N, Yu R M, Pan C F, Li Z L, Yang J, Yi F, Wang Z L. Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing. Nature Communications, 2015, 6(1): 8401
CrossRef
Google scholar
|
[41] |
Askari H, Xu N, Groenner Barbosa B H, Huang Y, Chen L, Khajepour A, Chen H, Wang Z L. Intelligent systems using triboelectric, piezoelectric, and pyroelectric nanogenerators. Materials Today, 2022, 52: 188–206
CrossRef
Google scholar
|
[42] |
Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312(5771): 242–246
CrossRef
Google scholar
|
[43] |
Wang X D, Song J H, Liu J, Wang Z L. Direct-current nanogenerator driven by ultrasonic waves. Science, 2007, 316(5821): 102–105
CrossRef
Google scholar
|
[44] |
Xu S, Qin Y, Xu C, Wei Y G, Yang R S, Wang Z L. Self-powered nanowire devices. Nature Nanotechnology, 2010, 5(5): 366–373
CrossRef
Google scholar
|
[45] |
Xiao L, Wu S Y, Yang S L. Parametric study on the thermoelectric conversion performance of a concentrated solar-driven thermionic-thermoelectric hybrid generator. International Journal of Energy Research, 2018, 42(2): 656–672
CrossRef
Google scholar
|
[46] |
Yuan M M, Cheng L, Xu Q, Wu W W, Bai S, Gu L, Wang Z, Lu J, Li H P, Qin Y, Jing T, Wang Z L. Biocompatible nanogenerators through high piezoelectric coefficient 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 nanowires for in-vivo applications. Advanced Materials, 2014, 26(44): 7432–7437
CrossRef
Google scholar
|
[47] |
Huang X Y, Sun B, Zhu Y K, Li S T, Jiang P K. High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Progress in Materials Science, 2019, 100: 187–225
CrossRef
Google scholar
|
[48] |
FanF RTianZ QWangZ L. Flexible triboelectric generator! Nano Energy, 2012, 1(12): 328–334
|
[49] |
Wang Z L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano, 2013, 7(11): 9533–9557
CrossRef
Google scholar
|
[50] |
Yang L, Wu S Q, Lin B J, Huang T X, Chen X P, Yan X M, Han S F. A targetable nanogenerator of nitric oxide for light-triggered cytotoxicity. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2013, 1(44): 6115–6122
CrossRef
Google scholar
|
[51] |
Zhu G, Bai P, Chen J, Wang Z L. Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics. Nano Energy, 2013, 2(5): 688–692
CrossRef
Google scholar
|
[52] |
Shao Y, Luo C, Deng B W, Yin B, Yang M B. Flexible porous silicone rubber-nanofiber nanocomposites generated by supercritical carbon dioxide foaming for harvesting mechanical energy. Nano Energy, 2020, 67: 104290
CrossRef
Google scholar
|
[53] |
Yan C, Gao Y Y, Zhao S L, Zhang S L, Zhou Y H, Deng W L, Li Z W, Jiang G, Jin L, Tian G, Yang T, Chu X, Xiong D, Wang Z, Li Y, Yang W, Chen J. A linear-to-rotary hybrid nanogenerator for high-performance wearable biomechanical energy harvesting. Nano Energy, 2020, 67: 104235
CrossRef
Google scholar
|
[54] |
Jing Q S, Xie Y N, Zhu G, Han R P S, Wang Z L. Self-powered thin-film motion vector sensor. Nature Communications, 2015, 6(1): 8031
CrossRef
Google scholar
|
[55] |
Jing Q S, Zhu G, Bai P, Xie Y N, Chen J, Han R P S, Wang Z L. Case-encapsulated triboelectric nanogenerator for harvesting energy from reciprocating sliding motion. ACS Nano, 2014, 8(4): 3836–3842
CrossRef
Google scholar
|
[56] |
Zhong J W, Zhang Y, Zhong Q Z, Hu Q Y, Hu B, Wang Z L, Zhou J. Fiber-based generator for wearable electronics and mobile medication. ACS Nano, 2014, 8(6): 6273–6280
CrossRef
Google scholar
|
[57] |
Yang W Q, Chen J, Zhu G, Yang J, Bai P, Su Y J, Jing Q S, Cao X, Wang Z L. Harvesting energy from the natural vibration of human walking. ACS Nano, 2013, 7(12): 11317–11324
CrossRef
Google scholar
|
[58] |
Cheng B, Ma J, Li G, Bai S, Xu Q, Cui X, Cheng L, Qin Y, Wang Z L. Mechanically asymmetrical triboelectric nanogenerator for self-powered monitoring of in vivo microscale weak movement. Advanced Energy Materials, 2020, 10(27): 2000827
CrossRef
Google scholar
|
[59] |
Li C, Liu D, Xu C, Wang Z, Shu S, Sun Z, Tang W, Wang Z L. Sensing of joint and spinal bending or stretching via a retractable and wearable badge reel. Nature Communications, 2021, 12(1): 2950
CrossRef
Google scholar
|
[60] |
Zhao J, Li F, Wang Z, Dong P, Xia G, Wang K. Flexible PVDF nanogenerator-driven motion sensors for human body motion energy tracking and monitoring. Journal of Materials Science Materials in Electronics, 2021, 32(11): 14715–14727
CrossRef
Google scholar
|
[61] |
Zhang X, Li Z, Du W, Zhao Y, Wang W, Pang L, Chen L, Yu A, Zhai J. Self-powered triboelectric-mechanoluminescent electronic skin for detecting and differentiating multiple mechanical stimuli. Nano Energy, 2022, 96: 107115
CrossRef
Google scholar
|
[62] |
Ye C, Yang S, Ren J, Dong S, Cao L, Pei Y, Ling S. Electroassisted core-spun triboelectric nanogenerator fabrics for intellisense and artificial intelligence perception. ACS Nano, 2022, 16(3): 4415–4425
CrossRef
Google scholar
|
[63] |
Zhang H L, Yang Y, Su Y J, Chen J, Adams K, Lee S, Hu C G, Wang Z L. Triboelectric nanogenerator for harvesting vibration energy in full space and as self-powered acceleration sensor. Advanced Functional Materials, 2014, 24(10): 1401–1407
CrossRef
Google scholar
|
[64] |
Yang W Q, Chen J, Zhu G, Wen X N, Bai P, Su Y J, Lin Y, Wang Z L. Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator. Nano Research, 2013, 6(12): 880–886
CrossRef
Google scholar
|
[65] |
Chen J, Zhu G, Yang W Q, Jing Q S, Bai P, Yang Y, Hou T C, Wang Z L. Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Advanced Materials, 2013, 25(42): 6094–6099
CrossRef
Google scholar
|
[66] |
Yang J, Chen J, Yang Y, Zhang H L, Yang W Q, Bai P, Su Y J, Wang Z L. Broadband vibrational energy harvesting based on a triboelectric nanogenerator. Advanced Energy Materials, 2014, 4(6): 1301322
CrossRef
Google scholar
|
[67] |
Yang W Q, Chen J, Jing Q S, Yang J, Wen X N, Su Y J, Zhu G, Bai P, Wang Z L. 3D stack integrated triboelectric nanogenerator for harvesting vibration energy. Advanced Functional Materials, 2014, 24(26): 4090–4096
CrossRef
Google scholar
|
[68] |
Hu Y F, Yang J, Jing Q S, Niu S M, Wu W Z, Wang Z L. Triboelectric nanogenerator built on suspended 3D spiral structure as vibration and positioning sensor and wave energy harvester. ACS Nano, 2013, 7(11): 10424–10432
CrossRef
Google scholar
|
[69] |
Lin L, Wang S H, Xie Y N, Jing Q S, Niu S M, Hu Y F, Wang Z L. Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Letters, 2013, 13(6): 2916–2923
CrossRef
Google scholar
|
[70] |
Zhu G, Chen J, Zhang T J, Jing Q S, Wang Z L. Radial-arrayed rotary electrification for high performance triboelectric generator. Nature Communications, 2014, 5(1): 3426
CrossRef
Google scholar
|
[71] |
Bai P, Zhu G, Liu Y, Chen J, Jing Q S, Yang W Q, Ma J S, Zhang G, Wang Z L. Cylindrical rotating triboelectric nanogenerator. ACS Nano, 2013, 7(7): 6361–6366
CrossRef
Google scholar
|
[72] |
Bai Q, Liao X W, Chen Z W, Gan C Z, Zou H X, Wei K X, Gu Z, Zheng X J. Snap-through triboelectric nanogenerator with magnetic coupling buckled bistable mechanism for harvesting rotational energy. Nano Energy, 2022, 96: 107118
CrossRef
Google scholar
|
[73] |
Lin L, Xie Y N, Niu S M, Wang S H, Yang P K, Wang Z L. Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of similar to 55%. ACS Nano, 2015, 9(1): 922–930
CrossRef
Google scholar
|
[74] |
Hu J, Pu X J, Yang H M, Zeng Q X, Tang Q, Zhang D Z, Hu C G, Xi Y. A flutter-effect-based triboelectric nanogenerator for breeze energy collection from arbitrary directions and self-powered wind speed sensor. Nano Research, 2019, 12(12): 3018–3023
CrossRef
Google scholar
|
[75] |
Yang Y, Zhu G, Zhang H L, Chen J, Zhong X D, Lin Z H, Su Y J, Bai P, Wen X N, Wang Z L. Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano, 2013, 7(10): 9461–9468
CrossRef
Google scholar
|
[76] |
Xie Y N, Wang S H, Lin L, Jing Q S, Lin Z H, Niu S M, Wu Z Y, Wang Z L. Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano, 2013, 7(8): 7119–7125
CrossRef
Google scholar
|
[77] |
Meng X S, Zhu G, Wang Z L. Robust thin-film generator based on segmented contact-electrification for harvesting wind energy. ACS Applied Materials & Interfaces, 2014, 6(11): 8011–8016
CrossRef
Google scholar
|
[78] |
Zhang H L, Wang J, Xie Y H, Yao G, Yan Z C, Huang L, Chen S H, Pan T S, Wang L P, Su Y J, Yang W, Lin Y. Self-powered, wireless, remote meteorologic monitoring based on triboelectric nanogenerator operated by scavenging wind energy. ACS Applied Materials & Interfaces, 2016, 8(48): 32649–32654
CrossRef
Google scholar
|
[79] |
Ren Z, Wang Z, Liu Z, Wang L, Guo H, Li L, Li S, Chen X, Tang W, Wang Z L. Energy harvesting from breeze wind (0.7–6 m·s–1) using ultra-stretchable triboelectric nanogenerator. Advanced Energy Materials, 2020, 10(36): 2001770
CrossRef
Google scholar
|
[80] |
Yong S, Wang J, Yang L, Wang H, Luo H, Liao R, Wang Z L. Auto-switching self-powered system for efficient broad-band wind energy harvesting based on dual-rotation shaft triboelectric nanogenerator. Advanced Energy Materials, 2021, 11(26): 2101194
CrossRef
Google scholar
|
[81] |
Yang J, Chen J, Su Y J, Jing Q S, Li Z L, Yi F, Wen X N, Wang Z N, Wang Z L. Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition. Advanced Materials, 2015, 27(8): 1316–1326
CrossRef
Google scholar
|
[82] |
Liu J M, Cui N Y, Gu L, Chen X B, Bai S, Zheng Y B, Hu C X, Qin Y. A three-dimensional integrated nanogenerator for effectively harvesting sound energy from the environment. Nanoscale, 2016, 8(9): 4938–4944
CrossRef
Google scholar
|
[83] |
Gu L, Cui N Y, Liu J M, Zheng Y B, Bai S, Qin Y. Packaged triboelectric nanogenerator with high endurability for severe environments. Nanoscale, 2015, 7(43): 18049–18053
CrossRef
Google scholar
|
[84] |
Cui N Y, Jia X F, Lin A N, Liu J M, Bai S, Zhang L, Qin Y, Yang R S, Zhou F, Li Y Q. Piezoelectric nanofiber/polymer composite membrane for noise harvesting and active acoustic wave detection. Nanoscale Advances, 2019, 1(12): 4909–4914
CrossRef
Google scholar
|
[85] |
Xi Y, Wang J, Zi Y L, Li X G, Han C B, Cao X, Hu C G, Wang Z L. High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator. Nano Energy, 2017, 38: 101–108
CrossRef
Google scholar
|
[86] |
Fan X, Chen J, Yang J, Bai P, Li Z L, Wang Z L. Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording. ACS Nano, 2015, 9(4): 4236–4243
CrossRef
Google scholar
|
[87] |
Yang J, Chen J, Liu Y, Yang W Q, Su Y J, Wang Z L. Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano, 2014, 8(3): 2649–2657
CrossRef
Google scholar
|
[88] |
Lee D M, Rubab N, Hyun I, Kang W, Kim Y J, Kang M, Choi B O, Kim S W. Ultrasound-mediated triboelectric nanogenerator for powering on-demand transient electronics. Science Advances, 2022, 8(1): eabl8423
CrossRef
Google scholar
|
[89] |
Park J, Kang D H, Chae H, Ghosh S K, Jeong C, Park Y, Cho S, Lee Y, Kim J, Ko Y, Kim J J, Ko H. Frequency-selective acoustic and haptic smart skin for dual-mode dynamic/static human-machine interface. Science Advances, 2022, 8(12): eabj9220
CrossRef
Google scholar
|
[90] |
Wang J, Ma L, He J, Yao Y, Zhu X, Peng L, Yang J, Li K, Qu M. Superwettable hybrid dielectric based multimodal triboelectric nanogenerator with superior durability and efficiency for biomechanical energy and hydropower harvesting. Chemical Engineering Journal, 2022, 431: 134002
CrossRef
Google scholar
|
[91] |
Lee J H, Kim S, Kim T Y, Khan U, Kim S W. Water droplet-driven triboelectric nanogenerator with superhydrophobic surfaces. Nano Energy, 2019, 58: 579–584
CrossRef
Google scholar
|
[92] |
Liu L, Shi Q F, Ho J S, Lee C. Study of thin film blue energy harvester based on triboelectric nanogenerator and seashore IoT applications. Nano Energy, 2019, 66: 104167
CrossRef
Google scholar
|
[93] |
Zhong W, Xu L, Wang H M, Li D, Wang Z L. Stacked pendulum-structured triboelectric nanogenerators for effectively harvesting low-frequency water wave energy. Nano Energy, 2019, 66: 104108
CrossRef
Google scholar
|
[94] |
Wu M, Wang Y X, Gao S J, Wang R X, Ma C X, Tang Z Y, Bao N, Wu W X, Fan F R, Wu W Z. Solution-synthesized chiral piezoelectric selenium nanowires for wearable self-powered human-integrated monitoring. Nano Energy, 2019, 56: 693–699
CrossRef
Google scholar
|
[95] |
Nie J H, Jiang T, Shao J J, Ren Z W, Bai Y, Iwamoto M, Chen X Y, Wang Z L. Motion behavior of water droplets driven by triboelectric nanogenerator. Applied Physics Letters, 2018, 112(18): 183701
CrossRef
Google scholar
|
[96] |
Pang Y K, Chen S E, Chu Y H, Wang Z L, Cao C Y. Matryoshka-inspired hierarchically structured triboelectric nanogenerators for wave energy harvesting. Nano Energy, 2019, 66: 104131
CrossRef
Google scholar
|
[97] |
Jiang T, Pang H, An J, Lu P, Feng Y, Liang X, Zhong W, Wang Z L. Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Advanced Energy Materials, 2020, 10(23): 2000064
CrossRef
Google scholar
|
[98] |
Xia K, Fu J, Xu Z. Multiple-frequency high-output triboelectric nanogenerator based on a water balloon for all-weather water wave energy harvesting. Advanced Energy Materials, 2020, 10(28): 2000426
CrossRef
Google scholar
|
[99] |
Zhang C, Zhou L, Cheng P, Liu D, Zhang C, Li X, Li S, Wang J, Wang Z L. Bifilar-pendulum-assisted multilayer-structured triboelectric nanogenerators for wave energy harvesting. Advanced Energy Materials, 2021, 11(12): 2003616
CrossRef
Google scholar
|
[100] |
Wu H, Mendel N, Ham S, Shui L, Zhou G, Mugele F. Charge trapping-based electricity generator (CTEG): an ultrarobust and high efficiency nanogenerator for energy harvesting from water droplets. Advanced Materials, 2020, 32(33): 2001699
CrossRef
Google scholar
|
[101] |
Zhang D, Yang W, Gong W, Ma W, Hou C, Li Y, Zhang Q, Wang H. Abrasion resistant/waterproof stretchable triboelectric yarns based on fermat spirals. Advanced Materials, 2021, 33(26): 2100782
CrossRef
Google scholar
|
[102] |
Cai C, Luo B, Liu Y, Fu Q, Liu T, Wang S, Nie S. Advanced triboelectric materials for liquid energy harvesting and emerging application. Materials Today, 2022, 52: 299–326
CrossRef
Google scholar
|
[103] |
Li H, Shin K, Henkelman G. Effects of ensembles, ligand, and strain on adsorbate binding to alloy surfaces. Journal of Chemical Physics, 2018, 149(17): 174705
CrossRef
Google scholar
|
[104] |
Li A Y, Zi Y L, Guo H Y, Wang Z L, Fernandez F M. Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry. Nature Nanotechnology, 2017, 12(5): 481–487
CrossRef
Google scholar
|
[105] |
Li H, Guo S J, Shin K, Wong M S, Henkelman G. Design of a Pd-Au nitrite reduction catalyst by identifying and optimizing active ensembles. ACS Catalysis, 2019, 9(9): 7957–7966
CrossRef
Google scholar
|
[106] |
Feng Y, Han J, Xu M, Liang X, Jiang T, Li H, Wang Z L. Blue energy for green hydrogen fuel: a self-powered electrochemical conversion system driven by triboelectric nanogenerators. Advanced Energy Materials, 2022, 12(1): 2103143
CrossRef
Google scholar
|
[107] |
Liu X, Mo J, Wu W, Song H, Nie S. Triboelectric pulsed direct-current enhanced radical generation for efficient degradation of organic pollutants in wastewater. Applied Catalysis B: Environmental, 2022, 312: 121422
CrossRef
Google scholar
|
[108] |
Wang J, Li S M, Yi F, Zi Y L, Lin J, Wang X F, Xu Y L, Wang Z L. Sustainably powering wearable electronics solely by biomechanical energy. Nature Communications, 2016, 7(1): 12744
CrossRef
Google scholar
|
[109] |
Dong K, Peng X, Wang Z L. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Advanced Materials, 2020, 32(5): 1902549
CrossRef
Google scholar
|
[110] |
Luo J, Gao W, Wang Z L. The triboelectric nanogenerator as an innovative technology toward intelligent sports. Advanced Materials, 2021, 33(17): 2004178
CrossRef
Google scholar
|
[111] |
Tan P, Han X, Zou Y, Qu X, Xue J, Li T, Wang Y, Luo R, Cui X, Xi Y, Wu L, Xue B, Luo D, Fan Y, Chen X, Li Z, Wang Z L. Self-powered gesture recognition wristband enabled by machine learning for full keyboard and multicommand input. Advanced Materials, 2022, 34(21): 2200793
CrossRef
Google scholar
|
[112] |
Zhang Z, Wang Z, Chen Y, Feng Y, Dong S, Zhou H, Wang Z L, Zhang C. Semiconductor contact-electrification-dominated tribovoltaic effect for ultrahigh power generation. Advanced Materials, 2022, 34(20): 2200146
CrossRef
Google scholar
|
[113] |
Dong K, Peng X, Cheng R, Ning C, Jiang Y, Zhang Y, Wang Z L. Advances in high-performance autonomous energy and self-powered sensing textiles with novel 3D fabric structures. Advanced Materials, 2022, 34(21): 2109355
CrossRef
Google scholar
|
[114] |
Wu H, He W, Shan C, Wang Z, Fu S, Tang Q, Guo H, Du Y, Liu W, Hu C. Achieving remarkable charge density via self-polarization of polar high-k material in a charge-excitation triboelectric nanogenerator. Advanced Materials, 2022, 34(13): 2109918
CrossRef
Google scholar
|
[115] |
Pullano S A, Critello D C, Fiorillo A S. Triboelectric-induced pseudo-ICG for cardiovascular risk assessment on flexible electronics. Nano Energy, 2020, 67: 104278
CrossRef
Google scholar
|
[116] |
Huo H N, Liu F, Luo Y X, Gu Q, Liu Y, Wang Z Z, Chen R Y, Ji L H, Lu Y J, Yao R, Cheng J. Triboelectric nanogenerators for electro-assisted cell printing. Nano Energy, 2020, 67: 104150
CrossRef
Google scholar
|
[117] |
Lim G B. Pacemaker powered by cardiac motion. Nature Reviews. Cardiology, 2019, 16(7): 386–386
|
[118] |
Zheng Q, Zou Y, Zhang Y L, Liu Z, Shi B J, Wang X X, Jin Y M, Ouyang H, Li Z, Wang Z L. Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Science Advances, 2016, 2(3): e1501478
CrossRef
Google scholar
|
[119] |
Liu Z, Nie J, Miao B, Li J, Cui Y, Wang S, Zhang X, Zhao G, Deng Y, Wu Y, Li Z, Li L, Wang Z L. Self-powered intracellular drug delivery by a biomechanical energy-driven triboelectric nanogenerator. Advanced Materials, 2019, 31(12): 1807795
CrossRef
Google scholar
|
[120] |
Jin F, Li T, Yuan T, Du L, Lai C, Wu Q, Zhao Y, Sun F, Gu L, Wang T, Feng Z Q. Physiologically self-regulated, fully implantable, battery-free system for peripheral nerve restoration. Advanced Materials, 2021, 33(48): 2104175
CrossRef
Google scholar
|
[121] |
Song Q, Zheng C, Jia J, Zhao H, Feng Q, Zhang H, Wang L, Zhang Z, Zhang Y. A probiotic spore-based oral autonomous nanoparticles generator for cancer therapy. Advanced Materials, 2019, 31(43): 1903793
CrossRef
Google scholar
|
[122] |
Huo Z Y, Kim Y J, Suh I Y, Lee D M, Lee J H, Du Y, Wang S, Yoon H J, Kim S W. Triboelectrification induced self-powered microbial disinfection using nanowire-enhanced localized electric field. Nature Communications, 2021, 12(1): 3693
CrossRef
Google scholar
|
[123] |
Wu S, Dong P, Cui X, Zhang Y. The strategy of circuit design for high performance nanogenerator based self-powered heart rate monitor system. Nano Energy, 2022, 96: 107136
CrossRef
Google scholar
|
[124] |
Yao S, Zhao X, Wang X, Huang T, Ding Y, Zhang J, Zhang Z, Wang Z L, Li L. Bioinspired electron polarization of nanozymes with a human self-generated electric field for cancer catalytic therapy. Advanced Materials, 2022, 34(15): 2109568
CrossRef
Google scholar
|
[125] |
Jiang P, Zhang L, Guo H, Chen C, Wu C, Zhang S, Wang Z L. Signal output of triboelectric nanogenerator at oil-water-solid multiphase interfaces and its application for dual-signal chemical sensing. Advanced Materials, 2019, 31(39): 1902793
CrossRef
Google scholar
|
[126] |
Li S, Zhao Z, Liu D, An J, Gao Y, Zhou L, Li Y, Cui S, Wang J, Wang Z L. A self-powered dual-type signal vector sensor for smart robotics and automatic vehicles. Advanced Materials, 2022, 34(14): 2110363
CrossRef
Google scholar
|
[127] |
Zou Y, Tan P, Shi B, Ouyang H, Jiang D, Liu Z, Li H, Yu M, Wang C, Qu X, Zhao L, Fan Y, Wang Z L, Li Z. A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nature Communications, 2019, 10(1): 2695
CrossRef
Google scholar
|
[128] |
Zhang C, Chen J, Xuan W, Huang S, You B, Li W, Sun L, Jin H, Wang X, Dong S, Luo J, Flewitt A J, Wang Z L. Conjunction of triboelectric nanogenerator with induction coils as wireless power sources and self-powered wireless sensors. Nature Communications, 2020, 11(1): 58
CrossRef
Google scholar
|
[129] |
Hao Y, Wen J, Gao X, Nan D, Pan J, Yang Y, Chen B, Wang Z L. Self-rebound cambered triboelectric nanogenerator array for self-powered sensing in kinematic analytics. ACS Nano, 2022, 16(1): 1271–1279
CrossRef
Google scholar
|
[130] |
Shrestha K, Sharma S, Pradhan G B, Bhatta T, Maharjan P, Rana S S, Lee S, Seonu S, Shin Y, Park J Y. A siloxene/ecoflex nanocomposite-based triboelectric nanogenerator with enhanced charge retention by MoS2/LIG for self-powered touchless sensor applications. Advanced Functional Materials, 2022, 32(27): 2113005
CrossRef
Google scholar
|
[131] |
Wei X, Wang B, Wu Z, Wang Z L. An open-environment tactile sensing system: toward simple and efficient material identification. Advanced Materials, 2022, 34(29): 2203073
CrossRef
Google scholar
|
[132] |
Yang Y, Zhang H L, Chen J, Jing Q S, Zhou Y S, Wen X N, Wang Z L. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano, 2013, 7(8): 7342–7351
CrossRef
Google scholar
|
[133] |
Wang Z L. Triboelectric nanogenerator (TENG)-sparking an energy and sensor revolution. Advanced Energy Materials, 2020, 10(17): 2000137
CrossRef
Google scholar
|
[134] |
Wu H, Wang J, Wu Z, Kang S, Wei X, Wang H, Luo H, Yang L, Liao R, Wang Z L. Multi-parameter optimized triboelectric nanogenerator based self-powered sensor network for broadband aeolian vibration online-monitoring of transmission lines. Advanced Energy Materials, 2022, 12(13): 2103654
CrossRef
Google scholar
|
[135] |
Luo J, Wang Z, Xu L, Wang A C, Han K, Jiang T, Lai Q, Bai Y, Tang W, Fan F R, Wang Z L. Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nature Communications, 2019, 10(1): 5147
CrossRef
Google scholar
|
[136] |
Zhou W, Du H, Kang L, Du X, Shi Y, Qiang X, Li H, Zhao J. Microstructure evolution and improved permeability of ceramic waste-based bricks. Materials, 2022, 15(3): 1130
CrossRef
Google scholar
|
[137] |
Zhou Y S, Zhu G, Niu S M, Liu Y, Bai P S, Jing Q, Wang Z L. Nanometer resolution self-powered static and dynamic motion sensor based on micro-grated triboelectrification. Advanced Materials, 2014, 26(11): 1719–1724
CrossRef
Google scholar
|
[138] |
Sun J, Zhang L, Li Z, Tang Q, Chen J, Huang Y, Hu C, Guo H, Peng Y, Wang Z L. A mobile and self-powered micro-flow pump based on triboelectricity driven electroosmosis. Advanced Materials, 2021, 33(34): 2102765
CrossRef
Google scholar
|
[139] |
Jing Q S, Zhu G, Wu W Z, Bai P, Xie Y N, Han R P S, Wang Z L. Self-powered triboelectric velocity sensor for dual-mode sensing of rectified linear and rotary motions. Nano Energy, 2014, 10: 305–312
CrossRef
Google scholar
|
[140] |
Lin Z H, Zhu G, Zhou Y S, Yang Y, Bai P, Chen J, Wang Z L. A self-powered triboelectric nanosensor for mercury ion detection. Angewandte Chemie International Edition, 2013, 52(19): 5065–5069
CrossRef
Google scholar
|
[141] |
Zhang H L, Yang Y, Su Y J, Chen J, Hu C G, Wu Z K, Liu Y, Wong C P, Bando Y, Wang Z L. Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol. Nano Energy, 2013, 2(5): 693–701
CrossRef
Google scholar
|
[142] |
Lin Z H, Cheng G, Wu W Z, Pradel K C, Wang Z L. Dual-mode triboelectric nanogenerator for harvesting water energy and as a self-powered ethanol nanosensor. ACS Nano, 2014, 8(6): 6440–6448
CrossRef
Google scholar
|
[143] |
Zhang L, Bai S, Su C, Zheng Y B, Qin Y, Xu C, Wang Z L. A high-reliability kevlar fiber-ZnO nanowires hybrid nanogenerator and its application on self-powered UV detection. Advanced Functional Materials, 2015, 25(36): 5794–5798
CrossRef
Google scholar
|
[144] |
Cheng L, Zheng Y B, Xu Q, Qin Y. A light sensitive nanogenerator for self-powered UV detection with two measuring ranges. Advanced Optical Materials, 2017, 5(1): 1600623
CrossRef
Google scholar
|
[145] |
Zheng Y B, Cheng L, Yuan M M, Wang Z, Zhang L, Qin Y, Jing T. An electrospun nanowire-based triboelectric nanogenerator and its application in a fully self-powered UV detector. Nanoscale, 2014, 6(14): 7842–7846
CrossRef
Google scholar
|
[146] |
Bai S, Wu W W, Qin Y, Cui N Y, Bayerl D J, Wang X D. High-performance integrated ZnO nanowire UV sensors on rigid and flexible substrates. Advanced Functional Materials, 2011, 21(23): 4464–4469
CrossRef
Google scholar
|
[147] |
Li G D, Sun Z, Zhang D Y, Xu Q, Meng L X, Qin Y. Mechanism of sensitivity enhancement of a ZnO nanofilm gas sensor by UV light illumination. ACS Sensors, 2019, 4(6): 1577–1585
CrossRef
Google scholar
|
[148] |
Zhu G, Yang W Q, Zhang T J, Jing Q S, Chen J, Zhou Y S, Bai P, Wang Z L. Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Letters, 2014, 14(6): 3208–3213
CrossRef
Google scholar
|
[149] |
Hua Q L, Sun J L, Liu H T, Bao R R, Yu R M, Zhai J Y, Pan C F, Wang Z L. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nature Communications, 2018, 9(1): 244
CrossRef
Google scholar
|
[150] |
Li X H, Lin Z H, Cheng G, Wen X N, Liu Y, Niu S M, Wang Z L. 3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor. ACS Nano, 2014, 8(10): 10674–10681
CrossRef
Google scholar
|
[151] |
Wang L Y, Daoud W A. Hybrid conductive hydrogels for washable human motion energy harvester and self-powered temperature-stress dual sensor. Nano Energy, 2019, 66: 104080
CrossRef
Google scholar
|
[152] |
Lai J, Ke Y, Cao Z, Xu W, Pan J, Dong Y, Zhou Q, Meng G, Pan C, Xia F. Bimetallic strip based triboelectric nanogenerator for self-powered high temperature alarm system. Nano Today, 2022, 43: 101437
CrossRef
Google scholar
|
[153] |
Jiang T, Chen X Y, Han C B, Tang W, Wang Z L. Theoretical study of rotary freestanding triboelectric nanogenerators. Advanced Functional Materials, 2015, 25(19): 2928–2938
CrossRef
Google scholar
|
[154] |
Xie Y N, Wang S H, Niu S M, Lin L, Jing Q S, Yang J, Wu Z Y, Wang Z L. Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency. Advanced Materials, 2014, 26(38): 6599–6607
CrossRef
Google scholar
|
[155] |
Zi Y L, Guo H Y, Wen Z, Yeh M H, Hu C G, Wang Z L. Harvesting low-frequency (< 5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator. ACS Nano, 2016, 10(4): 4797–4805
CrossRef
Google scholar
|
[156] |
Chen P, An J, Shu S, Cheng R, Nie J, Jiang T, Wang Z L. Super-durable, low-wear, and high-performance fur-brush triboelectric nanogenerator for wind and water energy harvesting for smart agriculture. Advanced Energy Materials, 2021, 11(9): 2003066
CrossRef
Google scholar
|
[157] |
Wu H, Wang Z, Zi Y. Multi-mode water-tube-based triboelectric nanogenerator designed for low-frequency energy harvesting with ultrahigh volumetric charge density. Advanced Energy Materials, 2021, 11(16): 2100038
CrossRef
Google scholar
|
[158] |
Maxwell J C. XXV. On physical lines of force: Part I.—The theory of molecular vortices applied to magnetic phenomena. London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 1861, 21(139): 161–175
CrossRef
Google scholar
|
[159] |
Wang Z L. On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Materials Today, 2017, 20(2): 74–82
CrossRef
Google scholar
|
[160] |
Gao P X, Ding Y, Mai W J, Hughes W L, Lao C S, Wang Z L. Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science, 2005, 309(5741): 1700–1704
CrossRef
Google scholar
|
[161] |
Kong X Y, Ding Y, Yang R, Wang Z L. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science, 2004, 303(5662): 1348–1351
CrossRef
Google scholar
|
[162] |
Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science, 2001, 291(5510): 1947–1949
CrossRef
Google scholar
|
[163] |
Guo W Z, Tan C X, Shi K M, Li J W, Wang X X, Sun B, Huang X Y, Long Y Z, Jiang P K. Wireless piezoelectric devices based on electrospun PVDF/BaTiO3 NW nanocomposite fibers for human motion monitoring. Nanoscale, 2018, 10(37): 17751–17760
CrossRef
Google scholar
|
[164] |
Shi K M, Huang X Y, Sun B, Wu Z Y, He J L, Jiang P K. Cellulose/BaTiO3 aerogel paper based flexible piezoelectric nanogenerators and the electric coupling with triboelectricity. Nano Energy, 2019, 57: 450–458
CrossRef
Google scholar
|
[165] |
Yang R S, Qin Y, Dai L M, Wang Z L. Power generation with laterally packaged piezoelectric fine wires. Nature Nanotechnology, 2009, 4(1): 34–39
CrossRef
Google scholar
|
[166] |
Wu W Z, Wang Z L. Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics. Nature Reviews. Materials, 2016, 1(7): 16031
CrossRef
Google scholar
|
[167] |
Wu W Z, Wang L, Li Y L, Zhang F, Lin L, Niu S M, Chenet D, Zhang X, Hao Y F, Heinz T F, Hone J, Wang Z L. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature, 2014, 514(7523): 470–474
CrossRef
Google scholar
|
[168] |
Li W, Torres D, Diaz R, Wang Z J, Wu C S, Wang C, Wang Z L, Sepulveda N. Nanogenerator-based dual-functional and self-powered thin patch loudspeaker or microphone for flexible electronics. Nature Communications, 2017, 8(1): 15310
CrossRef
Google scholar
|
[169] |
Pan C F, Dong L, Zhu G, Niu S M, Yu R M, Yang Q, Liu Y, Wang Z L. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nature Photonics, 2013, 7(9): 752–758
CrossRef
Google scholar
|
[170] |
Xu S, Hansen B J, Wang Z L. Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nature Communications, 2010, 1(1): 93
CrossRef
Google scholar
|
[171] |
Qin Y, Wang X D, Wang Z L. Microfibre-nanowire hybrid structure for energy scavenging. Nature, 2008, 451(7180): 809–813
CrossRef
Google scholar
|
[172] |
Matsunaga M, Hirotani J, Kishimoto S, Ohno Y. High-output, transparent, stretchable triboelectric nanogenerator based on carbon nanotube thin film toward wearable energy harvesters. Nano Energy, 2020, 67: 104297
CrossRef
Google scholar
|
[173] |
Wu C S, Wang A C, Ding W B, Guo H Y, Wang Z L. Triboelectric nanogenerator: a foundation of the energy for the new era. Advanced Energy Materials, 2019, 9(1): 1802906
CrossRef
Google scholar
|
[174] |
Zou H Y, Zhang Y, Guo L T, Wang P H, He X, Dai G Z, Zheng H W, Chen C Y, Wang A C, Xu C, Wang Z L. Quantifying the triboelectric series. Nature Communications, 2019, 10(1): 1427
CrossRef
Google scholar
|
[175] |
Wang Z L. Triboelectric nanogenerators as new energy technology and self-powered sensors—principles, problems and perspectives. Faraday Discussions, 2014, 176: 447–458
CrossRef
Google scholar
|
[176] |
Dong J, Huang S, Luo J, Zhao J, Fan F R, Tian Z Q. Supercapacitor-inspired triboelectric nanogenerator based on electrostatic double layer. Nano Energy, 2022, 95: 106971
CrossRef
Google scholar
|
[177] |
Guo H J, Jia X T, Liu L, Cao X, Wang N, Wang Z L. Freestanding triboelectric nanogenerator enables noncontact motion-tracking and positioning. ACS Nano, 2018, 12(4): 3461–3467
CrossRef
Google scholar
|
[178] |
Yu Y H, Li Z D, Wang Y M, Gong S Q, Wang X D. Sequential infiltration synthesis of doped polymer films with tunable electrical properties for efficient triboelectric nanogenerator development. Advanced Materials, 2015, 27(33): 4938–4944
CrossRef
Google scholar
|
[179] |
Wang Z L, Lin L, Chen J, Niu S, Zi Y. Triboelectric nanogenerator: vertical contact-separation mode. In: Triboelectric Nanogenerators. Cham, Switzerland: Springer International Publishing, 2016, 23–47
|
[180] |
Abu Nahian S, Cheedarala R K, Ahn K K. A study of sustainable green current generated by the fluid-based triboelectric nanogenerator (FluTENG) with a comparison of contact and sliding mode. Nano Energy, 2017, 38: 458–466
|
[181] |
Zhang Z C, Zhang J W, Zhang H, Wang H G, Hu Z W, Xuan W P, Dong S R, Luo J K. A portable triboelectric nanogenerator for real-time respiration monitoring. Nanoscale Research Letters, 2019, 14(1): 354
CrossRef
Google scholar
|
[182] |
Rahman M T, Salauddin M, Maharjan P, Rasel M S, Cho H, Park J Y. Natural wind-driven ultra-compact and highly efficient hybridized nanogenerator for self-sustained wireless environmental monitoring system. Nano Energy, 2019, 57: 256–268
CrossRef
Google scholar
|
[183] |
Tang Q, Pu X J, Zeng Q X, Yang H M, Li J, Wu Y, Guo H Y, Huang Z Y, Hu C G. A strategy to promote efficiency and durability for sliding energy harvesting by designing alternating magnetic stripe arrays in triboelectric nanogenerator. Nano Energy, 2019, 66: 104087
CrossRef
Google scholar
|
[184] |
Wang S H, Lin L, Xie Y N, Jing Q S, Niu S M, Wang Z L. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Letters, 2013, 13(5): 2226–2233
CrossRef
Google scholar
|
[185] |
Khandelwal G, Minocha T, Yadav S K, Chandrasekhar A, Maria Joseph Raj N P, Gupta S C, Kim S J. All edible materials derived biocompatible and biodegradable triboelectric nanogenerator. Nano Energy, 2019, 65: 104016
CrossRef
Google scholar
|
[186] |
Chen J, Guo H Y, Wu Z Y, Xu G Q, Zi Y L, Hu C G, Wang Z L. Actuation and sensor integrated self-powered cantilever system based on TENG technology. Nano Energy, 2019, 64: 103920
CrossRef
Google scholar
|
[187] |
Paosangthong W, Wagih M, Torah R, Beeby S. Textile-based triboelectric nanogenerator with alternating positive and negative freestanding grating structure. Nano Energy, 2019, 66: 104148
CrossRef
Google scholar
|
[188] |
Zhang D H, Shi J W, Si Y L, Li T. Multi-grating triboelectric nanogenerator for harvesting low-frequency ocean wave energy. Nano Energy, 2019, 61: 132–140
CrossRef
Google scholar
|
[189] |
Bai Z Q, Zhang Z, Li J Y, Guo J S. Textile-based triboelectric nanogenerators with high-performance via optimized functional elastomer composited tribomaterials as wearable power source. Nano Energy, 2019, 65: 104012
CrossRef
Google scholar
|
[190] |
Ankanahalli Shankaregowda S, Sagade Muktar Ahmed R F, Nanjegowda C B, Wang J, Guan S, Puttaswamy M, Amini A, Zhang Y, Kong D, Sannathammegowda K, Wang F, Cheng C. Single-electrode triboelectric nanogenerator based on economical graphite coated paper for harvesting waste environmental energy. Nano Energy, 2019, 66: 104141
CrossRef
Google scholar
|
[191] |
Wu Y H, Luo Y, Qu J K, Daoud W A, Qi T. Liquid single-electrode triboelectric nanogenerator based on graphene oxide dispersion for wearable electronics. Nano Energy, 2019, 64: 103948
CrossRef
Google scholar
|
[192] |
Niu S M, Liu Y, Chen X Y, Wang S H, Zhou Y S, Lin L, Xie Y N, Wang Z L. Theory of freestanding triboelectric-layer-based nanogenerators. Nano Energy, 2015, 12: 760–774
CrossRef
Google scholar
|
[193] |
Shao H Y, Wen Z, Cheng P, Sun N, Shen Q Q, Zhou C J, Peng M F, Yang Y Q, Xie X K, Sun X H. Multifunctional power unit by hybridizing contact-separate triboelectric nanogenerator, electromagnetic generator and solar cell for harvesting blue energy. Nano Energy, 2017, 39: 608–615
CrossRef
Google scholar
|
[194] |
Chen Y L, Wang Y C, Zhang Y, Zou H Y, Lin Z M, Zhang G B, Zou C W, Wang Z L. Elastic-beam triboelectric nanogenerator for high-performance multifunctional applications: sensitive scale, acceleration/force/vibration sensor, and intelligent keyboard. Advanced Energy Materials, 2018, 8(29): 1802159
CrossRef
Google scholar
|
[195] |
Wang S H, Xie Y N, Niu S M, Lin L, Wang Z L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Advanced Materials, 2014, 26(18): 2818–2824
CrossRef
Google scholar
|
[196] |
Wen Z, Yeh M H, Guo H Y, Wang J, Zi Y L, Xu W D, Deng J N, Zhu L, Wang X, Hu C G, Zhu L, Sun X, Wang Z L. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Science Advances, 2016, 2(10): e1600097
CrossRef
Google scholar
|
[197] |
Pu X J, Guo H Y, Chen J, Wang X, Xi Y, Hu C G, Wang Z L. Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Science Advances, 2017, 3(7): e1700694
CrossRef
Google scholar
|
[198] |
Liu C R, Wang Y S, Zhang N, Yang X, Wang Z K, Zhao L B, Yang W H, Dong L X, Che L F, Wang G F, Zhou X. A self-powered and high sensitivity acceleration sensor with V-Q-a model based on triboelectric nanogenerators (TENGs). Nano Energy, 2020, 67: 104228
CrossRef
Google scholar
|
[199] |
Wang J, Zhang H L, Xie X Y, Gao M, Yang W Q, Lin Y. Water energy harvesting and self-powered visible light communication based on triboelectric nanogenerator. Energy Technology, 2018, 6(10): 1929–1934
CrossRef
Google scholar
|
[200] |
Wu Y, Zeng Q X, Tang Q, Liu W L, Liu G L, Zhang Y, Wu J, Hu C G, Wang X. A teeterboard-like hybrid nanogenerator for efficient harvesting of low-frequency ocean wave energy. Nano Energy, 2020, 67: 104205
CrossRef
Google scholar
|
[201] |
Liu G L, Guo H Y, Xu S X, Hu C G, Wang Z L. Oblate spheroidal triboelectric nanogenerator for all-weather blue energy harvesting. Advanced Energy Materials, 2019, 9(26): 1900801
CrossRef
Google scholar
|
[202] |
Sun H, Sun J, Zhao K, Wang L, Wang K. Data-driven ICA-Bi-LSTM-combined lithium battery SOH estimation. Mathematical Problems in Engineering, 2022, 2022: 9645892
|
[203] |
Li D, Li S, Zhang S, Sun J, Wang L, Wang K. Aging state prediction for supercapacitors based on heuristic Kalman filter optimization extreme learning machine. Energy, 2022, 250: 123773
CrossRef
Google scholar
|
[204] |
Li Q, Li D, Zhao K, Wang L, Wang K. State of health estimation of lithium-ion battery based on improved ant lion optimization and support vector regression. Journal of Energy Storage, 2022, 50: 104215
CrossRef
Google scholar
|
[205] |
Abd El-Kareem A H, Abd Elhameed M, Elkholy M M. Effective damping of local low frequency oscillations in power systems integrated with bulk PV generation. Protection and Control of Modern Power Systems, 2021, 6(1): 41
CrossRef
Google scholar
|
[206] |
Injeti S K, Thunuguntla V K. Optimal integration of DGs into radial distribution network in the presence of plug-in electric vehicles to minimize daily active power losses and to improve the voltage profile of the system using bio-inspired optimization algorithms. Protection and Control of Modern Power Systems, 2020, 5(1): 3
CrossRef
Google scholar
|
[207] |
Li D, Wang L, Duan C, Li Q, Wang K. Temperature prediction of lithium-ion batteries based on electrochemical impedance spectrum: a review. International Journal of Energy Research, 2022, 46(8): 10372–10388
CrossRef
Google scholar
|
[208] |
Cui Z, Dai J, Sun J, Li D, Wang L, Wang K. Hybrid methods using neural network and kalman filter for the state of charge estimation of lithium-ion battery. Mathematical Problems in Engineering, 2022, 2022: 9616124
CrossRef
Google scholar
|
[209] |
Liu C, Li D, Wang L, Li L, Wang K. Strong robustness and high accuracy in predicting remaining useful life of supercapacitors. APL Materials, 2022, 10(6): 061106
CrossRef
Google scholar
|
[210] |
Bozorg M, Bracale A, Caramia P, Carpinelli G, Carpita M, De Falco P. Bayesian bootstrap quantile regression for probabilistic photovoltaic power forecasting. Protection and Control of Modern Power Systems, 2020, 5(1): 21
CrossRef
Google scholar
|
[211] |
Guchhait P K, Banerjee A. Stability enhancement of wind energy integrated hybrid system with the help of static synchronous compensator and symbiosis organisms search algorithm. Protection and Control of Modern Power Systems, 2020, 5(1): 11
CrossRef
Google scholar
|
[212] |
Cui Z, Wang L, Li Q, Wang K. A comprehensive review on the state of charge estimation for lithium-ion battery based on neural network. International Journal of Energy Research, 2022, 46(5): 5423–5440
CrossRef
Google scholar
|
[213] |
Liu C, Zhang Y, Sun J, Cui Z, Wang K. Stacked bidirectional LSTM RNN to evaluate the remaining useful life of supercapacitor. International Journal of Energy Research, 2022, 46(3): 3034–3043
CrossRef
Google scholar
|
[214] |
Yi Z, Zhao K, Sun J, Wang L, Wang K, Ma Y. Prediction of the remaining useful life of supercapacitors. Mathematical Problems in Engineering, 2022, 2022: 7620382
CrossRef
Google scholar
|
[215] |
Zhang L, Cheng L, Bai S, Su C, Chen X B, Qin Y. Controllable fabrication of ultrafine oblique organic nanowire arrays and their application in energy harvesting. Nanoscale, 2015, 7(4): 1285–1289
CrossRef
Google scholar
|
[216] |
Wang Y, Yang Y, Wang Z L. Triboelectric nanogenerators as flexible power sources. npj Flexible Electronics, 2017, 1(1): 10
|
[217] |
Jin L, Zhang B B, Zhang L, Yang W Q. Nanogenerator as new energy technology for self-powered intelligent transportation system. Nano Energy, 2019, 66: 104086
CrossRef
Google scholar
|
[218] |
Gai Y, Bai Y, Cao Y, Wang E, Xue J, Qu X, Liu Z, Luo D, Li Z. A gyroscope nanogenerator with frequency up-conversion effect for fitness and energy harvesting. Small, 2022, 18(14): 2108091
CrossRef
Google scholar
|
[219] |
Liu D, Yin X, Guo H Y, Zhou L L, Li X Y, Zhang C L, Wang J, Wang Z L. A constant current triboelectric nanogenerator arising from electrostatic breakdown. Science Advances, 2019, 5(4): eaav6437
CrossRef
Google scholar
|
[220] |
Liu J M, Gu L, Cui N Y, Xu Q, Qin Y, Yang R S. Fabric-based triboelectric nanogenerators. Research, 2019, 2019: 1091632
CrossRef
Google scholar
|
[221] |
Qi J B, Wang A C, Yang W F, Zhang M Y, Hou C Y, Zhang Q H, Li Y G, Wang H Z. Hydrogel-based hierarchically wrinkled stretchable nanofibrous membrane for high performance wearable triboelectric nanogenerator. Nano Energy, 2020, 67: 104206
CrossRef
Google scholar
|
[222] |
Chen J, Huang Y, Zhang N N, Zou H Y, Liu R Y, Tao C Y, Fan X, Wang Z L. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nature Energy, 2016, 1(10): 16138
CrossRef
Google scholar
|
[223] |
Guo H Y, Pu X J, Chen J, Meng Y, Yeh M H, Liu G L, Tang Q, Chen B D, Liu D, Qi S, Wu C, Hu C, Wang J, Wang Z L. A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Science Robotics, 2018, 3(20): eaat2516
CrossRef
Google scholar
|
[224] |
Zhang L, Su C, Cheng L, Cui N Y, Gu L, Qin Y, Yang R S, Zhou F. Enhancing the performance of textile triboelectric nanogenerators with oblique microrod arrays for wearable energy harvesting. ACS Applied Materials & Interfaces, 2019, 11(30): 26824–26829
CrossRef
Google scholar
|
[225] |
Wang X X, Yu G F, Zhang J, Yu M, Ramakrishna S, Long Y Z. Conductive polymer ultrafine fibers via electrospinning: preparation, physical properties and applications. Progress in Materials Science, 2021, 115: 100704
CrossRef
Google scholar
|
[226] |
Dudem B, Dharmasena R D I G, Riaz R, Vivekananthan V, Wijayantha K G U, Lugli P, Petti L, Silva S R P. Wearable triboelectric nanogenerator from waste materials for autonomous information transmission via morse code. ACS Applied Materials & Interfaces, 2022, 14(4): 5328–5337
CrossRef
Google scholar
|
[227] |
Ouyang H, Liu Z, Li N, Shi B J, Zou Y, Xie F, Ma Y, Li Z, Li H, Zheng Q, Qu X, Fan Y, Wang Z L, Zhang H, Li Z. Symbiotic cardiac pacemaker. Nature Communications, 2019, 10(1): 1821
CrossRef
Google scholar
|
[228] |
Wang W, Pang J, Su J, Li F, Li Q, Wang X, Wang J, Ibarlucea B, Liu X, Li Y, Zhou W, Wang K, Han Q, Liu L, Zang R, Rümmeli M H, Li Y, Liu H, Hu H, Cuniberti G. Applications of nanogenerators for biomedical engineering and healthcare systems. InfoMat, 2022, 4(2): e12262
CrossRef
Google scholar
|
[229] |
Yang F, Guo J M, Zhao L, Shang W Y, Gao Y Y, Zhang S, Gu G Q, Zhang B, Cui P, Cheng G, Du Z. Tuning oxygen vacancies and improving UV sensing of ZnO nanowire by micro-plasma powered by a triboelectric nanogenerator. Nano Energy, 2020, 67: 104210
CrossRef
Google scholar
|
[230] |
Han Q K, Ding Z, Qin Z Y, Wang T Y, Xu X P, Chu F L. A triboelectric rolling ball bearing with self-powering and self-sensing capabilities. Nano Energy, 2020, 67: 104277
CrossRef
Google scholar
|
[231] |
Zhang D Z, Xu Z Y, Yang Z M, Song X S. High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator. Nano Energy, 2020, 67: 104251
CrossRef
Google scholar
|
[232] |
Wen F, Wang H, He T Y Y, Shi Q F, Sun Z D, Zhu M L, Zhang Z X, Cao Z G, Dai Y B, Zhang T, Lee C. Battery-free short-range self-powered wireless sensor network (SS-WSN) using TENG based direct sensory transmission (TDST) mechanism. Nano Energy, 2020, 67: 104266
CrossRef
Google scholar
|
[233] |
Bu C, Li F, Yin K, Pang J, Wang L, Wang K. Research progress and prospect of triboelectric nanogenerators as self-powered human body sensors. ACS Applied Electronic Materials, 2020, 2(4): 863–878
CrossRef
Google scholar
|
[234] |
Lei W, Lu S, Wanga Q, Yuan P, Yu H. A method of measuring weak-charge of self-powered sensors based on triboelectric nanogenerator. Nano Energy, 2022, 95: 106997
CrossRef
Google scholar
|
[235] |
Li C, Liu X, Yang D, Liu Z. Triboelectric nanogenerator based on a moving bubble in liquid for mechanical energy harvesting and water level monitoring. Nano Energy, 2022, 95: 106998
CrossRef
Google scholar
|
[236] |
Zhao C, Liu D, Wang Y, Hu Z, Zhang Q, Zhang Z, Wang H, Du T, Zou Y, Yuan H, Pan X, Mi J, Xu M. Highly-stretchable rope-like triboelectric nanogenerator for self-powered monitoring in marine structures. Nano Energy, 2022, 94: 106926
CrossRef
Google scholar
|
[237] |
Zhang X Q, Yu M, Ma Z R, Ouyang H, Zou Y, Zhang S L, Niu H K, Pan X X, Xu M Y, Li Z, Wang Z L. Self-powered distributed water level sensors based on liquid−solid triboelectric nanogenerators for ship draft detecting. Advanced Functional Materials, 2019, 29(41): 1900327
CrossRef
Google scholar
|
[238] |
Xiao X, Zhang X Q, Wang S Y, Ouyang H, Chen P F, Song L G, Yuan H C, Ji Y L, Wang P H, Li Z, Xu M, Wang Z L. Honeycomb structure inspired triboelectric nanogenerator for highly effective vibration energy harvesting and self-powered engine condition monitoring. Advanced Energy Materials, 2019, 9(40): 1902460
CrossRef
Google scholar
|
[239] |
Lee J W, Jung S, Lee T W, Jo J, Chae H Y, Choi K, Kim J J, Lee J H, Yang C, Baik J M. High-output triboelectric nanogenerator based on dual inductive and resonance effects-controlled highly transparent polyimide for self-powered sensor network systems. Advanced Energy Materials, 2019, 9(36): 1901987
CrossRef
Google scholar
|
[240] |
Qian C C, Li L H, Gao M, Yang H Y, Cai Z R, Chen B D, Xiang Z Y, Zhang Z J, Song Y L. All-printed 3D hierarchically structured cellulose aerogel based triboelectric nanogenerator for multi-functional sensors. Nano Energy, 2019, 63: 103885
CrossRef
Google scholar
|
[241] |
Chen C, Wen Z, Wei A M, Xie X K, Zhai N N, Wei X L, Peng M F, Liu Y N, Sun X H, Yeow J T W. Self-powered on-line ion concentration monitor in water transportation driven by triboelectric nanogenerator. Nano Energy, 2019, 62: 442–448
CrossRef
Google scholar
|
[242] |
Ahn J H, Hwang J Y, Kim C G, Nam G H, Ahn K K. Unsteady streaming flow based teng using hydrophobic film tube with different charge affinity. Nano Energy, 2020, 67: 104269
CrossRef
Google scholar
|
[243] |
Chen Y, Xie B, Long J, Kuang Y, Chen X, Hou M, Gao J, Zhou S, Fan B, He Y, Zhang Y T, Wong C P, Wang Z, Zhao N. Interfacial laser-induced graphene enabling high-performance liquid−solid triboelectric nanogenerator. Advanced Materials, 2021, 33(44): 2104290
CrossRef
Google scholar
|
[244] |
Zhang Q, Li Y, Cai H, Yao M, Zhang H, Guo L, Lv Z, Li M, Lu X, Ren C, Zhang P, Zhang Y, Shi X, Ding G, Yao J, Yang Z, Wang Z L. A single-droplet electricity generator achieves an ultrahigh output over 100 V without pre-charging. Advanced Materials, 2021, 33(51): 2105761
CrossRef
Google scholar
|
[245] |
Nie J, Ren Z, Xu L, Lin S, Zhan F, Chen X, Wang Z L. Probing contact-electrification-induced electron and ion transfers at a liquid−solid interface. Advanced Materials, 2020, 32(2): 1905696
CrossRef
Google scholar
|
[246] |
Nie J, Wang Z, Ren Z, Li S, Chen X, Wang Z L. Power generation from the interaction of a liquid droplet and a liquid membrane. Nature Communications, 2019, 10(1): 2264
CrossRef
Google scholar
|
[247] |
Lin S, Xu L, Chi Wang A, Wang Z L. Quantifying electron-transfer in liquid−solid contact electrification and the formation of electric double-layer. Nature Communications, 2020, 11(1): 399
CrossRef
Google scholar
|
[248] |
Zhao X J, Kuang S Y, Wang Z L, Zhu G. Highly adaptive solid-liquid interfacing triboelectric nanogenerator for harvesting diverse water wave energy. ACS Nano, 2018, 12(5): 4280–4285
CrossRef
Google scholar
|
[249] |
Zhang Q, Liang Q, Liao Q, Ma M, Gao F, Zhao X, Song Y, Song L, Xun X, Zhang Y. An amphiphobic hydraulic triboelectric nanogenerator for a self-cleaning and self-charging power system. Advanced Functional Materials, 2018, 28(35): 1803117
CrossRef
Google scholar
|
[250] |
Tang W, Jiang T, Fan F R, Yu A F, Zhang C, Cao X, Wang Z L. Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Advanced Functional Materials, 2015, 25(24): 3718–3725
CrossRef
Google scholar
|
[251] |
Zhou H, Dong J, Liu H, Zhu L, Xu C, He X, Zhang S, Song Q. The coordination of displacement and conduction currents to boost the instantaneous power output of a water-tube triboelectric nanogenerator. Nano Energy, 2022, 95: 107050
CrossRef
Google scholar
|
[252] |
Choi D, Kim D W, Yoo D, Cha K J, La M, Kim D S. Spontaneous occurrence of liquid–solid contact electrification in nature: toward a robust triboelectric nanogenerator inspired by the natural lotus leaf. Nano Energy, 2017, 36: 250–259
CrossRef
Google scholar
|
[253] |
Li X Y, Tao J, Wang X D, Zhu J, Pan C F, Wang Z L. Networks of high performance triboelectric nanogenerators based on liquid−solid interface contact electrification for harvesting low-frequency blue energy. Advanced Energy Materials, 2018, 8(21): 1800705
CrossRef
Google scholar
|
[254] |
Jiang D Y, Guo F, Xu M Y, Cai J C, Cong S, Jia M, Chen G J, Song Y C. Conformal fluorine coated carbon paper for an energy harvesting water wheel. Nano Energy, 2019, 58: 842–851
CrossRef
Google scholar
|
[255] |
Liu Y P, Zheng Y B, Li T H, Wang D A, Zhou F. Water−solid triboelectrification with self-repairable surfaces for water-flow energy harvesting. Nano Energy, 2019, 61: 454–461
CrossRef
Google scholar
|
[256] |
Cho H, Kim I, Park J, Kim D. A waterwheel hybrid generator with disk triboelectric nanogenerator and electromagnetic generator as a power source for an electrocoagulation system. Nano Energy, 2022, 95: 107048
CrossRef
Google scholar
|
[257] |
Xie Y N, Wang S H, Niu S M, Lin L, Jing Q S, Su Y J, Wu Z Y, Wang Z L. Multi-layered disk triboelectric nanogenerator for harvesting hydropower. Nano Energy, 2014, 6: 129–136
CrossRef
Google scholar
|
[258] |
Chun J S, Ye B U, Lee J W, Choi D, Kang C Y, Kim S W, Wang Z L, Baik J M. Boosted output performance of triboelectric nanogenerator via electric double layer effect. Nature Communications, 2016, 7(1): 12985
CrossRef
Google scholar
|
[259] |
Xu X, Wang Y, Li P, Xu W, Wei L, Wang Z, Yang Z. A leaf-mimic rain energy harvester by liquid−solid contact electrification and piezoelectricity. Nano Energy, 2021, 90: 106573
CrossRef
Google scholar
|
[260] |
Cheng G, Lin Z H, Du Z L, Wang Z L. Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator. ACS Nano, 2014, 8(2): 1932–1939
CrossRef
Google scholar
|
[261] |
Tao K, Yi H P, Yang Y, Chang H L, Wu J, Tang L H, Yang Z S, Wang N, Hu L X, Fu Y Q, Miao J, Yuan W. Origami-inspired electret-based triboelectric generator for biomechanical and ocean wave energy harvesting. Nano Energy, 2020, 67: 104197
CrossRef
Google scholar
|
[262] |
Zhang C, Zhao Z, Yang O, Yuan W, Zhou L, Yin X, Liu L, Li Y, Wang Z L, Wang J. Bionic-fin-structured triboelectric nanogenerators for undersea energy harvesting. Advanced Materials Technologies, 2020, 5(9): 2000531
CrossRef
Google scholar
|
[263] |
Yang H M, Wang M F, Deng M M, Guo H Y, Zhang W, Yang H K, Xi Y, Li X G, Hu C G, Wang Z L. A full-packaged rolling triboelectric−electromagnetic hybrid nanogenerator for energy harvesting and building up self-powered wireless systems. Nano Energy, 2019, 56: 300–306
CrossRef
Google scholar
|
[264] |
Zhang B, Zhang C, Yuan W, Yang O, Liu Y, He L, Hu Y, Zhou L, Wang J, Wang Z L. Highly stable and eco-friendly marine self-charging power systems composed of conductive polymer supercapacitors with seawater as an electrolyte. ACS Applied Materials & Interfaces, 2022, 14(7): 9046–9056
CrossRef
Google scholar
|
[265] |
Zhong W, Xu L, Yang X, Tang W, Shao J, Chen B, Wang Z L. Open-book-like triboelectric nanogenerators based on low-frequency roll-swing oscillators for wave energy harvesting. Nanoscale, 2019, 11(15): 7199–7208
CrossRef
Google scholar
|
[266] |
Lei R, Zhai H, Nie J, Zhong W, Bai Y, Liang X, Xu L, Jiang T, Chen X, Wang Z L. Butterfly-inspired triboelectric nanogenerators with spring-assisted linkage structure for water wave energy harvesting. Advanced Materials Technologies, 2019, 4(3): 1800514
CrossRef
Google scholar
|
[267] |
Tan D, Zeng Q, Wang X, Yuan S, Luo Y, Zhang X, Tan L, Hu C, Liu G. Anti-overturning fully symmetrical triboelectric nanogenerator based on an elliptic cylindrical structure for all-weather blue energy harvesting. Nano-Micro Letters, 2022, 14(1): 124
CrossRef
Google scholar
|
[268] |
Liu L, Yang X, Zhao L, Hong H, Cui H, Duan J, Yang Q, Tang Q. Nodding duck structure multi-track directional freestanding triboelectric nanogenerator toward low-frequency ocean wave energy harvesting. ACS Nano, 2021, 15(6): 9412–9421
CrossRef
Google scholar
|
[269] |
Chen J, Yang J, Li Z L, Fan X, Zi Y L, Jing Q S, Guo H Y, Wen Z, Pradel K C, Niu S M, Wang Z L. Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy. ACS Nano, 2015, 9(3): 3324–3331
CrossRef
Google scholar
|
[270] |
Wang X F, Niu S M, Yin Y J, Yi F, You Z, Wang Z L. Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy. Advanced Energy Materials, 2015, 5(24): 1501467
CrossRef
Google scholar
|
[271] |
Cheng P, Guo H Y, Wen Z, Zhang C L, Yin X, Li X Y, Liu D, Song W X, Sun X H, Wang J, Wang Z L. Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure. Nano Energy, 2019, 57: 432–439
CrossRef
Google scholar
|
[272] |
Xu L, Jiang T, Lin P, Shao J J, He C, Zhong W, Chen X Y, Wang Z L. Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting. ACS Nano, 2018, 12(2): 1849–1858
CrossRef
Google scholar
|
[273] |
Wu C S, Liu R Y, Wang J, Zi Y L, Lin L, Wang Z L. A spring-based resonance coupling for hugely enhancing the performance of triboelectric nanogenerators for harvesting low-frequency vibration energy. Nano Energy, 2017, 32: 287–293
CrossRef
Google scholar
|
[274] |
Jiang T, Yao Y Y, Xu L, Zhang L M, Xiao T X, Wang Z L. Spring-assisted triboelectric nanogenerator for efficiently harvesting water wave energy. Nano Energy, 2017, 31: 560–567
CrossRef
Google scholar
|
[275] |
Zhou T, Zhang L M, Xue F, Tang W, Zhang C, Wang Z L. Multilayered electret films based triboelectric nanogenerator. Nano Research, 2016, 9(5): 1442–1451
CrossRef
Google scholar
|
[276] |
Zhang L M, Han C B, Jiang T, Zhou T, Li X H, Zhang C, Wang Z L. Multilayer wavy-structured robust triboelectric nanogenerator for harvesting water wave energy. Nano Energy, 2016, 22: 87–94
CrossRef
Google scholar
|
[277] |
Tantraviwat D, Buarin P, Suntalelat S, Sripumkhai W, Pattamang P, Rujijanagul G, Inceesungvorn B. Highly dispersed porous polydimethylsiloxane for boosting power-generating performance of triboelectric nanogenerators. Nano Energy, 2020, 67: 104214
CrossRef
Google scholar
|
[278] |
Liu W, Wang Z, Wang G, Liu G, Chen J, Pu X, Xi Y, Wang X, Guo H, Hu C, Wang Z L. Integrated charge excitation triboelectric nanogenerator. Nature Communications, 2019, 10(1): 1426
CrossRef
Google scholar
|
[279] |
Wang J, Wu C S, Dai Y J, Zhao Z H, Wang A, Zhang T J, Wang Z L. Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nature Communications, 2017, 8(1): 88
CrossRef
Google scholar
|
[280] |
Ma M Y, Liao Q L, Zhang G J, Zhang Z, Liang Q J, Zhang Y. Self-recovering triboelectric nanogenerator as active multifunctional sensors. Advanced Functional Materials, 2015, 25(41): 6489–6494
CrossRef
Google scholar
|
[281] |
Xu L, Pang Y K, Zhang C, Jiang T, Chen X Y, Luo J J, Tang W, Cao X, Wang Z L. Integrated triboelectric nanogenerator array based on air-driven membrane structures for water wave energy harvesting. Nano Energy, 2017, 31: 351–358
CrossRef
Google scholar
|
[282] |
Xu Z, Bao K, Di K, Chen H, Tan J, Xie X, Shao Y, Cai J, Lin S, Cheng T, e S, Liu K, Wang Z L. High-performance dielectric elastomer nanogenerator for efficient energy harvesting and sensing via alternative current method. Advanced Science, 2022, 9(18): 2201098
CrossRef
Google scholar
|
[283] |
Li H Y, Su L, Kuang S Y, Pan C F, Zhu G, Wang Z L. Significant enhancement of triboelectric charge density by fluorinated surface modification in nanoscale for converting mechanical energy. Advanced Functional Materials, 2015, 25(35): 5691–5697
CrossRef
Google scholar
|
[284] |
Xu M Y, Zhao T C, Wang C, Zhang S L, Li Z, Pan X X, Wang Z L. High power density tower-like triboelectric nanogenerator for harvesting arbitrary directional water wave energy. ACS Nano, 2019, 13(2): 1932–1939
CrossRef
Google scholar
|
[285] |
Zhao L M, Zheng Q, Ouyang H, Li H, Yan L, Shi B J, Li Z. A size-unlimited surface microstructure modification method for achieving high performance triboelectric nanogenerator. Nano Energy, 2016, 28: 172–178
CrossRef
Google scholar
|
[286] |
Wang Y, Liu X, Wang Y, Wang H, Wang H, Zhang S L, Zhao T, Xu M, Wang Z L. Flexible seaweed-like triboelectric nanogenerator as a wave energy harvester powering marine internet of things. ACS Nano, 2021, 15(10): 15700–15709
CrossRef
Google scholar
|
[287] |
Zhang C, He L, Zhou L, Yang O, Yuan W, Wei X, Liu Y, Lu L, Wang J, Wang Z L. Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy. Joule, 2021, 5(6): 1613–1623
CrossRef
Google scholar
|
[288] |
Ryu H, Yoon H J, Kim S W. Hybrid energy harvesters: toward sustainable energy harvesting. Advanced Materials, 2019, 31(34): 1802898
CrossRef
Google scholar
|
[289] |
Ma Z, Ai J, Shi Y, Wang K, Su B. A superhydrophobic droplet-based magnetoelectric hybrid system to generate electricity and collect water simultaneously. Advanced Materials, 2020, 32(50): 2006839
CrossRef
Google scholar
|
[290] |
Liu S, Liu X, Zhou G, Qin F, Jing M, Li L, Song W, Sun Z. A high-efficiency bioinspired photoelectric-electromechanical integrated nanogenerator. Nature Communications, 2020, 11(1): 6158
CrossRef
Google scholar
|
[291] |
Zhang C, Yuan W, Zhang B, Yang O, Liu Y, He L, Wang J, Wang Z L. High space efficiency hybrid nanogenerators for effective water wave energy harvesting. Advanced Functional Materials, 2022, 32(18): 2111775
CrossRef
Google scholar
|
[292] |
Wang H Y, Zhu Q Y, Ding Z Y, Li Z L, Zheng H W, Fu J J, Diao C L, Zhang X A, Tian J J, Zi Y L. A fully-packaged ship-shaped hybrid nanogenerator for blue energy harvesting toward seawater self-desalination and self-powered positioning. Nano Energy, 2019, 57: 616–624
CrossRef
Google scholar
|
[293] |
Zhang Q, Liang Q J, Liao Q L, Yi F, Zheng X, Ma M Y, Gao F F, Zhang Y. Service behavior of multifunctional triboelectric nanogenerators. Advanced Materials, 2017, 29(17): 1606703
CrossRef
Google scholar
|
[294] |
Feng L, Liu G L, Guo H Y, Tang Q, Pu X J, Chen J, Wang X, Xi Y, Hu C G. Hybridized nanogenerator based on honeycomb-like three electrodes for efficient ocean wave energy harvesting. Nano Energy, 2018, 47: 217–223
CrossRef
Google scholar
|
[295] |
Liang X, Jiang T, Liu G X, Xiao T X, Xu L, Li W, Xi F B, Zhang C, Wang Z L. Triboelectric nanogenerator networks integrated with power management module for water wave energy harvesting. Advanced Functional Materials, 2019, 29(41): 1807241
CrossRef
Google scholar
|
[296] |
Wen Z, Chen J, Yeh M H, Guo H Y, Li Z L, Fan X, Zhang T J, Zhu L P, Wang Z L. Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer. Nano Energy, 2015, 16: 38–46
CrossRef
Google scholar
|
[297] |
Li S M, Wang S H, Zi Y L, Wen Z, Lin L, Zhang G, Wang Z L. Largely improving the robustness and lifetime of triboelectric nanogenerators through automatic transition between contact and noncontact working states. ACS Nano, 2015, 9(7): 7479–7487
CrossRef
Google scholar
|
[298] |
Zheng F, Sun Y, Wei X, Chen J, Yuan Z, Jin X, Tao L, Wu Z. A hybridized water wave energy harvester with a swing magnetic structure toward intelligent fishing ground. Nano Energy, 2021, 90: 106631
CrossRef
Google scholar
|
[299] |
Xia K Q, Tang H C, Fu J M, Tian Y, Xu Z W, Lu J G, Zhu Z Y. A high strength triboelectric nanogenerator based on rigid-flexible coupling design for energy storage system. Nano Energy, 2020, 67: 104259
CrossRef
Google scholar
|
[300] |
Yang Z, Yang Y, Wang H, Liu F, Lu Y, Ji L, Wang Z L, Cheng J. Charge pumping for sliding-mode triboelectric nanogenerator with voltage stabilization and boosted current. Advanced Energy Materials, 2021, 11(28): 2101147
CrossRef
Google scholar
|
[301] |
Zhuang P, Sun Y, Li L, Chee M O L, Dong P, Pei L, Chu H, Sun Z, Shen J, Ye M, Ajayan P M. FIB-patterned nano-supercapacitors: minimized size with ultrahigh performances. Advanced Materials, 2020, 32(14): 1908072
CrossRef
Google scholar
|
[302] |
Cheng L, Xu Q, Zheng Y, Jia X, Qin Y. A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed. Nature Communications, 2018, 9(1): 3773
CrossRef
Google scholar
|
[303] |
He W, Liu W, Chen J, Wang Z, Liu Y, Pu X, Yang H, Tang Q, Yang H, Guo H, Hu C. Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect. Nature Communications, 2020, 11(1): 4277
CrossRef
Google scholar
|
[304] |
Feng X, Zhang Y, Kang L, Wang L, Duan C, Yin K, Pang J, Wang K. Integrated energy storage system based on triboelectric nanogenerator in electronic devices. Frontiers of Chemical Science and Engineering, 2021, 15(2): 238–250
CrossRef
Google scholar
|
[305] |
Wang K, Pang J, Li L, Zhou S, Li Y, Zhang T. Synthesis of hydrophobic carbon nanotubes/reduced graphene oxide composite films by flash light irradiation. Frontiers of Chemical Science and Engineering, 2018, 12(3): 376–382
|
[306] |
Zhang M, Liu Y, Li D, Cui X, Wang L, Li L, Wang K. Electrochemical impedance spectroscopy: a new chapter in the fast and accurate estimation of the state of health for lithium-ion batteries. Energies, 2023, 16: 1599
|
[307] |
Xia G, Huang Y, Li F, Wang L, Pang J, Li L, Wang K. A thermally flexible and multi-site tactile sensor for remote 3D dynamic sensing imaging. Frontiers of Chemical Science and Engineering, 2020, 14(6): 1039–1051
|
[308] |
Zhang M, Wang W, Xia G, Wang L, Wang K. Self-powered electronic skin for remote human–machine synchronization. ACS Applied Electronic Materials, 2023, 5(1): 498–508
|
[309] |
Feng D, Du H, Ran H, Lu T, Xia S, Xu L, Wang Z, Ma C. Antiferroelectric stability and energy storage properties of Co-doped AgNbO3 ceramics. Journal of Solid State Chemistry, 2022, 310: 123081
CrossRef
Google scholar
|
[310] |
Li X, Su J, Li Z, Zhao Z, Zhang F, Zhang L, Ye W, Li Q, Wang K, Wang X, Li H, Hu H, Yan S, Miao G X, Li Q. Revealing interfacial space charge storage of Li+/Na+/K+ by operando magnetometry. Science Bulletin, 2022, 67(11): 1145–1153
CrossRef
Google scholar
|
[311] |
Fu Y, Wang H, Tian G, Li Z, Hu H. Two-agent stochastic flow shop deteriorating scheduling via a hybrid multi-objective evolutionary algorithm. Journal of Intelligent Manufacturing, 2019, 30(5): 2257–2272
CrossRef
Google scholar
|
[312] |
Sun H, Yang D, Wang L, Wang K. A method for estimating the aging state of lithium-ion batteries based on a multi-linear integrated model. International Journal of Energy Research, 2022, 46(15): 24091–24104
CrossRef
Google scholar
|
[313] |
Li D, Yang D, Li L, Wang L, Wang K. Electrochemical impedance spectroscopy based on the state of health estimation for lithium-ion batteries. Energies, 2022, 15(18): 6665
CrossRef
Google scholar
|
[314] |
Cheng J, Ding W B, Zi Y L, Lu Y J, Ji L H, Liu F, Wu C S, Wang Z L. Triboelectric microplasma powered by mechanical stimuli. Nature Communications, 2018, 9(1): 3733
CrossRef
Google scholar
|
[315] |
Kim J, Cho H, Han M, Jung Y, Kwak S S, Yoon H J, Park B, Kim H, Kim H, Park J, Kim S W. Ultrahigh power output from triboelectric nanogenerator based on serrated electrode via spark discharge. Advanced Energy Materials, 2020, 10(44): 2002312
CrossRef
Google scholar
|
[316] |
Zhou L, Liu D, Zhao Z, Li S, Liu Y, Liu L, Gao Y, Wang Z L, Wang J. Simultaneously enhancing power density and durability of sliding-mode triboelectric nanogenerator via interface liquid lubrication. Advanced Energy Materials, 2020, 10(45): 2002920
CrossRef
Google scholar
|
[317] |
Xia X, Fu J, Zi Y. A universal standardized method for output capability assessment of nanogenerators. Nature Communications, 2019, 10(1): 4428
CrossRef
Google scholar
|
[318] |
Wang H, Xu L, Bai Y, Wang Z L. Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling. Nature Communications, 2020, 11(1): 4203
CrossRef
Google scholar
|
[319] |
Zhao Z, Dai Y, Liu D, Zhou L, Li S, Wang Z L, Wang J. Rationally patterned electrode of direct-current triboelectric nanogenerators for ultrahigh effective surface charge density. Nature Communications, 2020, 11(1): 6186
CrossRef
Google scholar
|
[320] |
Cui Z, Kang L, Li L, Wang L, Wang K. A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF. Energy, 2022, 259: 124933
CrossRef
Google scholar
|
[321] |
Liang X Q, Qi R J, Zhao M, Zhang Z L, Liu M Y, Pu X, Wang Z L, Lu X M. Ultrafast lithium-ion capacitors for efficient storage of energy generated by triboelectric nanogenerators. Energy Storage Materials, 2020, 24: 297–303
CrossRef
Google scholar
|
[322] |
Chen J, Guo H Y, Pu X J, Wang X, Xi Y, Hu C G. Traditional weaving craft for one-piece self-charging power textile for wearable electronics. Nano Energy, 2018, 50: 536–543
CrossRef
Google scholar
|
[323] |
Hinchet R, Yoon H J, Ryu H, Kim M K, Choi E K, Kim D S, Kim S W. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science, 2019, 365(6452): 491–494
CrossRef
Google scholar
|
[324] |
Sun H, Zhang Y, Zhang J, Sun X M, Peng H S. Energy harvesting and storage in 1D devices. Nature Reviews. Materials, 2017, 2(6): 17023
CrossRef
Google scholar
|
[325] |
Liang X, Jiang T, Feng Y, Lu P, An J, Wang Z L. Triboelectric nanogenerator network integrated with charge excitation circuit for effective water wave energy harvesting. Advanced Energy Materials, 2020, 10(40): 2002123
CrossRef
Google scholar
|
[326] |
Guo Y, Yu P, Zhu C, Zhao K, Wang L, Wang K. A state-of-health estimation method considering capacity recovery of lithium batteries. International Journal of Energy Research, 2022, 46(15): 23730–23745
CrossRef
Google scholar
|
[327] |
Zi Y L, Wang J, Wang S H, Li S M, Wen Z, Guo H Y, Wang Z L. Effective energy storage from a triboelectric nanogenerator. Nature Communications, 2016, 7(1): 10987
CrossRef
Google scholar
|
[328] |
Pomerantseva E, Bonaccorso F, Feng X L, Cui Y, Gogotsi Y. Energy storage: the future enabled by nanomaterials. Science, 2019, 366(6468): 969–681
CrossRef
Google scholar
|
[329] |
Li X, Yin X, Zhao Z, Zhou L, Liu D, Zhang C, Zhang C, Zhang W, Li S, Wang J, Wang Z L. Long-lifetime triboelectric nanogenerator operated in conjunction modes and low crest factor. Advanced Energy Materials, 2020, 10(7): 1903024
CrossRef
Google scholar
|
[330] |
Wu H, Wang S, Wang Z, Zi Y. Achieving ultrahigh instantaneous power density of 10 MW·m–2 by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG). Nature Communications, 2021, 12(1): 5470
CrossRef
Google scholar
|
[331] |
Liu W, Wang Z, Wang G, Zeng Q, He W, Liu L, Wang X, Xi Y, Guo H, Hu C, Wang Z L. Switched-capacitor-convertors based on fractal design for output power management of triboelectric nanogenerator. Nature Communications, 2020, 11(1): 1883
CrossRef
Google scholar
|
[332] |
Cui Z, Kang L, Li L, Wang L, Wang K. A hybrid neural network model with improved input for state of charge estimation of lithium-ion battery at low temperatures. Renewable Energy, 2022, 98: 1328–1340
CrossRef
Google scholar
|
[333] |
Lin Z M, Zhang B B, Guo H Y, Wu Z Y, Zou H Y, Yang J, Wang Z L. Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy. Nano Energy, 2019, 64: 103908
CrossRef
Google scholar
|
[334] |
Peng F, Liu D, Zhao W, Zheng G Q, Ji Y X, Dai K, Mi L W, Zhang D B, Liu C T, Shen C Y. Facile fabrication of triboelectric nanogenerator based on low-cost thermoplastic polymeric fabrics for large-area energy harvesting and self-powered sensing. Nano Energy, 2019, 65: 104068
CrossRef
Google scholar
|
[335] |
Yang X D, Xu L, Lin P, Zhong W, Bai Y, Luo J J, Chen J, Wang Z L. Macroscopic self-assembly network of encapsulated high-performance triboelectric nanogenerators for water wave energy harvesting. Nano Energy, 2019, 60: 404–412
CrossRef
Google scholar
|
[336] |
Jiang Q, Wu C S, Wang Z J, Wang A C, He J H, Wang Z L, Alshareef H N. Mxene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit. Nano Energy, 2018, 45: 266–272
CrossRef
Google scholar
|
[337] |
Zhao K, Yang Y, Liu X, Wang Z L. Triboelectrification-enabled self-charging lithium-ion batteries. Advanced Energy Materials, 2017, 7(21): 1700103
CrossRef
Google scholar
|
[338] |
Hou H D, Xu Q K, Pang Y K, Li L, Wang J L, Zhang C, Sun C W. Efficient storing energy harvested by triboelectric nanogenerators using a safe and durable all-solid-state sodium-ion battery. Advanced Science, 2017, 4(8): 1700072
CrossRef
Google scholar
|
[339] |
Qin H F, Cheng G, Zi Y L, Gu G Q, Zhang B, Shang W Y, Yang F, Yang J J, Du Z L, Wang Z L. High energy storage efficiency triboelectric nanogenerators with unidirectional switches and passive power management circuits. Advanced Functional Materials, 2018, 28(51): 1805216
CrossRef
Google scholar
|
[340] |
Yang J J, Yang F, Zhao L, Shang W Y, Qin H F, Wang S J, Jiang X H, Cheng G, Du Z L. Managing and optimizing the output performances of a triboelectric nanogenerator by a self-powered electrostatic vibrator switch. Nano Energy, 2018, 46: 220–228
CrossRef
Google scholar
|
[341] |
Ahmed A, Hassan I, Ibn-Mohammed T, Mostafa H, Reaney I M, Koh L S C, Zu J, Wang Z L. Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators. Energy & Environmental Science, 2017, 10(3): 653–671
CrossRef
Google scholar
|
[342] |
Peng J, Kang S D, Snyder G J. Optimization principles and the figure of merit for triboelectric generators. Science Advances, 2017, 3(12): eaap8576
CrossRef
Google scholar
|
[343] |
Zi Y L, Niu S M, Wang J, Wen Z, Tang W, Wang Z L. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nature Communications, 2015, 6(1): 8376
CrossRef
Google scholar
|
/
〈 | 〉 |