Solvent-resistant porous membranes using poly(ether−ether ketone): preparation and application

Lixin Xing , Jiaming Wang , Xuehua Ruan , Gaohong He

Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (11) : 1536 -1559.

PDF (4679KB)
Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (11) : 1536 -1559. DOI: 10.1007/s11705-022-2221-8
REVIEW ARTICLE
REVIEW ARTICLE

Solvent-resistant porous membranes using poly(ether−ether ketone): preparation and application

Author information +
History +
PDF (4679KB)

Abstract

Poly(ether−ether ketone) (PEEK) is a linear aromatic macromolecule, which can form semi-crystalline aggregative status, allowing PEEK materials to have strong environment tolerance and excellent physicochemical properties. PEEK materials have become a promising alternative to fabricate particular membranes used in extreme conditions. In the past few decades, many researches and evolutions have emerged in membrane fabrication with PEEK materials and its applications for treating organic solvents and their mixtures; however, there are little systematic and comprehensive literature to summarize fabrication approaches, compile applications, and elaborate PEEK property-structure relationship. In this review, the main approaches to fabricate PEEK-based membranes are illustrated concretely, including conventional thermal-induced and non-solvent-induced phase separation, and novel chemical-induced crystallization; the representative applications in ultrafiltration, nanofiltration and membrane contactor containing organic solvents are demonstrated systematically. Meanwhile, the mechanism to tune PEEK solubility in solvents, which can be achieved by altering monomers in synthesis processes or changing membrane preparation routes, is deeply analyzed. Moreover, the existing problems and the future prospects are also discussed. This review provides positive guidance for designing and fabricating membranes using PEEK and its derivative materials for task-specific applications in harsh conditions.

Graphical abstract

Keywords

PEEK / phase inversion / solvent-resistant membrane / nanofiltration / membrane contactor

Cite this article

Download citation ▾
Lixin Xing, Jiaming Wang, Xuehua Ruan, Gaohong He. Solvent-resistant porous membranes using poly(ether−ether ketone): preparation and application. Front. Chem. Sci. Eng., 2022, 16(11): 1536-1559 DOI:10.1007/s11705-022-2221-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lai H W H, Benedetti F M, Ahn J M, Robinson A M, Wang Y, Pinnau I, Smith Z P, Xia Y. Hydrocarbon ladder polymers with ultrahigh permselectivity for membrane gas separations. Science, 2022, 375(6587): 1390–1392

[2]

Tan Z, Chen S, Peng X, Zhang L, Gao C. Polyamide membranes with nanoscale turing structures for water purification. Science, 2018, 360(6388): 518–521

[3]

Hu L, Gao L, Di M, Jiang X, Wu X, Yan X, Li X, He G. Ion/molecule-selective transport nanochannels of membranes for redox flow batteries. Energy Storage Materials, 2021, 34: 648–668

[4]

Sholl D S, Lively R P. Seven chemical separations to change the world. Nature, 2016, 532(7600): 435–437

[5]

Padaki M, Murali R S, Abdullah M S, Misdan N, Moslehyani A, Kassim M A, Hilal N, Ismail A F. Membrane technology enhancement in oil–water separation. A review. Desalination, 2015, 357: 197–207

[6]

Di M, Sun X, Hu L, Gao L, Liu J, Yan X, Wu X, Jiang X, He G. Hollow COF selective layer based flexible composite membranes constructed by an integrated “casting-precipitation-evaporation” strategy. Advanced Functional Materials, 2022, 32(22): 2111594

[7]

Vatanpour V, Kiskan B, Zeytuncu B, Koyuncu I. Polybenzoxazines in fabrication of separation membranes: a review. Separation and Purification Technology, 2021, 278: 119562

[8]

Park H B, Kamcev J, Robeson L M, Elimelech M, Freeman B D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science, 2017, 356(6343): 6343

[9]

Zuo H R, Shi P, Duan M. A review on thermally stable membranes for water treatment: material, fabrication, and application. Separation and Purification Technology, 2020, 236: 116223

[10]

Cheng Z, Li S, Liu Y, Zhang Y, Ling Z, Yang M, Jiang L, Song Y. Post-combustion CO2 capture and separation in flue gas based on hydrate technology: a review. Renewable & Sustainable Energy Reviews, 2022, 154: 111806

[11]

Cao N, Yue C, Lin Z, Li W, Zhang H, Pang J, Jiang Z. Durable and chemical resistant ultra-permeable nanofiltration membrane for the separation of textile wastewater. Journal of Hazardous Materials, 2021, 414: 125489

[12]

Omrani M M, Hadjizadeh A, Milani A, Kim K. PEEK surface modification methods and effect of the laser method on surface properties. Biointerface Research in Applied Chemistry, 2020, 10(2): 5132–5140

[13]

Alqurashi H, Khurshid Z, Syed A U Y, Habib S R, Rokaya D, Zafar M S. Polyetherketoneketone (PEKK): an emerging biomaterial for oral implants and dental prostheses. Journal of Advanced Research, 2021, 28: 87–95

[14]

Feng P, Wu P, Gao C, Yang Y, Guo W, Yang W, Shuai C. A multimaterial scaffold with tunable properties: toward bone tissue repair. Advanced Science, 2018, 5(6): 1700817

[15]

Lin Z, Cao N, Sun Z, Li W, Sun Y, Zhang H, Pang J, Jiang Z. Based on confined polymerization: in situ synthesis of PANI/PEEK composite film in One-Step. Advanced Science, 2022, 9(1): 2103706

[16]

Leon A, Silva T, Pangilinan K D, Chen Q, Advincula R C. High performance polymers for oil and gas applications. Reactive & Functional Polymers, 2021, 162(44): 104878

[17]

Huang T, Song J, He H, Zhang Y B, Li X M, He T. Impact of SPEEK on PEEK membranes: demixing, morphology and performance enhancement in lithium membrane extraction. Journal of Membrane Science, 2020, 615: 118448

[18]

LiuY. Study on synthesis and properties of polyaromatic ether ketone. Dissertation for the Master Degree. Nanchang: Jiangxi Normal University, 2005

[19]

Thomas K, Ritter H. Functionalized poly(ether ether ketones) from 4,4-bis(4-hydroxyphenyl)pentanoic acid, 2,2′-isopropylidenediphenol, and 4,4′-difluorobenzophenone: synthesis, behavior, and polymer analogous amidation of the carboxylic groups. Macromolecules, 1995, 28(14): 4806–4809

[20]

Mourgues Martin M, Bernes A, Lacabanne C. Thermally stimulated current study of the microstructure of peek. Journal of Thermal Analysis, 1993, 40(2): 697–703

[21]

Ling X, Jing X, Zhang C, Chen S. Polyether ether ketone (PEEK) properties and its application status. IOP Conference Series. Earth and Environmental Science, 2020, 453(1): 012080

[22]

Sonnenschein M F. Micro- and ultrafiltration film membranes from poly(ether ether ketone) (PEEK). Journal of Applied Polymer Science, 1999, 74(5): 1146–1155

[23]

da Silva Burgal J, Peeva L G, Kumbharkar S, Livingston A. Organic solvent resistant poly(ether-ether-ketone) nanofiltration membranes. Journal of Membrane Science, 2015, 479: 105–116

[24]

Sun Y, Zhou S, Qin G, Guo J, Zhang Q, Li S, Zhang S. A chemical-induced crystallization strategy to fabricate poly(ether ether ketone) asymmetric membranes for organic solvent nanofiltration. Journal of Membrane Science, 2021, 620: 118899

[25]

Huang T, Chen G, He Z, Xu J, Liu P. Pore structure and properties of poly(ether ether ketone) hollow fiber membranes: influence of solvent-induced crystallization during extraction. Polymer International, 2019, 68(11): 1874–1880

[26]

ShimodaTHachiyaH. Process for preparing a polyether ether ketone membrane. US Patent, 5997741, 1999-12-07

[27]

Lee K W D, Chan P K, Feng X. Morphology development and characterization of the phase-separated structure resulting from the thermal-induced phase separation phenomenon in polymer solutions under a temperature gradient. Chemical Engineering Science, 2004, 59(7): 1491–1504

[28]

Beck H N. Solubility characteristics of poly(ether ether ketone) and poly(phenylene sulfide). Journal of Applied Polymer Science, 1992, 45(8): 1361–1366

[29]

Sonnenschein M F. Hollow fiber microfiltration membranes from poly(ether ether ketone) (PEEK). Journal of Applied Polymer Science, 1999, 72(2): 175–181

[30]

Mehta R H, Kalika D S. Characteristics of poly(ether ether ketone) microporous membranes prepared via thermally induced phase separation (TIPS). Journal of Applied Polymer Science, 1997, 66(12): 2347–2355

[31]

Harris J E, Robeson L M. Miscible blends of poly(aryl ether ketone)s and polyetherimides. Journal of Applied Polymer Science, 1988, 35(7): 1877–1891

[32]

Hudson S D, Davis D D, Lovinger A J. Semicrystalline morphology of poly(aryl ether ether ketone)/poly(ether imide) blends. Macromolecules, 1992, 25(6): 1759–1765

[33]

Crevecoeur G, Groeninckx G. Binary blends of poly(ether ether ketone) and poly(ether imide): miscibility, crystallization behavior and semicrystalline morphology. Macromolecules, 1991, 24(5): 1190–1195

[34]

Hsiao B S, Sauer B B. Glass transition, crystallization, and morphology relationships in miscible poly(aryl ether ketones) and poly(ether imide) blends. Journal of Polymer Science. Part B, Polymer Physics, 1993, 31(8): 901–915

[35]

Bristow J F, Kalika D S. Investigation of semicrystalline morphology in poly(ether ether ketone)/poly(ether imide) blends by dielectric relaxation spectroscopy. Polymer, 1997, 38(2): 287–295

[36]

Bicakci S, Cakmak M. Development of structural hierachy during uniaxial drawing of PEEK/PEI blends from amorphous precursors. Polymer, 2002, 43(1): 149–157

[37]

Bicakci S, Cakmak M. Kinetics of rapid structural changes during heat setting of preoriented PEEK/PEI blend films as follwed by spectral birefringence technique. Polymer, 2002, 43(9): 2737–2746

[38]

Bicakci S, Cakmak M. Phase behaviour of ternary blends of poly(ethylene naphthalate), poly(ether imide) and poly(ether ether ketone). Polymer, 1998, 39(17): 4001–4010

[39]

Sonnenschein M F. Improved spinnerette design for extrusion of polymeric large internal diameter hollow fiber membranes. Journal of Applied Polymer Science, 2002, 83(10): 2157–2163

[40]

Ding Y, Bikson B. Preparation and characterization of semi-crystalline poly(ether ether ketone) hollow fiber membranes. Journal of Membrane Science, 2010, 357(1–2): 192–198

[41]

Ding Y, Bikson B. Macro and meso porous polymeric materials from miscible polysulfone/polyimide blends by chemical decomposition of polyimides. Polymer, 2010, 51(1): 46–52

[42]

Mehta R H, Madsen D A, Kalika D S. Microporous membranes based on poly(ether ether ketone) via thermally-induced phase separation. Journal of Membrane Science, 1995, 107(1/2): 93–106

[43]

Chen G, Chen Y, Huang T, He Z, Xu J, Liu P. Pore structure and properties of PEEK hollow fiber membranes: influence of the phase structure evolution of PEEK/PEI composite. Polymers, 2019, 11(9): 1398

[44]

LoebSSourirajanS. Saline Water Conversion—II. Advances in Chemistry. 1963, 117–132

[45]

Li X, Zhang Y, Wang S, Liu Y, Ding Y, He G, Jiang X, Xiao W, Yu G. Scalable high-areal-vapacity Li–S batteries enabled by sandwich-structured hierarchically porous membranes with intrinsic polysulfide adsorption. Nano Letters, 2020, 20(9): 6922–6929

[46]

Liu Y, Li X, Liu Y, Kou W, Shen W, He G. Promoting opposite diffusion and efficient conversion of polysulfides in “Trap” FexC-doped asymmetric porous membranes as integrated electrodes. Chemical Engineering Journal, 2020, 382: 122858

[47]

Kou W, Li X, Liu Y, Zhang X, Yang S, Jiang X, He G, Dai Y, Zhen W, Yu G. Triple-layered carbon-SiO2 composite membrane for high energy density and long cycling Li−S batteries. ACS Nano, 2019, 13(5): 5900–5909

[48]

Wang D M, Lai J Y. Recent advances in preparation and morphology control of polymeric membranes formed by nonsolvent induced phase separation. Current Opinion in Chemical Engineering, 2013, 2(2): 229–237

[49]

PeterZDetlefQ. Integral asymmetric, solvent-resistant ultrafitration membrane made of partially sulphonated, aromatic polyether ether ketone. DE Patent, 3321860 (A1), 1984-12-20

[50]

Bishop M T, Karasz F E, Russet P S, Langley K H. Solubility and properties of a poly(aryl ether ketone) in strong acids. Macromolecules, 1985, 18(1): 86–93

[51]

KooJ YChauC CRacchiniJ RWesslingR ABishopM T. Microporous PEEK membrane and the preparation thereof. US Patent, 4992485, 1991-02-12

[52]

LawrenceC. Asymmetric semipermeable poly(arylether ketone) membranes and method of producing same. US Patent, 5089192, 1992-02-18

[53]

da Silva Burgal J, Peeva L, Livingston A. Towards improved membrane production: using low-toxicity solvents for the preparation of PEEK nanofiltration membranes. Green Chemistry, 2016, 18(8): 2374–2384

[54]

da Silva Burgal J, Peeva L, Marchetti P, Livingston A. Controlling molecular weight cut-off of PEEK nanofiltration membranes using a drying method. Journal of Membrane Science, 2015, 493: 524–538

[55]

da Silva Burgal J, Peeva L, Livingston A. Negligible ageing in poly(ether-ether-ketone) membranes widens application range for solvent processing. Journal of Membrane Science, 2017, 525: 48–56

[56]

Huang T, Song J, He S, Li T, Li X M, He T. Enabling sustainable green close-loop membrane lithium extraction by acid and solvent resistant poly(ether−ether ketone) membrane. Journal of Membrane Science, 2019, 589: 117273

[57]

ShimodaTHachiyaH. Porous membrane. US Patent, 6017455, 2000-01-25

[58]

Li D, Shi D, Feng K, Li X, Zhang H. Poly(ether ether ketone) (PEEK) porous membranes with super high thermal stability and high rate capability for lithium-ion batteries. Journal of Membrane Science, 2017, 530: 125–131

[59]

Niu X, Li J, Song G, Li Y, He T. Evidence of high temperature stable performance of polyether ether ketone (PEEK) separator with sponge-structured in lithium-ion battery. Journal of Materials Science, 2022, 57(13): 7042–7055

[60]

Cao N, Sun Y, Wang J, Zhang H, Pang J, Jiang Z. Strong acid- and solvent-resistant polyether ether ketone separation membranes with adjustable pores. Chemical Engineering Journal, 2020, 386: 124086

[61]

Feng S, Pang J, Yu X, Wang G, Manthiram A. High-performance semicrystalline poly(ether ketone)-based proton exchange membrane. ACS Applied Materials & Interfaces, 2017, 9(29): 24527–24537

[62]

Kelsey D R, Robeson L M, Clendinning R A, Blackwell C S. Defect-free, crystalline aromatic poly(etherketones): a synthetic strategy based on acetal monomers. Macromolecules, 1987, 20(6): 1204–1212

[63]

Karimi B, Seradj H, Maleki J. Highly efficient and chemoselective interchange of 1,3-oxathioacetals and dithioacetals to acetals promoted by N-halosuccinimide. ChemInform, 2002, 58(22): 4513–4516

[64]

Manolakis I, Cross P, Colquhoun H M. Exchange reactions of poly(arylene ether ketone) dithioketals with aliphatic diols: formation and deprotection of poly(arylene ether ketal)s. Macromolecules, 2017, 50(24): 9561–9568

[65]

Colquhoun H M, Paoloni F P, Drew M G, Hodge P. Dithioacetalisation of PEEK: a general technique for the solubilisation and characterisation of semi-crystalline aromatic polyketones. Chemical Communications, 2007, (32): 3365–3367

[66]

Aristizábal S L, Chisca S, Pulido B A, Nunes S P. Preparation of PEEK membranes with excellent stability using common organic solvents. Industrial & Engineering Chemistry Research, 2019, 59(12): 5218–5226

[67]

Lively R P, Sholl D S. From water to organics in membrane separations. Nature Materials, 2017, 16(3): 276–279

[68]

Marchetti P, Solomon M F J, Szekely G, Livingston A G. Molecular separation with organic solvent nanofiltration: a critical review. Chemical Reviews, 2014, 114(21): 10735–10806

[69]

Koros W J, Zhang C. Materials for next-generation molecularly selective synthetic membranes. Nature Materials, 2017, 16(3): 289–297

[70]

Xu Y, Lin J, Gao C, Bart V, Shen Q, Shao H, Shen J. Preparation of high-flux nanoporous solvent resistant PAN membrane with potential fractionation of dyes and Na2SO4. Industrial & Engineering Chemistry Research, 2017, 56: 11967–11976

[71]

Lee J, Yang H, Bae T H. Polybenzimidazole membrane crosslinked with epoxy-containing inorganic networks for organic solvent nanofiltration and aqueous nanofiltration under extreme basic conditions. Membranes, 2022, 12(2): 140

[72]

Zheng Y, Gao A, Bai J, Liao Q, Wu Y, Zhang W, Guan M, Tong L, Geng D, Zhao X, Chu P K, Wang H. A programmed surface on polyetheretherketone for sequentially dictating osteoimmunomodulation and bone regeneration to achieve ameliorative osseointegration under osteoporotic conditions. Bioactive Materials, 2022, 14: 364–376

[73]

Yan X, Gao L, Zheng W, Ruan X, Zhang C, Wu X, He G. Long-spacer-chain imidazolium functionalized poly(ether ether ketone) as hydroxide exchange membrane for fuel cell. International Journal of Hydrogen Energy, 2016, 41(33): 14982–14990

[74]

Wu X, Chen W, Yan X, He G, Wang J, Zhang Y, Zhu X. Enhancement of hydroxide conductivity by the di-quaternization strategy for poly(ether ether ketone) based anion exchange membranes. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(31): 12222–12231

[75]

DamrowP AMahoneyR DBeckH NSonnenscheinM F. Process for making a microporous from a blend containing a poly(ether ether ketone)-type polymer, an amorphous polymer, and a solvent. US Patent, 5205968, 1993-04-27

[76]

ZhangHChenTYuanY. Synthesis of novel polyether ether ketone with phenolphthalein side group. CN Patent, 85108751, 1987-06-03

[77]

Jansen J C, Drioli E. Poly(ether ether ketone) derivative membranes—a review of their preparation, properties and potential. Polymer Science Series A, 2009, 51(11–12): 1355–1366

[78]

Buonomenna M G, Figoli A, Jansen J C, Drioli E. Preparation of asymmetric PEEKWC flat membranes with different microstructures by wet phase inversion. Journal of Applied Polymer Science, 2004, 92(1): 576–591

[79]

Tasselli F, Jansen J C, Drioli E. PEEKWC ultrafiltration hollow-fiber membranes: preparation, morphology, and transport properties. Journal of Applied Polymer Science, 2004, 91(2): 841–853

[80]

Tasselli F, Jansen J, Sidari F, Drioli E. Morphology and transport property control of modified poly(ether ether ketone) (PEEKWC) hollow fiber membranes prepared from PEEKWC/PVP blends: influence of the relative humidity in the air gap. Journal of Membrane Science, 2005, 255(1–2): 13–22

[81]

Tasselli F, Cassano A, Drioli E. Ultrafiltration of kiwifruit juice using modified poly(ether ether ketone) hollow fibre membranes. Separation and Purification Technology, 2007, 57(1): 94–102

[82]

Conidi C, Tasselli F, Cassano A, Drioli E. Quality of kiwifruit juice clarified by modified poly(ether ether ketone) hollow fiber membranes. Journal of Membrane Science & Research, 2017, 3: 313–319

[83]

Jimenez Solomon M F, Gorgojo P, Munoz Ibanez M, Livingston A G. Beneath the surface: influence of supports on thin film composite membranes by interfacial polymerization for organic solvent nanofiltration. Journal of Membrane Science, 2013, 448: 102–113

[84]

Zhang D, Zhang K, Chen K, Xue Y, Liang J, Cai Y. Mitigation of organic fouling of ultrafiltration membrane by high-temperature crayfish shell biochar: performance and mechanisms. Science of the Total Environment, 2022, 820: 153183

[85]

Qi Y, Shao H, Luo D, Xiang L, Luo J, Tian Q, Qin S. Antifouling poly(vinylidene fluoride) hollow fiber membrane with hydrophilic surfaces by ultrasonic wave-assisted graft polymerization. Polymer Engineering and Science, 2019, 59(S1): E446–E454

[86]

Jiang C, Huang T, Chen Y, Su Z, Yan X, Xu Q, Jiang M, Liu P. The effect of grafting monomer charge on the antifouling performance of poly(ether ether ketone) hollow fiber membrane by ultraviolet irradiation polymerization. Polymer International, 2020, 70(8): 1057–1064

[87]

Yameen B, Alvarez M, Azzaroni O, Jonas U, Knoll W. Tailoring of poly(ether ether ketone) surface properties via surface-initiated atom transfer radical polymerization. Langmuir, 2009, 25(11): 6214–6220

[88]

Yousaf A, Farrukh A, Oluz Z, Tuncel E, Duran H, Doğan S Y, Tekinay T, Rehman H, Yameen B. UV-light assisted single step route to functional PEEK surfaces. Reactive & Functional Polymers, 2014, 83: 70–75

[89]

Huang T, Li J, Chen Y, Zhong T, Liu P. Improving permeability and antifouling performance of poly(ether ether ketone) membranes by photo-induced graft polymerization. Materials Today. Communications, 2020, 23: 100945

[90]

Wang C, Park M J, Seo D H, Drioli E, Matsuyama H, Shon H. Recent advances in nanomaterial-incorporated nanocomposite membranes for organic solvent nanofiltration. Separation and Purification Technology, 2021, 268: 118657

[91]

Zhang Y, Kim D, Dong R, Feng X, Osuji C O. Tunable organic solvent nanofiltration in self-assembled membranes at the sub-1 nm scale. Science Advances, 2022, 8(11): eabm5899

[92]

Schnoor J K, Bettmer J, Kamp J, Wessling M, Liauw M A. Recycling and separation of homogeneous catalyst from aqueous multicomponent mixture by organic solvent nanofiltration. Membranes (Basel), 2021, 11(6): 423

[93]

Buonomenna M G, Bae J. Organic solvent nanofiltration in pharmaceutical industry. Separation and Purification Reviews, 2014, 44(2): 157–182

[94]

Falca G, Musteata V E, Chisca S, Hedhili M N, Ong C, Nunes S P. Naturally extracted hydrophobic solvent and self-assembly in interfacial polymerization. ACS Applied Materials & Interfaces, 2021, 13(37): 44824–44832

[95]

Alammar A, Hardian R, Szekely G. Upcycling agricultural waste into membranes: from date seed biomass to oil and solvent-resistant nanofiltration. Green Chemistry, 2022, 24(1): 365–374

[96]

Ren D, Ren S, Lin Y, Xu J, Wang X. Recent developments of organic solvent resistant materials for membrane separations. Chemosphere, 2021, 271: 129425

[97]

Abadikhah H, Kalali E N, Behzadi S, Khan S A, Xu X, Shabestari M E, Agathopoulos S. High flux thin film nanocomposite membrane incorporated with functionalized TiO2@reduced graphene oxide nanohybrids for organic solvent nanofiltration. Chemical Engineering Science, 2019, 204: 99–109

[98]

Gonzales R R, Kato N, Awaji H, Matsuyama H. Development of polydimethylsiloxane composite membrane for organic solvent separation. Separation and Purification Technology, 2022, 285: 120369

[99]

Wang K Y, Weber M, Chung T S. Polybenzimidazoles (PBIs) and state-of-the-art PBI hollow fiber membranes for water, organic solvent and gas separations: a review. Journal of Materials Chemistry A, 2022, 10(16): 8687–8718

[100]

Peeva L, Arbour J, Livingston A. On the potential of organic solvent nanofiltration in continuous Heck coupling reactions. Organic Process Research & Development, 2013, 17(7): 967–975

[101]

Buonomenna M G, Golemme G, Jansen J C, Choi S H. Asymmetric PEEKWC membranes for treatment of organic solvent solutions. Journal of Membrane Science, 2011, 368(1–2): 144–149

[102]

Hendrix K, Vaneynde M, Koeckelberghs G, Vankelecom I F J. Synthesis of modified poly(ether ether ketone) polymer for the preparation of ultrafiltration and nanofiltration membranes via phase inversion. Journal of Membrane Science, 2013, 447: 96–106

[103]

Hendrix K, Koeckelberghs G, Vankelecom I F J. Study of phase inversion parameters for PEEK-based nanofiltration membranes. Journal of Membrane Science, 2014, 452: 241–252

[104]

Hendrix K, Van Eynde M, Koeckelberghs G, Vankelecom I F J. Crosslinking of modified poly(ether ether ketone) membranes for use in solvent resistant nanofiltration. Journal of Membrane Science, 2013, 447: 212–221

[105]

Hendrix K, Vandoorne S, Koeckelberghs G, Vankelecom I F J. SRNF membranes for edible oil purification: introducing free amines in crosslinked PEEK to increase membrane hydrophilicity. Polymer, 2014, 55(6): 1307–1316

[106]

Buonomenna M G, Gordano A, Drioli E. Characteristics and performance of new nanoporous PEEKWC films. European Polymer Journal, 2008, 44(7): 2051–2059

[107]

Peeva L, da Silva Burgal J, Vartak S, Livingston A G. Experimental strategies for increasing the catalyst turnover number in a continuous Heck coupling reaction. Journal of Catalysis, 2013, 306: 190–201

[108]

Bagnato G, Figoli A, Garbe R, Russo F, Galiano F, Sanna A. Development of Ru-PEEK-WC catalytic membrane using a more sustainable solvent for stable hydrogenation reactions. Fuel Processing Technology, 2021, 216: 106766

[109]

Yu Y, Wang J, Wang Y, Pan W, Liu C, Liu P, Liang L, Xu C, Liu Y. Polyethyleneimine-functionalized phenolphthalein-based cardo poly(ether ether ketone) membrane for CO2 separation. Journal of Industrial and Engineering Chemistry, 2020, 83: 20–28

[110]

Buonomenna M G, Gordano A, Golemme G, Drioli E. Preparation, characterization and use of PEEKWC nanofiltration membranes for removal of Azur B dye from aqueous media. Reactive & Functional Polymers, 2009, 69(4): 259–263

[111]

Wang J, Du Q, Luan J, Zhu X, Pang J. ZnO nanoneedle-modified PEEK fiber felt for improving anti-fouling performance of oil/water separation. Langmuir, 2021, 37(24): 7449–7456

[112]

Xu Q, Wang G, Xiang C, Cong X, Gai X, Zhang S, Zhang M, Zhang H, Luan J. Preparation of a novel poly(ether ether ketone) nonwoven filter and its application in harsh conditions for dust removal. Separation and Purification Technology, 2020, 253: 117555

[113]

Ho C D, Chang H, Lin G H, Chew T L. Enhancing absorption performance of CO2 by amine solution through the spiral wired vhannel in concentric circular membrane contactors. Membranes (Basel), 2022, 12(1): 4

[114]

Li X, Zhang Y, Xin Q, Ding X, Zhao L, Ye H, Lin L, Li H, Zhang Y. NH2-MIL-125 filled mixed matrix membrane contactor with SO2 enrichment for flue gas desulphurization. Chemical Engineering Journal, 2022, 428: 132595

[115]

Klaassen R, Feron P, Jansen A. Membrane contactor applications. Desalination, 2008, 224(1): 81–87

[116]

Jiang X, Shao Y, Li J, Wu M, Niu Y, Ruan X, Yan X, Li X, He G. Bioinspired hybrid micro/nanostructure composited membrane with intensified mass transfer and antifouling for high saline water membrane distillation. ACS Nano, 2020, 14(12): 17376–17386

[117]

Jiang X, Lu D, Xiao W, Ruan X, Fang J, He G. Membrane assisted cooling crystallization: process model, nucleation, metastable zone, and crystal size distribution. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(3): 829–841

[118]

Xing L, Song J, Li Z, Liu J, Huang T, Dou P, Chen Y, Li X M, He T. Solvent stable nanoporous poly(ethylene-co-vinyl alcohol) barrier membranes for liquid–liquid extraction of lithium from a salt lake brine. Journal of Membrane Science, 2016, 520: 596–606

[119]

Hafeez S, Safdar T, Pallari E, Manos G, Aristodemou E, Zhang Z, Al-Salem S M, Constantinou A. CO2 capture using membrane contactors: a systematic literature review. Frontiers of Chemical Science and Engineering, 2020, 15(4): 720–754

[120]

Jiang X, Han M, Xia Z, Li J, Ruan X, Yan X, Xiao W, He G. Interfacial microdroplet evaporative crystallization on 3D printed regular matrix platform. AIChE Journal, 2020, 66(8): e16280

[121]

Jiang X, Shao Y, Sheng L, Li P, He G. Membrane crystallization for process intensification and control: a review. Engineering, 2021, 7(1): 50–62

[122]

van Linden N, Spanjers H, van Lier J B. Fuelling a solid oxide fuel cell with ammonia recovered from water by vacuum membrane stripping. Chemical Engineering Journal, 2022, 428: 131081

[123]

Song J, Huang T, Qiu H, Niu X, Li X M, Xie Y, He T. A critical review on membrane extraction with improved stability: potential application for recycling metals from city mine. Desalination, 2018, 440: 18–38

[124]

Bey S, Criscuoli A, Simone S, Figoli A, Benamor M, Drioli E. Hydrophilic PEEK-WC hollow fibre membrane contactors for chromium(Vi) removal. Desalination, 2011, 283: 16–24

[125]

Dugan A, Mayer J, Thaller A, Bachner G, Steininger K W. Developing policy packages for low-carbon passenger transport: a mixed methods analysis of trade-offs and synergies. Ecological Economics, 2022, 193: 107304

[126]

Dong F, Li Y, Gao Y, Zhu J, Qin C, Zhang X. Energy transition and carbon neutrality: exploring the non-linear impact of renewable energy development on carbon emission efficiency in developed countries. Resources, Conservation and Recycling, 2022, 177: 106002

[127]

Nogalska A, Trojanowska A, Garcia-Valls R. Membrane contactors for CO2 capture processes-critical review. Physical Sciences Reviews, 2017, 2(7): 59

[128]

Ghasem N, Al-Marzouqi M, Duidar A. Effect of PVDF concentration on the morphology and performance of hollow fiber membrane employed as gas-liquid membrane contactor for CO2 absorption. Separation and Purification Technology, 2012, 98: 174–185

[129]

Patel P, Hull T R, McCabe R W, Flath D, Grasmeder J, Percy M. Mechanism of thermal decomposition of poly(ether ether ketone) (PEEK) from a review of decomposition studies. Polymer Degradation & Stability, 2010, 95(5): 709–718

[130]

Li S, Pyrzynski T J, Klinghoffer N B, Tamale T, Zhong Y, Aderhold J L, James Zhou S, Meyer H S, Ding Y, Bikson B. Scale-up of PEEK hollow fiber membrane contactor for post-combustion CO2 capture. Journal of Membrane Science, 2017, 527: 92–101

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4679KB)

7509

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/