Mechanism of ethanol/water reverse separation through a functional graphene membrane: a molecular simulation investigation

Quan Liu , Xian Wang , Yanan Guo , Gongping Liu , Kai-Ge Zhou

Front. Chem. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (3) : 347 -357.

PDF (7895KB)
Front. Chem. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (3) : 347 -357. DOI: 10.1007/s11705-022-2246-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Mechanism of ethanol/water reverse separation through a functional graphene membrane: a molecular simulation investigation

Author information +
History +
PDF (7895KB)

Abstract

Reverse-selective membranes have attracted considerable interest for bioethanol production. However, to date, the reverse-separation performance of ethanol/water is poor and the separation mechanism is unclear. Graphene-based membranes with tunable apertures and functional groups have shown substantial potential for use in molecular separation. Using molecular dynamics simulations, for the first time, we reveal two-way selectivity in ethanol/water separation through functional graphene membranes. Pristine graphene (PG) exhibits reverse-selective behavior with higher ethanol fluxes than water, resulting from the preferential adsorption for ethanol. Color flow mappings show that this ethanol-permselective process is initiated by the presence of ethanol-enriched and water-barren pores; this has not been reported in previous studies. In contrast, water molecules are preferred for hydroxylated graphene membranes because of the synergistic effects of molecular sieving and functional-group attraction. A simulation of the operando condition shows that the PG membrane with an aperture size of 3.8 Å achieves good separation performance, with an ethanol/water separation factor of 34 and a flux value of 69.3 kg∙m‒2∙h‒1∙bar‒1. This study provides new insights into the reverse-selective mechanism of porous graphene membranes and a new avenue for efficient biofuel production.

Graphical abstract

Keywords

reverse separation / graphene membrane / ethanol/water separation / molecular simulation

Cite this article

Download citation ▾
Quan Liu, Xian Wang, Yanan Guo, Gongping Liu, Kai-Ge Zhou. Mechanism of ethanol/water reverse separation through a functional graphene membrane: a molecular simulation investigation. Front. Chem. Sci. Eng., 2023, 17(3): 347-357 DOI:10.1007/s11705-022-2246-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Merkel T C, Freeman B D, Spontak R J, He Z, Pinnau I, Meakin P, Hill A J. Ultrapermeable, reverse-selective nanocomposite membranes. Science, 2002, 296(5567): 519–522

[2]

Khakpay A, Scovazzo P. Reverse-selective behavior of room temperature ionic liquid based membranes for natural gas processing. Journal of Membrane Science, 2018, 545: 204–212

[3]

Yu S, Qin B, Yang F, Xie M, Xue L, Zhao Z, Wang K. Unlocking the limits of diffusion and adsorption of metal-crosslinked reduced graphene oxide membranes for gas separation. Applied Surface Science, 2022, 586: 152868

[4]

Lau C H, Li P, Li F, Chung T S, Paul D R. Reverse-selective polymeric membranes for gas separations. Progress in Polymer Science, 2013, 38(5): 740–766

[5]

Mushardt H, Kramer V, Hülagü D, Brinkmann T, Kraume M. Development of solubility selective mixed matrix membranes for gas separation. Chemie ingenieur technik, 2014, 86(1–2): 83–91

[6]

Ahmed I, Pa N F C, Nawawi M G M, Rahman W A W A. Modified polydimethylsiloxane/polystyrene blended IPN pervaporation membrane for ethanol/water separation. Journal of Applied Polymer Science, 2011, 122(4): 2666–2679

[7]

Cheng X Q, Konstas K, Doherty C M, Wood C D, Mulet X, Xie Z, Ng D, Hill M R, Lau C H, Shao L. Organic microporous nanofillers with unique alcohol affinity for superior ethanol recovery toward sustainable biofuels. ChemSusChem, 2017, 10(9): 1887–1891

[8]

Sanaeepur H, Ebadi Amooghin A, Bandehali S, Moghadassi A, Matsuura T, van der Bruggen B. Polyimides in membrane gas separation: monomer’s molecular design and structural engineering. Progress in Polymer Science, 2019, 91: 80–125

[9]

Li Y, Chung T S, Cao C, Kulprathipanja S. The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite a mixed matrix membranes. Journal of Membrane Science, 2005, 260(1): 45–55

[10]

Mao H, Zhen H G, Ahmad A, Zhang A S, Zhao Z P. In situ fabrication of MOF nanoparticles in PDMS membrane via interfacial synthesis for enhanced ethanol permselective pervaporation. Journal of Membrane Science, 2019, 573: 344–358

[11]

Pan Y, Zhu T, Xia Q, Yu X, Wang Y. Constructing superhydrophobic ZIF-8 layer with bud-like surface morphology on PDMS composite membrane for highly efficient ethanol/water separation. Journal of Environmental Chemical Engineering, 2021, 9(1): 104977

[12]

Pan Y, Yu X. Preparation of zeolitic imidazolate framework-91 and its modeling for pervaporation separation of water/ethanol mixtures. Separation and Purification Technology, 2020, 237: 116330

[13]

He X, Wang T, Huang J, Chen J, Li J. Fabrication and characterization of superhydrophobic PDMS composite membranes for efficient ethanol recovery via pervaporation. Separation and Purification Technology, 2020, 241: 116675

[14]

Zhu T, Xu S, Yu F, Yu X, Wang Y. ZIF-8@GO composites incorporated polydimethylsiloxane membrane with prominent separation performance for ethanol recovery. Journal of Membrane Science, 2020, 598: 117681

[15]

Zhu T, Yu X, Yi M, Wang Y. Facile covalent crosslinking of zeolitic imidazolate framework/polydimethylsiloxane mixed matrix membrane for enhanced ethanol/water separation performance. ACS Sustainable Chemistry & Engineering, 2020, 8(33): 12664–12676

[16]

Kang J, Choi Y, Kim J P, Kim J H, Kim J Y, Kwon O, Kim D I, Kim D W. Thermally-induced pore size tuning of multilayer nanoporous graphene for organic solvent nanofiltration. Journal of Membrane Science, 2021, 637: 119620

[17]

Liu Y, Bai Z, Lin G, Wang L, Xu X, He L, Liu X. Covalent cross-linking mediated TA-APTES NPs to construct a high-efficiency GO composite membrane for dye/salt separation. Applied Surface Science, 2022, 584: 152595

[18]

Liu G, Jin W, Xu N. Graphene-based membranes. Chemical Society Reviews, 2015, 44(15): 5016–5030

[19]

Moreno C, Vilas-Varela M, Kretz B, Garcia-Lekue A, Costache M V, Paradinas M, Panighel M, Ceballos G, Valenzuela S O, Peña D, Mugarza A. Bottom-up synthesis of multifunctional nanoporous graphene. Science, 2018, 360(6385): 199–203

[20]

Jang J, Nam Y T, Kim D, Kim Y J, Kim D W, Jung H T. Turbostratic nanoporous carbon sheet membrane for ultrafast and selective nanofiltration in viscous green solvents. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8(17): 8292–8299

[21]

Gravelle S, Yoshida H, Joly L, Ybert C, Bocquet L. Carbon membranes for efficient water−ethanol separation. Journal of Chemical Physics, 2016, 145(12): 124708

[22]

Kommu A, Singh J K. Separation of ethanol and water using graphene and hexagonal boron nitride slit pores: a molecular dynamics study. Journal of Physical Chemistry C, 2017, 121(14): 7867–7880

[23]

Liu Q, Chen M, Mao Y, Liu G. Theoretical study on Janus graphene oxide membrane for water transport. Frontiers of Chemical Science and Engineering, 2021, 15(4): 913–921

[24]

Liu Q, Gupta K M, Xu Q, Liu G, Jin W. Gas permeation through double-layer graphene oxide membranes: the role of interlayer distance and pore offset. Separation and Purification Technology, 2019, 209: 419–425

[25]

Liu Q, Wu Y, Wang X, Liu G, Zhu Y, Tu Y, Lu X, Jin W. Molecular dynamics simulation of water−ethanol separation through monolayer graphene oxide membranes: significant role of O/C ratio and pore size. Separation and Purification Technology, 2019, 224: 219–226

[26]

Cohen-Tanugi D, Grossman J C. Water desalination across nanoporous graphene. Nano Letters, 2012, 12(7): 3602–3608

[27]

Li H, Lv W, Xu J, Hu J, Liu H. Can flexible framework fillers keep breathing in mixed matrix membranes to enhance separation performance?. Journal of Membrane Science, 2020, 614: 118426

[28]

Gupta K M, Liu J, Jiang J. A molecular simulation protocol for membrane pervaporation. Journal of Membrane Science, 2019, 572: 676–682

[29]

Liu Q, Zhu H, Liu G, Jin W. Efficient separation of (C1–C2) alcohol solutions by graphyne membranes: a molecular simulation study. Journal of Membrane Science, 2022, 644: 120139

[30]

Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L. Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics, 1983, 79(2): 926–935

[31]

Jorgensen W L, Maxwell D S, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 1996, 118(45): 11225–11236

[32]

Wennberg C L, Murtola T, Páll S, Abraham M J, Hess B, Lindahl E. Direct-space corrections enable fast and accurate Lorentz–Berthelot combination rule Lennard–Jones lattice summation. Journal of Chemical Theory and Computation, 2015, 11(12): 5737–5746

[33]

van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E, Berendsen H J. GROMACS: fast, flexible, and free. Journal of Computational Chemistry, 2005, 26(16): 1701–1718

[34]

Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. Journal of Molecular Graphics, 1996, 14(1): 33–38

[35]

Wei W, Liu J, Jiang J. Atomistic simulation study of polyarylate/zeolitic-imidazolate framework mixed-matrix membranes for water desalination. ACS Applied Nano Materials, 2020, 3(10): 10022–10031

[36]

Cohen-Tanugi D, Grossman J C. Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination. Journal of Chemical Physics, 2014, 141(7): 074704

[37]

Liu J, Wei W, Jiang J. A highly rigid and conjugated microporous polymer membrane for solvent permeation and biofuel purification: a molecular simulation study. ACS Sustainable Chemistry & Engineering, 2020, 8(7): 2892–2900

[38]

Guo Y, Xie W, Li H, Li J, Hu J, Liu H. Construction of hydrophobic channels on Cu(I)-MOF surface to improve selective adsorption desulfurization performance in presence of water. Separation and Purification Technology, 2022, 285: 120287

[39]

An S, Lu C, Xu Q, Lian C, Peng C, Hu J, Zhuang X, Liu H. Constructing catalytic crown ether-based covalent organic frameworks for electroreduction of CO2. ACS Energy Letters, 2021, 6(10): 3496–3502

[40]

Cohen-Tanugi D, Lin L C, Grossman J C. Multilayer nanoporous graphene membranes for water desalination. Nano Letters, 2016, 16(2): 1027–1033

[41]

Zhang L, Wu G, Jiang J. Adsorption and diffusion of CO2 and CH4 in zeolitic imidazolate framework-8: effect of structural flexibility. Journal of Physical Chemistry C, 2014, 118(17): 8788–8794

[42]

Nakagawa K, Araya S, Ushio K, Kunimatsu M, Yoshioka T, Shintani T, Kamio E, Tung K L, Matsuyama H. Controlling interlayer spacing and organic solvent permeation in laminar graphene oxide membranes modified with crosslinker. Separation and Purification Technology, 2021, 276: 119279

[43]

Wang J, Zhang P, Liang B, Liu Y, Xu T, Wang L, Cao B, Pan K. Graphene oxide as an effective barrier on a porous nanofibrous membrane for water treatment. ACS Applied Materials & Interfaces, 2016, 8(9): 6211–6218

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (7895KB)

Supplementary files

FCE-22071-OF-LQ_suppl_1

2989

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/