Enhanced charge extraction for all-inorganic perovskite solar cells by graphene oxide quantum dots modified TiO2 layer

Yili Liu, Guoliang Che, Weizhong Cui, Beili Pang, Qiong Sun, Liyan Yu, Lifeng Dong

PDF(3711 KB)
PDF(3711 KB)
Front. Chem. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (5) : 516-524. DOI: 10.1007/s11705-022-2238-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Enhanced charge extraction for all-inorganic perovskite solar cells by graphene oxide quantum dots modified TiO2 layer

Author information +
History +

Abstract

All-inorganic cesium lead bromide (CsPbBr3) perovskite solar cells have been attracting growing interest due to superior performance stability and low cost. However, low light absorbance and large charge recombination at TiO2/CsPbBr3 interface or within CsPbBr3 film still prevent further performance improvement. Herein, we report devices with high power conversion efficiency (9.16%) by introducing graphene oxide quantum dots (GOQDs) between TiO2 and perovskite layers. The recombination of interfacial radiation can be effectively restrained due to enhanced charge transfer capability. GOQDs with C-rich active sites can involve in crystallization and fill within the CsPbBr3 perovskite film as functional semiconductor additives. This work provides a promising strategy to optimize the crystallization process and boost charge extraction at the surface/interface optoelectronic properties of perovskites for high efficient and low-cost solar cells.

Graphical abstract

Keywords

all inorganic / perovskite solar cells / graphene oxide quantum dots / high performance / stability

Cite this article

Download citation ▾
Yili Liu, Guoliang Che, Weizhong Cui, Beili Pang, Qiong Sun, Liyan Yu, Lifeng Dong. Enhanced charge extraction for all-inorganic perovskite solar cells by graphene oxide quantum dots modified TiO2 layer. Front. Chem. Sci. Eng., 2023, 17(5): 516‒524 https://doi.org/10.1007/s11705-022-2238-z

References

[1]
Min H, Kim M, Lee S U, Kim H, Sang I S. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science, 2019, 366(6466): 749–753
CrossRef Google scholar
[2]
Cai Y Y, Zhang Z B, Zhou Y, Liu H, Qin Q Q, Lu X B, Gao X S, Shui L L, Wu S J, Liu J M. Enhancing the efficiency of low-temperature planar perovskite solar cells by modifying the interface between perovskite and hole transport layer with polymers. Electrochimica Acta, 2018, 261: 445–453
CrossRef Google scholar
[3]
Zhu C T, Yang Y, Lin F Y, Luo Y, Ma S P, Zhu L, Guo X Y. Electrodeposited transparent PEDOT for inverted perovskite solar cells: improved charge transport and catalytic performances. Rare Metals, 2021, 40(9): 2402–2414
CrossRef Google scholar
[4]
Wang Y Q, Yang L, Chunxiang D A, Gang C, Ai J L, Wang X F. Spray-coated SnO2 electron transport layer with high uniformity for planar perovskite solar cells. Frontiers of Chemical Science and Engineering, 2021, 15(1): 180–186
CrossRef Google scholar
[5]
Xia Y R, Zhao C, Zhao P Y, Mao L Y, Ding Y C, Hong D C, Tian Y X, Yan X S, Jin Z. Pseudohalide substitution and potassium doping in FA0.98K0.02Pb(SCN)2I for high-stability hole-conductor-free perovskite solar cells. Journal of Power Sources, 2021, 494(15): 229781
CrossRef Google scholar
[6]
Deretzis I, Smecca E, Mannino G, La Magna A, Miyasaka T, Alberti A. Stability and degradation in hybrid perovskites: is the glass half-empty or half-full?. Journal of Physical Chemistry Letters, 2018, 9(11): 3000–3007
CrossRef Google scholar
[7]
Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 2017, 356(6345): 1376–1379
CrossRef Google scholar
[8]
Liang J, Wang C, Wang Y, Xu Z, Lu Z, Ma Y, Zhu H, Hu Y, Xiao C, Yi X, Zhu G, Lv H, Ma L, Chen T, Tie Z, Jin Z, Liu J. All-inorganic perovskite solar cells. Journal of the American Chemical Society, 2016, 138(49): 15829–15832
CrossRef Google scholar
[9]
Kulbak M, Gupta S, Kedem N, Levine I, Bendikov T, Hodes G, Cahen D. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. Journal of Physical Chemistry Letters, 2016, 7(1): 167–172
CrossRef Google scholar
[10]
Kulbak M, Cahen D, Hodes G. How important is the organic part of lead halide perovskite photovoltaic cells efficient CsPbBr3 cells?. Journal of Physical Chemistry Letters, 2015, 6(13): 2452–2456
CrossRef Google scholar
[11]
Liang J, Zhu G Y, Wang C X, Zhao P Y, Wang Y R, Hu Y, Ma L B, Tie Z X, Liu J, Jin Z. An all-inorganic perovskite solar capacitor for efficient and stable spontaneous photocharging. Nano Energy, 2018, 52: 239–245
CrossRef Google scholar
[12]
Liang J, Liu J, Jin Z. All-inorganic halide perovskites for optoelectronics: progress and prospects. Solar RRL, 2017, 1(10): 1700086
CrossRef Google scholar
[13]
Liang J, Wang C X, Zhao P Y, Lu Z P, Ma Y, Xu Z R, Wang Y R, Zhu H F, Hu Y, Zhu G Y, Ma L, Chen T, Tie Z, Liu J, Jin Z. Solution synthesis and phase control of inorganic perovskites for high-performance optoelectronic devices. Nanoscale, 2017, 9(33): 11841–11845
CrossRef Google scholar
[14]
Chen C Y, Lin H Y, Chiang K M, Tsai W L, Huang Y C, Tsao C S, Lin H W. All-vacuum-deposited stoichiometrically balanced inorganic cesium lead halide perovskite solar cells with stabilized efficiency exceeding 11%. Advanced Materials, 2017, 29(12): 1605290
CrossRef Google scholar
[15]
Rong Y G, Liu L F, Mei A Y, Li X, Han H W. Beyond efficiency: the challenge of stability in mesoscopic perovskite solar cells. Advanced Energy Materials, 2015, 5(20): 1501066
CrossRef Google scholar
[16]
Liang J, Zhao P, Wang C, Wang Y, Hu Y, Zhu G, Ma L, Liu J, Jin Z. CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability. Journal of the American Chemical Society, 2017, 139(40): 14009–14012
CrossRef Google scholar
[17]
Zhang L, Zhang X Z, Xu X X, Tang J, Wu J H, Lan Z. CH3NH3Br additive for enhanced photovoltaic performance and air stability of planar perovskite solar cells prepared by two-step dipping method. Energy Technology, 2017, 5(10): 1887–1894
CrossRef Google scholar
[18]
Li Y, Duan J, Yuan H, Zhao Y, He B, Tang Q. Lattice modulation of alkali metal cations doped Cs1−xRxPbBr3 halides for inorganic perovskite solar cells. Solar RRL, 2018, 2(10): 1800164
CrossRef Google scholar
[19]
Niu T, Lu J, Munir R, Li J, Barrit D, Zhang X, Hu H, Yang Z, Amassian A, Zhao K, Liu S F. Stable high-performance perovskite solar cells via grain boundary passivation. Advanced Materials, 2018, 30(16): 1706576
CrossRef Google scholar
[20]
Bu F, He B L, Ding Y, Li X K, Sun X M, Duan J L, Zhao Y Y, Chen H Y, Tang Q W. Enhanced energy level alignment and hole extraction of carbon electrode for air-stable hole-transporting material-free CsPbBr3 perovskite solar cells. Solar Energy Materials and Solar Cells, 2020, 205: 110267
CrossRef Google scholar
[21]
Kırbıyık Ç, Toprak A, Başlak C, Kuş M, Ersöz M. Nitrogen-doped CQDs to enhance the power conversion efficiency of perovskite solar cells via surface passivation. Journal of Alloys and Compounds, 2020, 832: 154897
CrossRef Google scholar
[22]
Yuan H W, Zhao Y Y, Duan J L, He B L, Jiao Z B, Tang Q W. Enhanced charge extraction by setting intermediate energy levels in all-inorganic CsPbBr3 perovskite solar cells. Electrochimica Acta, 2018, 279: 84–90
CrossRef Google scholar
[23]
Pang B L, Dong L F, Ma S, Dong H Z, Yu L Y. Performance of FTO-free conductive graphene-based counter electrodes for dye-sensitized solar cells. RSC Advances, 2016, 6(47): 41287–41293
CrossRef Google scholar
[24]
Wang Y Y, Bao X C, Pang B L, Zhu Q Q, Wang J Y, Zhu D Q, Yu L Y, Yang R Q, Dong L F. Solution-processed functionalized reduced graphene oxide—an efficient stable electron buffer layer for high-performance solar cells. Carbon, 2018, 131: 31–37
CrossRef Google scholar
[25]
Najafi L, Taheri B, Martin-Garcia B, Bellani S, Di Girolamo D, Agresti A, Oropesa-Nunez R, Pescetelli S, Vesce L, Calabro E, Prato M, Del Rio Castillo A E, Di Carlo A, Bonaccorso F. MoS2 quantum dot/graphene hybrids for advanced interface engineering of a CH3NH3PbI3 perovskite solar cell with an efficiency of over 20%. ACS Nano, 2018, 12(11): 10736–10754
CrossRef Google scholar
[26]
Duan J, Zhao Y, He B, Tang Q. Simplified perovskite solar cell with 4.1% efficiency employing inorganic CsPbBr3 as light absorber. Small, 2018, 14(20): 1704443
CrossRef Google scholar
[27]
Xu S J, Li D, Wu P Y. One-pot, facile, and versatile synthesis of monolayer MosS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Advanced Functional Materials, 2015, 25(7): 1127–1136
CrossRef Google scholar
[28]
Cardona C M, Li W, Kaifer A E, Stockdale D, Bazan G C. Electrochemical considerations for determining absolute frontier orbital energy levels of conjugated polymers for solar cell applications. Advanced Materials, 2011, 23(20): 2367–2371
CrossRef Google scholar
[29]
Li Y, Hu Y, Zhao Y, Shi G, Deng L, Hou Y, Qu L. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Advanced Materials, 2011, 23(6): 776–780
CrossRef Google scholar
[30]
Zhu Z, Ma J, Wang Z, Mu C, Fan Z, Du L, Bai Y, Fan L, Yan H, Phillips D L, Yang S. Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. Journal of the American Chemical Society, 2014, 136(10): 3760–3763
CrossRef Google scholar
[31]
Moriya M, Hirotani D, Ohta T, Ogomi Y, Shen Q, Ripolles T S, Yoshino K, Toyoda T, Minemoto T, Hayase S. Architecture of the interface between the perovskite and hole-transport layers in perovskite solar cells. ChemSusChem, 2016, 9(18): 2643
CrossRef Google scholar
[32]
Yang Y, Peng H R, Liu C, Arain Z, Ding Y, Ma S, Liu X L, Hayat T, Alsaedi A, Dai S. Bi-functional additive engineering for high-performance perovskite solar cells with reduced trap density. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(11): 6450–6458
CrossRef Google scholar
[33]
Duan J, Zhao Y, He B, Tang Q. High-purity inorganic perovskite films for solar cells with 9.72% efficiency. Angewandte Chemie International Edition, 2018, 57(14): 3787–3791
CrossRef Google scholar
[34]
Zhao Y, Tan H, Yuan H, Yang Z, Fan J Z, Kim J, Voznyy O, Gong X, Quan L N, Tan C S, Hofkens J, Yu D, Zhao Q, Sargent E H. Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nature Communications, 2018, 9(1): 1607
CrossRef Google scholar
[35]
Chang J, Zhu H, Li B, Isikgor F H, Hao Y, Xu Q, Ouyang J. Boosting the performance of planar heterojunction perovskite solar cell by controlling the precursor purity of perovskite materials. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(3): 887–893
CrossRef Google scholar
[36]
Mu X H, Yu X G, Xu D K, Shen X L, Xia Z H, He H, Zhu H Y, Xie J S, Sun B Q, Yang D R. High efficiency organic/silicon hybrid solar cells with doping-free selective emitter structure induced by a WO3 thin interlayer. Nano Energy, 2015, 16: 54–61
CrossRef Google scholar
[37]
Liu X Y, Tan X H, Liu Z Y, Sun B, Li J J, Xi S, Shi T L, Liao G G. Sequentially vacuum evaporated high-quality CsPbBr3 films for efficient carbon-based planar heterojunction perovskite solar cells. Journal of Power Sources, 2019, 443: 227269
CrossRef Google scholar
[38]
Bouzidi K, Chegaar M, Bouhemadou A. Solar cells parameters evaluation considering the series and shunt resistance. Solar Energy Materials and Solar Cells, 2007, 91(18): 1647–1651
CrossRef Google scholar
[39]
Tong G Q, Chen T T, Li H, Qiu L B, Liu Z H, Dang Y Y, Song W T, Luis K O, Jiang Y, Qi Y B. Phase transition induced recrystallization and low surface potential barrier leading to 10.91%-efficient CsPbBr3 perovskite solar cells. Nano Energy, 2019, 65: 104015
CrossRef Google scholar

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 21776147, 21905153 and 61604086), the Qingdao Municipal Science and Technology Bureau (Grant No. 19-6-1-91-nsh) and A Project of Shandong Province Higher Educational Science and Technology Program (Grant No. J17KA013). Lifeng Dong also thanks financial support from the Malmstrom Endowed Fund at Hamline University.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://dx.doi.org/10.1007/s11705-022-2238-z and is accessible for authorized users.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(3711 KB)

Accesses

Citations

Detail

Sections
Recommended

/