Overoxidized poly(3,4-ethylenedioxythiophene)-overoxidized polypyrrole composite films with enhanced electrocatalytic ability for rutin and luteolin determination

Rongqian Meng, Jianke Tang, Hong Yang, Lijun Guo, Yongbo Song, Qiaoling Li, Yulan Niu

PDF(4749 KB)
PDF(4749 KB)
Front. Chem. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (6) : 735-748. DOI: 10.1007/s11705-022-2262-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Overoxidized poly(3,4-ethylenedioxythiophene)-overoxidized polypyrrole composite films with enhanced electrocatalytic ability for rutin and luteolin determination

Author information +
History +

Abstract

In this study, a simple and effective method was proposed to improve the electrocatalytic ability of overoxidized poly(3,4-ethylenedioxythiophene)-overoxidized polypyrrole composite films modified on glassy carbon electrode for rutin and luteolin determination. The composite electrode was prepared by cyclic voltammetry copolymerization with LiClO4-water as the supporting electrolyte. The peak current of rutin and luteolin on the composite electrode gradually decreased or even disappeared with the increase in the positive potential limit. After incubation in NaOH–ethanol solution with a volume ratio of 1:1, the composite electrodes prepared at positive potential limit greater than 1.5 V exhibited enhanced differential pulse voltammetry peak currents, reduced charge transfer resistance, larger effective specific surface area and higher electron transfer rate constant. The composite electrode prepared in the potential range of 0–1.7 V showed optimal electrocatalytic performance. The X-ray photoelectron spectroscopy results indicated that the content of –SO2/–SO and –C=N– groups in the composite film increased significantly after incubation. Further, the Raman spectra and Fourier transform infrared spectra revealed that the thiophene ring structure changed from benzene-type to quinone-type, and the quinone-type pyrrole ring was formed. The electrocatalytic mechanism of the composite film was proposed based on the experimental results and further verified by Density Functional Theory calculation.

Graphical abstract

Keywords

overoxidized poly(3 / 4-ethylenedioxythiophene)-overoxidized polypyrrole / rutin / luteolin / incubation / electrocatalytic mechanism

Cite this article

Download citation ▾
Rongqian Meng, Jianke Tang, Hong Yang, Lijun Guo, Yongbo Song, Qiaoling Li, Yulan Niu. Overoxidized poly(3,4-ethylenedioxythiophene)-overoxidized polypyrrole composite films with enhanced electrocatalytic ability for rutin and luteolin determination. Front. Chem. Sci. Eng., 2023, 17(6): 735‒748 https://doi.org/10.1007/s11705-022-2262-z

References

[1]
Ye S H, Li G R. Polypyrrole@NiCo hybrid nanotube arrays as high performance electrocatalyst for hydrogen evolution reaction in alkaline solution. Frontiers of Chemical Science and Engineering, 2018, 12(3): 473–480
CrossRef Google scholar
[2]
Zhu H, Li M, Wang D H, Zhou S B, Peng C. Interfacial synthesis of free-standing asymmetrical PPY-PEDOT copolymer film with 3D network structure for supercapacitors. Journal of the Electrochemical Society, 2017, 164(9): A1820–A1825
CrossRef Google scholar
[3]
Wang W, Lv H J, Du J, Chen A B. Fabrication of N-doped carbon nanobelts from a polypyrrole tube by confined pyrolysis for supercapacitors. Frontiers of Chemical Science and Engineering, 2021, 15(5): 1312–1321
CrossRef Google scholar
[4]
Zhao H P, Liu L, Fang Y G, Vellacheri R, Lei Y. Nickel nanopore arrays as promising current collectors for constructing solid-state supercapacitors with ultrahigh rate performance. Frontiers of Chemical Science and Engineering, 2018, 12(3): 339–345
CrossRef Google scholar
[5]
Astratine L, Magner E, Cassidy J, Betts A. Electrodeposition and characterisation of copolymers based on pyrrole and 3,4-ethylenedioxythiophene in BMIM BF4 using a microcell configuration. Electrochimica Acta, 2014, 115: 440–448
CrossRef Google scholar
[6]
Zainudeen U L, Careem M A, Skaarup S. PEDOT and PPy conducting polymer bilayer and trilayer actuators. Sensors and Actuators B: Chemical, 2008, 134(2): 467–470
CrossRef Google scholar
[7]
Li Y F, Qian R Y. Electrochemical overoxidation of conducting polypyrrole nitrate film in aqueous solutions. Electrochimica Acta, 2000, 45(11): 1727–1731
CrossRef Google scholar
[8]
Wang D T, Pillier F, Cachet H, Debiemme-Chouvy C. One-pot electrosynthesis of ultrathin overoxidized poly(3,4-ethylenedioxythiophene) films. Electrochimica Acta, 2022, 401: 139472–139480
CrossRef Google scholar
[9]
Bull R A, Fan F R F, Bard A J. Polymer films on electrodes: VII. Electrochemical behavior at polypyrrole-coated platinum and tantalum electrodes. Journal of the Electrochemical Society, 1982, 129(5): 1009–1015
CrossRef Google scholar
[10]
Du X, Wang Z. Effects of polymerization potential on the properties of electrosynthesized PEDOT films. Electrochimica Acta, 2003, 48(12): 1713–1717
CrossRef Google scholar
[11]
Debiemme-Chouvy C, Tran T T M. An insight into the overoxidation of polypyrrole materials. Electrochemistry Communications, 2008, 10(6): 947–950
CrossRef Google scholar
[12]
Lin J M, Su Y L, Chang W T, Su W Y, Cheng S H. Strong adsorption characteristics of a novel overoxidized poly(3,4-ethylenedioxythiophene) film and application for dopamine sensing. Electrochimica Acta, 2014, 149: 65–75
CrossRef Google scholar
[13]
Amanchukwu C V, Gauthier M, Batcho T P, Symister C, Shao-Horn Y, D’Arcy J M, Hammond P T. Evaluation and stability of PEDOT polymer electrodes for Li-O2 Batteries. Journal of Physical Chemistry Letters, 2016, 7(19): 3770–3775
CrossRef Google scholar
[14]
Gao Z Q, Zi M X, Chen B S. The influence of overoxidation treatment on the permeability of polypyrrole films. Journal of Electroanalytical Chemistry, 1994, 373(1-2): 141–148
CrossRef Google scholar
[15]
Peairs M J, Ross A E, Venton B J. Comparison of nafion- and overoxidized polypyrrole-carbon nanotube electrodes for neurotransmitter detection. Analytical Methods, 2011, 3(10): 2379–2385
CrossRef Google scholar
[16]
Ozcan A, Ilkbas S. Preparation of poly(3,4-ethylenedioxythiophene) nanofibers modified pencil graphite electrode and investigation of over-oxidation conditions for the selective and sensitive determination of uric acid in body fluids. Analytica Chimica Acta, 2015, 891: 312–320
CrossRef Google scholar
[17]
Ujvari M, Láng G G, Vesztergom S, Szekeres K J, Kovács N, Gubicza J. Structural changes during the overoxidation of electrochemically deposited poly(3,4-ethylenedioxythiophene) films. Journal of Electrochemical Science and Engineering, 2016, 6(1): 77–89
CrossRef Google scholar
[18]
Hui Y, Bian C, Wang J, Tong J, Xia S. Comparison of two types of overoxidized PEDOT films and their application in sensor fabrication. Sensors, 2017, 17(3): 628–638
CrossRef Google scholar
[19]
Shetti N P, Mishra A, Basu S, Mascarenhas R J, Kakarla R R, Aminabhavi T M. Skin-patchable electrodes for biosensor applications: a review. ACS Biomaterials Science & Engineering, 2020, 6(4): 1823–1835
CrossRef Google scholar
[20]
Ganeshpurkar A, Saluja A K. The pharmacological potential of rutin. Saudi Pharmaceutical Journal, 2017, 25(2): 149–164
CrossRef Google scholar
[21]
Gao F, Tu X L, Ma X, Xie Y, Zou J, Huang X G, Qu F L, Yu Y F, Lu L M. NiO@Ni-MOF nanoarrays modified Ti mesh as ultrasensitive electrochemical sensing platform for luteolin detection. Talanta, 2020, 215: 120891–120898
CrossRef Google scholar
[22]
Meng R Q, Li Q L, Zhang S J, Tang J K, Ma C L, Jin R Y. GQDs/PEDOT bilayer films modified electrode as a novel electrochemical sensing platform for rutin detection. International Journal of Electrochemical Science, 2019, 14(12): 11000–11011
CrossRef Google scholar
[23]
Kulkarni D R, Malode S J, Keerthi Prabhu K, Ayachit N H, Kulkarni R M, Shetti N P. Development of a novel nanosensor using Ca-doped ZnO for antihistamine drug. Materials Chemistry and Physics, 2020, 246: 122791–122799
CrossRef Google scholar
[24]
Nespurek S, Kubersky P, Polansky R, Trchova M, Sebera J, Sychrovsky V. Raman spectroscopy and DFT calculations of PEDOT:PSS in a dipolar field. Physical Chemistry Chemical Physics, 2021, 24(1): 541–550
CrossRef Google scholar
[25]
Zhang J H, She Y B. Mechanism of methanol decomposition on the Pd/WC(0001) surface unveiled by first-principles calculations. Frontiers of Chemical Science and Engineering, 2020, 14(6): 1052–1064
CrossRef Google scholar
[26]
Láng G G, Ujvári M, Vesztergom S, Kondratiev V, Gubicza J, Szekeres K J. The electrochemical degradation of poly(3,4-ethylenedioxythiophene) films electrodeposited from aqueous solutions. Zeitschrift für Physikalische Chemie, 2016, 230(9): 1281–1302
CrossRef Google scholar
[27]
Ujvári M, Gubicza J, Kondratiev V, Szekeres K J, Láng G G. Morphological changes in electrochemically deposited poly(3,4-ethylenedioxythiophene) films during overoxidation. Journal of Solid State Electrochemistry, 2015, 19(4): 1247–1252
CrossRef Google scholar
[28]
Debiemme-Chouvy C. One-step electrochemical synthesis of a very thin overoxidized polypyrrole film. Electrochemical and Solid-State Letters, 2007, 10(12): E24–E26
CrossRef Google scholar
[29]
Farrington A M, Slater J M. Prediction and characterization of the charge/size exclusion properties of over-oxidized poly(pyrrole) films. Electroanalysis, 1997, 9(11): 843–847
CrossRef Google scholar
[30]
Anson F C. Application of potentiostatic current integration to the study of the adsorption of cobalt(III)-(ethylenedinitrilo) tetracetate on mercury electrodes. Analytical Chemistry, 1964, 36(4): 932–934
CrossRef Google scholar
[31]
Velasco J G. Determination of standard rate constants for electrochemical irreversible processes from linear sweep voltammograms. Electroanalysis, 1997, 9(11): 880–882
CrossRef Google scholar
[32]
Ouyang J Y, Xu Q F, Chu C W, Yang Y, Li G, Shinar J. On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment. Polymer, 2004, 45(25): 8443–8450
CrossRef Google scholar
[33]
Marciniak S, Crispin X, Uvdal K, Trzcinski M, Birgerson J, Groenendaal L, Louwet F, Salaneck W R. Light induced damage in poly(3,4-ethylenedioxythiophene) and its derivatives studied by photoelectron spectroscopy. Synthetic Metals, 2004, 141(1-2): 67–73
CrossRef Google scholar
[34]
Lan M H, Zhang J F, Chui Y S, Wang H, Yang Q D, Zhu X Y, Wei H X, Liu W M, Ge J H, Wang P F, Chen X, Lee C S, Zhang W. A recyclable carbon nanoparticle-based fluorescent probe for highly selective and sensitive detection of mercapto biomolecules. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2015, 3(1): 127–134
CrossRef Google scholar
[35]
Qiao Y S, Shen L Z, Wu M X, Guo Y, Meng S M. A novel chemical synthesis of bowl-shaped polypyrrole particles. Materials Letters, 2014, 126: 185–188
CrossRef Google scholar
[36]
Zhang J T, Zhao X S. Conducting polymers directly coated on reduced graphene oxide sheets as high-performance supercapacitor electrodes. Journal of Physical Chemistry C, 2012, 116(9): 5420–5426
CrossRef Google scholar
[37]
Wen P, Tan C H, Zhang J C, Meng F B, Jiang L, Sun Y H, Chen X D. Chemically tunable photoresponse of ultrathin polypyrrole. Nanoscale, 2017, 9(23): 7760–7764
CrossRef Google scholar
[38]
Ivanko I, Svoboda J, Lukešová M, Šeděnková I, Tomšík E. Hydrogen bonding as a tool to control chain structure of PEDOT: electrochemical synthesis in the presence of different electrolytes. Macromolecules, 2020, 53(7): 2464–2473
CrossRef Google scholar
[39]
Blacha A, Koscielniak P, Sitarz M, Szuber J, Zak J. Pedot brushes electrochemically synthesized on thienyl-modified glassy carbon surfaces. Electrochimica Acta, 2012, 62: 441–446
CrossRef Google scholar
[40]
Kulandaivalu S, Zainal Z, Sulaiman Y. Influence of monomer concentration on the morphologies and electrochemical properties of PEDOT, PANI, and PPy prepared from aqueous solution. International Journal of Polymer Science, 2016, 2016: 1–12
CrossRef Google scholar
[41]
Culebras M, Gómez C M, Cantarero A. Enhanced thermoelectric performance of PEDOT with different counter-ions optimized by chemical reduction. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(26): 10109–10115
CrossRef Google scholar
[42]
Chen F E, Shi G Q, Fu M X, Qu L T, Hong X Y. Raman spectroscopic evidence of thickness dependence of the doping level of electrochemically deposited polypyrrole film. Synthetic Metals, 2003, 132(2): 125–132
CrossRef Google scholar
[43]
Rodriguez-Jimenez S, Bennington M S, Akbarinejad A, Tay E J, Chan E W C, Wan Z, Abudayyeh A M, Baek P, Feltham H L C, Barker D, Gordon K C, Travas-Sejdic J, Brooker S. Electroactive metal complexes covalently attached to conductive PEDOT films: a spectroelectrochemical study. ACS Applied Materials & Interfaces, 2021, 13(1): 1301–1313
CrossRef Google scholar
[44]
Santos M J L, Brolo A G, Girotto E M. Study of polaron and bipolaron states in polypyrrole by in situ Raman spectroelectrochemistry. Electrochimica Acta, 2007, 52(20): 6141–6145
CrossRef Google scholar
[45]
Mathys G I, Truong V T. Spectroscopic study of thermo-oxidative degradation of polypyrrole powder by FT-IR. Synthetic Metals, 1997, 89(2): 103–109
CrossRef Google scholar
[46]
Song J C, Noh H J, Lee J H, Nah I W, Cho W I, Kim H T. In situ coating of poly(3,4-ethylenedioxythiophene) on sulfur cathode for high performance lithium-sulfur batteries. Journal of Power Sources, 2016, 332: 72–78
CrossRef Google scholar
[47]
Han Y Q, Shen M X, Wu Y, Zhu J J, Ding B, Tong H, Zhang X G. Preparation and electrochemical performances of PEDOT/sulfonic acid-functionalized graphene composite hydrogel. Synthetic Metals, 2013, 172: 21–27
CrossRef Google scholar
[48]
Xie H, Yan M M, Jiang Z Y. Transition of polypyrrole from electroactive to electroinactive state investigated by use of in situ FTIR spectroscopy. Electrochimica Acta, 1997, 42(15): 2361–2367
CrossRef Google scholar
[49]
Coleone A P, Lascane L G, Batagin-Neto A. Polypyrrole derivatives for optoelectronic applications: a DFT study on the influence of side groups. Physical Chemistry Chemical Physics, 2019, 21(32): 17729–17739
CrossRef Google scholar
[50]
Wasim F, Kosar N, Mahmood T, Ayub K. Sensor applications of polypyrrole for oxynitrogen analytes: a DFT study. Journal of Molecular Modeling, 2018, 24(11): 308–322
CrossRef Google scholar

Acknowledgements

We greatly appreciate the support of the Key Research and Development (R&D) Projects of Shanxi Province (Grant No. 201903D121114). This project is also supported by Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant No. 2020L0667).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://dx.doi.org/10.1007/s11705-022-2262-z and is accessible for authorized users.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(4749 KB)

Accesses

Citations

Detail

Sections
Recommended

/