Denitrification performance and sulfur resistance mechanism of Sm–Mn catalyst for low temperature NH3-SCR

Junlin Xie , Yanli Ye , Qinglei Li , Tianhong Kang , Sensheng Hou , Qiqi Jin , Feng He , De Fang

Front. Chem. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (5) : 617 -633.

PDF (8106KB)
Front. Chem. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (5) : 617 -633. DOI: 10.1007/s11705-022-2258-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Denitrification performance and sulfur resistance mechanism of Sm–Mn catalyst for low temperature NH3-SCR

Author information +
History +
PDF (8106KB)

Abstract

MnOx and Sm–Mn catalysts were prepared with the coprecipitation method, and they showed excellent activities and sulfur resistances for the selective catalytic reduction of NOx by NH3 between 50 and 300 °C in the presence of excess oxygen. 0.10Sm–Mn catalyst indicated better catalytic activity and sulfur resistance. Additionally, the Sm doping led to multi-aspect impacts on the phases, morphology structures, gas adsorption, reactions process, and specific surface areas. Therefore, it significantly enhances the NO conversion, N2 selectivity, and sulfur resistance. Based on various experimental characterization results, the reaction mechanism of catalysts and the effect of SO2 on the reaction process about the catalysts were extensively explored. For 0.10Sm–Mn catalyst, manganese sulfate and sulfur ammonium cannot be generated broadly under the influence of SO2 and the amount of surface adsorbed oxygen. The Bronsted acid sites strengthen significantly due to the addition of SO2, enhancing the sulfur resistance of the 0.10Sm–Mn catalyst.

Graphical abstract

Keywords

MnOx / Sm–Mn / catalyst / NH3-SCR / sulfur resistance

Cite this article

Download citation ▾
Junlin Xie, Yanli Ye, Qinglei Li, Tianhong Kang, Sensheng Hou, Qiqi Jin, Feng He, De Fang. Denitrification performance and sulfur resistance mechanism of Sm–Mn catalyst for low temperature NH3-SCR. Front. Chem. Sci. Eng., 2023, 17(5): 617-633 DOI:10.1007/s11705-022-2258-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Peng Z, Chen L H, Sun M H, Wu P, Cai C, Deng Z, Li Y, Zheng W H, Su B L. Template-free synthesis of hierarchically macro-mesoporous Mn-TiO2 catalysts for selective reduction of NO with NH3. Frontiers of Chemical Science and Engineering, 2018, 12(1): 43–49

[2]

Damma D, Pappas D K, Boningari T, Smirniotis P G. Study of Ce, Sb, and Y exchanged titania nanotubes and superior catalytic performance for the selective catalytic reduction of NOx. Applied Catalysis B: Environmental, 2021, 287: 119939

[3]

Fang D, Qi K, Li F X, He F, Xie J L. Excellent sulfur tolerance performance over Fe-SO4/TiO2 catalysts for NH3-SCR: influence of sulfation and Fe-based sulfates. Journal of Environmental Chemical Engineering, 2022, 10(1): 107038

[4]

Yang W W, Liu F D, Xie L J, Lian Z H, He H. Effect of V2O5 additive on the SO2 resistance of a Fe2O3/AC catalyst for NH3-SCR of NOx at low temperatures. Industrial & Engineering Chemistry Research, 2016, 55(10): 2677–2685

[5]

Fang D, He F, Xie J L, Fu Z B, Chen J F. Effects of atmospheres and precursors on MnOx/TiO2 catalysts for NH3-SCR at low temperature. Journal of Wuhan University of Technology-Materials Science Edition, 2013, 28(5): 888–892

[6]

Fang D, Xie J L, Hu H, Yang H, He F, Fu Z B. Identification of MnOx species and Mn valence states in MnOx/TiO2 catalysts for low temperature SCR. Chemical Engineering Journal, 2015, 271: 23–30

[7]

Fang D, He F, Xie J L. Characterization and performance of common alkali metals and alkaline earth metals loaded Mn/TiO2 catalysts for NOx removal with NH3. Journal of the Energy Institute, 2019, 92(2): 319–331

[8]

Xiong S C, Peng Y, Wang D, Huang N, Zhang Q F, Yang S J, Chen J J, Li J H. The role of the Cu dopant on a Mn3O4 spinel SCR catalyst: improvement of low-temperature activity and sulfur resistance. Chemical Engineering Journal, 2020, 387: 124090

[9]

Kantcheva M. Identification, stability, and reactivity of NOx species adsorbed on titania-supported manganese catalysts. Journal of Catalysis, 2001, 204(2): 479–494

[10]

Wu X M, Yu X L, He X Y, Jing G H. Insight into low-temperature catalytic NO reduction with NH3 on Ce-doped manganese oxide octahedral molecular sieves. Journal of Physical Chemistry C, 2019, 123(17): 10981–10990

[11]

Thirupathi B, Smirniotis G. Co-doping a metal (Cr, Fe, Co, Ni, Cu, Zn, Ce, and Zr) on Mn/TiO2 catalyst and its effect on the selective reduction of NO with NH3 at low-temperatures. Applied Catalysis B: Environmental, 2011, 110: 195–206

[12]

Roy S, Viswanath B, Hegde M S, Madras G. Low-temperature selective catalytic reduction of NO with NH3 over Ti0.9M0.1O2-δ (M = Cr, Mn, Fe, Co, Cu). Journal of Physical Chemistry C, 2008, 112(15): 6002–6012

[13]

Yu J, Guo F, Wang Y L, Zhu J H, Liu Y Y, Su F B, Gao S Q, Xu G W. Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3. Applied Catalysis B: Environmental, 2010, 95(1-2): 160–168

[14]

Chen J Y, Fu P, Lv D F, Chen Y, Fan M L, Wu J L, Meshram A, Mu B, Li X, Xia Q B. Unusual positive effect of SO2 on Mn-Ce mixed-oxide catalyst for the SCR reaction of NOx with NH3. Chemical Engineering Journal, 2021, 407: 127071

[15]

Jin R B, Liu Y, Wang Y, Cen W L, Wu Z B, Wang H Q, Weng X L. The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature. Applied Catalysis B: Environmental, 2014, 148-149: 582–588

[16]

Lu W, Cui S P, Guo H X, Ma X Y, Zhang L J. DRIFT and DFT study of cerium addition on SO2 of manganese-based catalysts for low temperature SCR. Journal of Molecular Catalysis A: Chemical, 2016, 421: 102–108

[17]

Wu Z B, Jin R B, Wang H Q, Liu Y. Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature. Catalysis Communications, 2009, 10(6): 935–939

[18]

Gan L A, Li K Z, Yang W N, Chen J J, Peng Y, Li J H. Core-shell-like structured α-MnO2@CeO2 catalyst for selective catalytic reduction of NO: promoted activity and SO2 tolerance. Chemical Engineering Journal, 2020, 391: 123473

[19]

Chen C, Xie H D, He P W, Liu X, Yang C, Wang N, Ge C M. Comparison of low-temperature catalytic activity and H2O/SO2 resistance of the Ce–Mn/TiO2 NH3-SCR catalysts prepared by the reverse co-precipitation, co-precipitation and impregnation method. Applied Surface Science, 2022, 571: 151285

[20]

Lu W, Wang Z W, Liu Y X, Guo G S, Dai H X, Cui S P, Deng J G. Support promotion effect on the SO2 and K+ co-poisoning resistance of MnO2/TiO2 for NH3-SCR of NO. Journal of Hazardous Materials, 2021, 416: 126117

[21]

Han Z C, Yu Q B, Xue Z J, Liu K J, Qin Q. Sm-doped manganese-based Zr–Fe polymeric pillared interlayered montmorillonite for low temperature selective catalytic reduction of NOx by NH3 in metallurgical sintering flue gas. RSC Advances, 2018, 8(73): 42017–42024

[22]

Meng D M, Zhan W C, Guo Y, Guo Y L, Wang L, Lu G Z. A highly effective catalyst of Sm–MnOx for the NH3-SCR of NOx at low temperature: promotional role of Sm and its catalytic performance. ACS Catalysis, 2015, 5(10): 5973–5983

[23]

Liu L J, Xu K, Su S, He L M, Qing M X, Chi H Y, Liu T, Hu S, Wang Y, Xiang J. Efficient Sm modified Mn/TiO2 catalysts for selective catalytic reduction of NO with NH3 at low temperature. Applied Catalysis A: General, 2020, 592: 117413

[24]

Chen L, Yang J, Ren S, Chen Z C, Zhou Y H, Liu W Z. Effects of Sm modification on biochar supported Mn oxide catalysts for low-temperature NH3-SCR of NO. Journal of the Energy Institute, 2021, 98: 234–243

[25]

Fang D, He F, Liu X Q, Qi K, Xie J L, Li F X, Yu C Q. Low temperature NH3-SCR of NO over an unexpected Mn-based catalyst: promotional effect of Mg doping. Applied Surface Science, 2018, 427: 45–55

[26]

Fang D, Xie J L, Hu H, Zhang Z, He F, Zheng Y, Zhang Q. Effects of precursors and preparation methods on the potassium deactivation of MnOx/TiO2 catalysts for NO removal. Fuel Processing Technology, 2015, 134: 465–472

[27]

Fang D, Li D, He F, Xie J L, Xiong C C, Chen Y L. Experimental and DFT study of the adsorption and activation of NH3 and NO on Mn-based spinels supported on TiO2 catalysts for SCR of NOx. Computational Materials Science, 2019, 160: 374–381

[28]

Fang D, Hou S S, Ye Y Y, Jin Q Q, He F, Xie J L. Insight into highly efficient FeOx catalysts for the selective catalytic reduction of NOx by NH3: experimental and DFT study. Applied Surface Science, 2022, 599: 153998

[29]

Powell C J. Calibrations and checks of the binding-energy scales of X-ray photoelectron spectrometers. Journal of Electron Spectroscopy and Related Phenomena, 2022, 257: 146808

[30]

Fang D, He F, Xie J L, Xue L H. Calibration of binding energy positions with C1s for XPS results. Journal of Wuhan University of Technology-Materials Science Edition, 2020, 35(4): 711–718

[31]

Sun C Z, Liu H, Chen W, Chen D Z, Yu S H, Liu A N, Dong L, Feng S. Insights into the Sm/Zr co-doping effects on N2 selectivity and SO2 resistance of a MnOx-TiO2 catalyst for the NH3-SCR reaction. Chemical Engineering Journal, 2018, 347: 27–40

[32]

Chen Z C, Ren S, Wang M M, Yang J, Chen L, Liu W Z, Liu Q C, Su B. Insights into samarium doping effects on catalytic activity and SO2 tolerance of MnFeOx catalyst for low-temperature NH3-SCR reaction. Fuel, 2022, 321: 124113

[33]

Qi G S, Yang R T. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst. Journal of Catalysis, 2013, 217(2): 434–441

[34]

Mao L Q, T-Raissi A, Huang C, Muradov N Z. Thermal decomposition of (NH4)2SO4 in presence of Mn3O4. International Journal of Hydrogen Energy, 2011, 36(10): 5822–5827

[35]

Tseng T K, Chu H, Hsu H H. Characterization of γ-alumina-supported manganese oxide as an incineration catalyst for trichloroethylene. Environmental Science & Technology, 2003, 37(1): 171–176

[36]

Jin R B, Liu Y, Wu Z B, Wang H Q, Gu T T. Low-temperature selective catalytic reduction of NO with NH3 over Mn–Ce oxides supported on TiO2 and Al2O3: a comparative study. Chemosphere, 2010, 78(9): 1160–1166

[37]

Qi G S, Yang R T. Characterization and FTIR studies of MnOx–CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3. Journal of Physical Chemistry B, 2004, 108(40): 15738–15747

[38]

Mihaylov M, Chakarova K, Hadjiivanov K. Formation of carbonyl and nitrosyl complexes on titania- and zirconia-supported nickel: FTIR spectroscopy study. Journal of Catalysis, 2004, 228(2): 273–281

[39]

Zhou C C, Zhang Y P, Wang X L, Xu H T, Sun K Q, Shen K. Influence of the addition of transition metals (Cr, Zr, Mo) on the properties of MnOx–FeOx catalysts for low-temperature selective catalytic reduction of NOx by ammonia. Journal of Colloid and Interface Science, 2013, 392: 319–324

[40]

Atribak I, Azambre B, Lopez A B, Garcia-Garcia A. Effect of NOx adsorption/desorption over ceria-zirconia catalysts on the catalytic combustion of model soot. Applied Catalysis B: Environmental, 2009, 92(1–2): 126–137

[41]

Kijlstra W S, Brands D S, Poels E K, Bliek A. Kinetics of the selective catalytic reduction of NO with NH3 over MnOx/Al2O3 catalysts at low temperatures. Catalysis Today, 1999, 50(1): 133–140

[42]

Kijlstra W S, Brands D S, Smit H I, Poels E K, Bliek A. Mechanism of the selective catalytic reduction of NO with NH3 over MnOx/Al2O3. Journal of Catalysis, 1997, 171(1): 208–218

[43]

Hadjiivanov K I. Identification of neutral and charged NxOy surface species by IR spectroscopy. Catalysis Reviews, 2007, 42(1): 71–144

[44]

Wang W C, McCool G, Kapur N, Yuan G, Shan B, Nguyen M, Graham U M, Davis B H, Jacobs G, Cho K, Hao X K. Mixed-phase oxide catalyst based on Mn-mullite (Sm, Gd)Mn2O5 for NO oxidation in diesel exhaust. Science, 2012, 337(6096): 832–835

[45]

Yan L J, Liu Y Y, Zha K W, Li H R, Shi L Y, Zhang D S. Scale-activity relationship of MnOx-FeOy nanocage catalysts derived from Prussian blue analogues for low-temperature NO reduction: experimental and DFT studies. ACS Applied Materials & Interfaces, 2017, 9(3): 2581–2593

[46]

Liu S, Wu X D, Weng D, Rui R. NOx-assisted soot oxidation on Pt–Mg/Al2O3 catalysts: magnesium precursor, Pt particle size, and Pt–Mg interaction. Industrial & Engineering Chemistry Research, 2012, 51(5): 2271–2279

[47]

Smirniotis P G, Sreekanth P M, Penna D A, Jenkins R G. Manganese oxide catalysts supported on TiO2, Al2O3, and SiO2: a comparison for low-temperature SCR of NO with NH3. Industrial & Engineering Chemistry Research, 2006, 45(19): 6436–6443

[48]

Ren W, Zhao B, Zhuo Y Q, Chen C. Catalytic mechanism of NaY zeolite supported FeSO4 catalyst for selective catalytic reduction of NOx. In: Qi H, Zhao B, eds. 7th International Symposium on Coal Combustion. Berlin: Springer, 2012, 357–362

[49]

Holmgreen E M, Yung M, Ozkan Y U S. Pd-based sulfated zirconia prepared by a single step sol–gel procedure for lean NOx reduction. Journal of Molecular Catalysis A: Chemical, 2007, 270(1–2): 101–111

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (8106KB)

3588

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/