Bioorthogonal chemistry based on-demand drug delivery system in cancer therapy
Lan Lin, Lai Jiang, En Ren, Gang Liu
Bioorthogonal chemistry based on-demand drug delivery system in cancer therapy
Benefiting from the advantage of taking place in biological environments without interfering with an innate biochemical process, the bioorthogonal reaction that commonly contains the “bond formation” and “bond cleavage” system has been widely used in targeted therapy for a variety of tumors. Herein, several prominent cases based on the bioorthogonal reaction that tailoring the metabolic glycoengineering tactics to modified cells for cancer immunotherapy, and the innovative tactics for reducing the metal ions’ toxic and side effects with microneedle patches will be highlighted. Based on these applications, the complexities, potential pitfalls, and opportunities of bioorthogonal chemistry in future cancer therapy will be evaluated.
bioorthogonal reaction / cancer therapy / metabolic glycoengineering / bioorthogonal catalytic patch
[1] |
Li L, Wang J, Kong H, Zeng Y, Liu G. Functional biomimetic nanoparticles for drug delivery and theranostic applications in cancer treatment. Science and Technology of Advanced Materials, 2018, 19(1): 771–790
CrossRef
Google scholar
|
[2] |
Lu Y, Aimetti A A, Langer R, Gu Z. Bioresponsive materials. Nature Reviews Materials, 2017, 2(1): 16075
CrossRef
Google scholar
|
[3] |
Hanahan D, Weinberg R A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5): 646–674
CrossRef
Google scholar
|
[4] |
Liang T X Z, Chen Z W, Li H J, Gu Z. Bioorthogonal catalysis for biomedical applications. Trends in Chemistry, 2022, 4(2): 157–168
CrossRef
Google scholar
|
[5] |
Taiariol L, Chaix C, Farre C, Moreau E. Click and bioorthogonal chemistry: the future of active targeting of nanoparticles for nanomedicines?. Chemical Reviews, 2022, 122(1): 340–384
CrossRef
Google scholar
|
[6] |
Bird R, Lemmel S, Yu X, Zhou Q. Bioorthogonal chemistry and its applications. Bioconjugate Chemistry, 2021, 32(12): 2457–2479
CrossRef
Google scholar
|
[7] |
Kostenkova K, Scalese G, Gambino D, Crans D C. Highlighting the roles of transition metals and speciation in chemical biology. Current Opinion in Chemical Biology, 2022, 69: 102155
CrossRef
Google scholar
|
[8] |
Gurruchaga-Pereda J, Martínez-Martínez V, Rezabal E, Lopez X, Garino C, Mancin F, Cortajarena A L, Salassa L. Flavin bioorthogonal photocatalysis toward platinum substrates. ACS Catalysis, 2020, 10(1): 187–196
CrossRef
Google scholar
|
[9] |
Deb T, Tu J, Franzini R M. Mechanisms and substituent effects of metal-free bioorthogonal reactions. Chemical Reviews, 2021, 121(12): 6850–6914
CrossRef
Google scholar
|
[10] |
Taylor M T, Blackman M L, Dmitrenko O, Fox J M. Design and synthesis of highly reactive dienophiles for the tetrazine-trans-cyclooctene ligation. Journal of the American Chemical Society, 2011, 133(25): 9646–9649
CrossRef
Google scholar
|
[11] |
Bednarek C, Wehl I, Jung N, Schepers U, Bräse S. The staudinger ligation. Chemical Reviews, 2020, 120(10): 4301–4354
CrossRef
Google scholar
|
[12] |
Li J, Chen P R. Development and application of bond cleavage reactions in bioorthogonal chemistry. Nature Chemical Biology, 2016, 12(3): 129–137
CrossRef
Google scholar
|
[13] |
Wang H, Mooney D J. Metabolic glycan labelling for cancer-targeted therapy. Nature Chemistry, 2020, 12(12): 1102–1114
CrossRef
Google scholar
|
[14] |
Thirumurugan P, Matosiuk D, Jozwiak K. Click chemistry for drug development and diverse chemical-biology applications. Chemical Reviews, 2013, 113(7): 4905–4979
CrossRef
Google scholar
|
[15] |
Ren E, Liu C, Lv P, Wang J, Liu G. Genetically engineered cellular membrane vesicles as tailorable shells for therapeutics. Advanced Science, 2021, 8(21): 2100460
CrossRef
Google scholar
|
[16] |
Soriano del Amo D, Wang W, Jiang H, Besanceney C, Yan A C, Levy M, Liu Y, Marlow F L, Wu P. Biocompatible copper(I) catalysts for in vivo imaging of glycans. Journal of the American Chemical Society, 2010, 132(47): 16893–16899
CrossRef
Google scholar
|
[17] |
Sletten E M, Bertozzi C R. From mechanism to mouse: a tale of two bioorthogonal reactions. Accounts of Chemical Research, 2011, 44(9): 666–676
CrossRef
Google scholar
|
[18] |
Völker T, Meggers E. Transition-metal-mediated uncaging in living human cells—an emerging alternative to photolabile protecting groups. Current Opinion in Chemical Biology, 2015, 25: 48–54
CrossRef
Google scholar
|
[19] |
Rakhit R, Navarro R, Wandless T J. Chemical biology strategies for posttranslational control of protein function. Chemistry & Biology, 2014, 21(9): 1238–1252
CrossRef
Google scholar
|
[20] |
Yusop R M, Unciti-Broceta A, Johansson E M V, Sánchez-Martín R M, Bradley M. Palladium-mediated intracellular chemistry. Nature Chemistry, 2011, 3(3): 239–243
CrossRef
Google scholar
|
[21] |
Li J, Yu J T, Zhao J Y, Wang J, Zheng S Q, Lin S X, Chen L, Yang M Y, Jia S, Zhang X Y, Chen P R. Palladium-triggered deprotection chemistry for protein activation in living cells. Nature Chemistry, 2014, 6(4): 352–361
CrossRef
Google scholar
|
[22] |
Weiss J T, Dawson J C, Macleod K G, Rybski W, Fraser C, Torres-Sánchez C, Patton E E, Bradley M, Carragher N O, Unciti-Broceta A. Extracellular palladium-catalysed dealkylation of 5-fluoro-1-propargyl-uracil as a bioorthogonally activated prodrug approach. Nature Communications, 2014, 5(1): 3277
CrossRef
Google scholar
|
[23] |
Yang W, Nan H X, Xu Z F, Huang Z X, Chen S, Li J Y, Li J, Yang H H. DNA-templated glycan labeling for monitoring receptor spatial distribution in living cells. Analytical Chemistry, 2021, 93(36): 12265–12272
CrossRef
Google scholar
|
[24] |
Hu Q Y, Sun W J, Wang J Q, Ruan H T, Zhang X D, Ye Y Q, Shen S, Wang C, Lu W Y, Cheng K, Dotti G, Zeidner J F, Wang J, Gu Z. Conjugation of haematopoietic stem cells and platelets decorated with anti-PD-1 antibodies augments anti-leukaemia efficacy. Nature Biomedical Engineering, 2018, 2(11): 831–840
CrossRef
Google scholar
|
[25] |
Pawlak J B, Gential G P P, Ruckwardt T J, Bremmers J S, Meeuwenoord N J, Ossendorp F A, Overkleeft H S, Filippov D V, van Kasteren S I. Bioorthogonal deprotection on the dendritic cell surface for chemical control of antigen cross-presentation. Angewandte Chemie International Edition, 2015, 54(19): 5628–5631
CrossRef
Google scholar
|
[26] |
Wu D, Yang K K, Zhang Z K, Feng Y X, Rao L, Chen X Y, Yu G C. Metal-free bioorthogonal click chemistry in cancer theranostics. Chemical Society Reviews, 2022, 51(4): 1336–1376
CrossRef
Google scholar
|
[27] |
Völker T, Dempwolff F, Graumann P L, Meggers E. Progress towards bioorthogonal catalysis with organometallic compounds. Angewandte Chemie International Edition, 2014, 53(39): 10536–10540
CrossRef
Google scholar
|
[28] |
Lim R K, Lin Q. Photoinducible bioorthogonal chemistry: a spatiotemporally controllable tool to visualize and perturb proteins in live cells. Accounts of Chemical Research, 2011, 44(9): 828–839
CrossRef
Google scholar
|
[29] |
Chang P V, Prescher J A, Sletten E M, Baskin J M, Miller I A, Agard N J, Lo A, Bertozzi C R. Copper-free click chemistry in living animals. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(5): 1821–1826
CrossRef
Google scholar
|
[30] |
Laughlin S T, Bertozzi C R. Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization via Staudinger ligation. Nature Protocols, 2007, 2(11): 2930–2944
CrossRef
Google scholar
|
[31] |
Li W J, Pan H, He H M, Meng X Q, Ren Q, Gong P, Jiang X, Liang Z G, Liu L L, Zheng M B, Shao X, Ma Y, Cai L. Bio-orthogonal T cell targeting strategy for robustly enhancing cytotoxicity against tumor cells. Small, 2019, 15(4): e1804383
CrossRef
Google scholar
|
[32] |
Prescher J A, Bertozzi C R. Chemical technologies for probing glycans. Cell, 2006, 126(5): 851–854
CrossRef
Google scholar
|
[33] |
Ren E, Chu C C, Zhang Y M, Wang J Q, Pang X, Lin X N, Liu C, Shi X X, Dai Q X, Lv P, Wang X, Chen X, Liu G. Mimovirus vesicle-based biological orthogonal reaction for cancer diagnosis. Small Methods, 2020, 4(9): 2000291
CrossRef
Google scholar
|
[34] |
Wang H, Wang R B, Cai K M, He H, Liu Y, Yen J, Wang Z Y, Xu M, Sun Y W, Zhou X, Yin Q, Tang L, Dobrucki I T, Dobrucki L W, Chaney E J, Boppart S A, Fan T M, Lezmi S, Chen X, Yin L, Cheng J. Selective in vivo metabolic cell-labeling-mediated cancer targeting. Nature Chemical Biology, 2017, 13(4): 415–424
CrossRef
Google scholar
|
[35] |
Shim M K, Yoon H Y, Ryu J H, Koo H, Lee S, Park J H, Kim J H, Lee S, Pomper M G, Kwon I C, Kim K. Cathepsin B-specific metabolic precursor for in vivo tumor-specific fluorescence imaging. Angewandte Chemie International Edition, 2016, 55(47): 14698–14703
CrossRef
Google scholar
|
[36] |
Xie R, Dong L, Huang R B, Hong S L, Lei R X, Chen X. Targeted imaging and proteomic analysis of tumor-associated glycans in living animals. Angewandte Chemie International Edition, 2014, 53(51): 14082–14086
CrossRef
Google scholar
|
[37] |
Wang H, Gauthier M, Kelly J R, Miller R J, Xu M, O’Brien W D Jr, Cheng J J. Targeted ultrasound-assisted cancer-selective chemical labeling and subsequent cancer imaging using click chemistry. Angewandte Chemie International Edition, 2016, 55(18): 5452–5456
CrossRef
Google scholar
|
[38] |
Wang H, Sobral M C, Zhang D K Y, Cartwright A N, Li A W, Dellacherie M O, Tringides C M, Koshy S T, Wucherpfennig K W, Mooney D J. Metabolic labeling and targeted modulation of dendritic cells. Nature Materials, 2020, 19(11): 1244–1252
CrossRef
Google scholar
|
[39] |
Chen Z W, Li H J, Bian Y J, Wang Z J, Chen G J, Zhang X D, Miao Y M, Wen D, Wang J Q, Wan G, Zeng Y, Abdou P, Fang J, Li S, Sun C J, Gu Z. Bioorthogonal catalytic patch. Nature Nanotechnology, 2021, 16(8): 933–941
CrossRef
Google scholar
|
[40] |
Yu J C, Wang J Q, Zhang Y Q, Chen G J, Mao W W, Ye Y Q, Kahkoska A R, Buse J B, Langer R, Gu Z. Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nature Biomedical Engineering, 2020, 4(5): 499–506
CrossRef
Google scholar
|
[41] |
Wang C Q, Zhang H, Zhang T, Zou X Y, Wang H, Rosenberger J E, Vannam R, Trout W S, Grimm J B, Lavis L D, Thorpe C, Jia X, Li Z, Fox J M. Enabling in vivo photocatalytic activation of rapid bioorthogonal chemistry by repurposing silicon-rhodamine fluorophores as cytocompatible far-red photocatalysts. Journal of the American Chemical Society, 2021, 143(28): 10793–10803
CrossRef
Google scholar
|
/
〈 | 〉 |