Effects of ancillary ligands in acceptorless benzyl alcohol dehydrogenation mediated by phosphine-free cobalt complexes
Yan Xu, Lu Wang, Junwei Wu, Guanzhong Zhai, Daohua Sun
Effects of ancillary ligands in acceptorless benzyl alcohol dehydrogenation mediated by phosphine-free cobalt complexes
Acceptorless alcohol dehydrogenation stands out as one of the most promising strategies in hydrogen storage technologies. Among various catalytic systems for this reaction, cost-effective molecular catalysts using phosphine-free ligands have gained considerable attention. However, the central challenge for using non-precious metals is to overcome the propensity of reacting by one-electron pathway. Herein, we synthesized a phosphine-free η5-C5Me5-Co complex by using the metal–ligand cooperative strategy and compared its activity with analogous catalysts toward acceptorless alcohol dehydrogenation. The catalyst showed excellent performance with a turnover number of 130.4 and a selectivity close to 100%. The improved performance among the class of η5-C5Me5-Co complexes could be attributed to the more accessible Co center and its cooperation with the redox-active ligand. To further study the systematic structure-activity relationship, we investigated the electronic structures of η5-C5Me5-Co complexes by a set of characterizations. The results showed that the redox-active ligand has a significant influence on the η5-C5Me5-Co moiety. In the meantime, the proximal O−/OH group is beneficial for shuttling protons. For the catalytic cycle, two dehydrogenation scenarios were interrogated through density functional theory, and the result suggested that the outer-sphere pathway was preferred. The formation of a dihydrogen complex was the rate-determining step with a ΔG value of 16.9 kcal∙mol‒1. The electron population demonstrated that the η5-C5Me5 ligand played a key role in stabilizing transition states during dehydrogenation steps. This work identified the roles of vital ligand components to boost catalytic performance and offered rationales for designing metal–ligand cooperative nonprecious metal complexes.
acceptorless alcohol dehydrogenation / η5-C5Me5-Co / metal–ligand cooperation / theoretical calculation
[1] |
Schaub T, Trincado M, Grützmacher H. Hydrogen Storage: Based on Hydrogenation and Dehydrogenation Reactions of Small Molecules. Berlin: Walter de Gruyter GmbH & Co KG, 2019,
|
[2] |
Gunanathan C, Milstein D. Applications of acceptorless dehydrogenation and related transformations in chemical synthesis. Science, 2013, 341(6143): 1229712
CrossRef
Google scholar
|
[3] |
Bains A K, Ankit Y, Adhikari D. Bioinspired radical-mediated transition-metal-free synthesis of N-heterocycles under visible light. ChemSusChem, 2021, 14(1): 324–329
CrossRef
Google scholar
|
[4] |
Budweg S, Junge K, Beller M. Catalytic oxidations by dehydrogenation of alkanes, alcohols and amines with defined (non)-noble metal pincer complexes. Catalysis Science & Technology, 2020, 10(12): 3825–3842
CrossRef
Google scholar
|
[5] |
Sarkar K, Das K, Kundu A, Adhikari D, Maji B. Phosphine-free manganese catalyst enables selective transfer hydrogenation of nitriles to primary and secondary amines using ammonia-borane. ACS Catalysis, 2021, 11(5): 2786–2794
CrossRef
Google scholar
|
[6] |
Valencia M, Muller-Bunz H, Gossage R A, Albrecht M. Enhanced product selectivity promoted by remote metal coordination in acceptor-free alcohol dehydrogenation catalysis. Chemical Communications, 2016, 52(16): 3344–3347
CrossRef
Google scholar
|
[7] |
Mazzacano T J, Mankad N P. Base metal catalysts for photochemical C–H borylation that utilize metal-metal cooperativity. Journal of the American Chemical Society, 2013, 135(46): 17258–17261
CrossRef
Google scholar
|
[8] |
Hou C, Zhang Z, Zhao C, Ke Z. DFT study of acceptorless alcohol dehydrogenation mediated by ruthenium pincer complexes: ligand tautomerization governing metal ligand cooperation. Inorganic Chemistry, 2016, 55(13): 6539–6551
CrossRef
Google scholar
|
[9] |
Pradhan D R, Pattanaik S, Kishore J, Gunanathan C. Cobalt-catalyzed acceptorless dehydrogenation of alcohols to carboxylate salts and hydrogen. Organic Letters, 2020, 22(5): 1852–1857
CrossRef
Google scholar
|
[10] |
Lupp D, Huang K W. The importance of metal–ligand cooperativity in the phosphorus-nitrogen PN3P platform: a computational study on Mn-catalyzed pyrrole synthesis. Organometallics, 2019, 39(1): 18–24
CrossRef
Google scholar
|
[11] |
Fujita K, Tamura R, Tanaka Y, Yoshida M, Onoda M, Yamaguchi R. Dehydrogenative oxidation of alcohols in aqueous media catalyzed by a water-soluble dicationic iridium complex bearing a functional N-heterocyclic carbene ligand without using base. ACS Catalysis, 2017, 7(10): 7226–7230
CrossRef
Google scholar
|
[12] |
Hale L V A, Szymczak N K. Hydrogen transfer catalysis beyond the primary coordination sphere. ACS Catalysis, 2018, 8(7): 6446–6461
CrossRef
Google scholar
|
[13] |
Hintermair U, Campos J, Brewster T P, Pratt L M, Schley N D, Crabtree R H. Hydrogen-transfer catalysis with Cp*Ir(III) complexes: the influence of the ancillary ligands. ACS Catalysis, 2013, 4(1): 99–108
CrossRef
Google scholar
|
[14] |
Lehman M C, Gary J B, Boyle P D, Sanford M S, Ison E A. Effect of solvent and ancillary ligands on the catalytic H/D exchange reactivity of Cp*Ir(III)(L) complexes. ACS Catalysis, 2013, 3(10): 2304–2310
CrossRef
Google scholar
|
[15] |
Zeng G, Sakaki S, Fujita K, Sano H, Yamaguchi R. Efficient catalyst for acceptorless alcohol dehydrogenation: interplay of theoretical and experimental studies. ACS Catalysis, 2014, 4(3): 1010–1020
CrossRef
Google scholar
|
[16] |
Kawahara R, Fujita K, Yamaguchi R. Cooperative catalysis by iridium complexes with a bipyridonate ligand: versatile dehydrogenative oxidation of alcohols and reversible dehydrogenation–hydrogenation between 2-propanol and acetone. Angewandte Chemie International Edition, 2012, 51(51): 12790–12794
CrossRef
Google scholar
|
[17] |
Johnee Britto N, Rajpurohit A S, Jagan K, Jaccob M. Unravelling the reaction mechanism of formic acid dehydrogenation by Cp*Rh(III) and Cp*Co(III) catalysts with proton-responsive 4,4′- and 6,6′-dihydroxy-2,2′-bipyridine ligands: a DFT study. Journal of Physical Chemistry C, 2019, 123(41): 25061–25073
CrossRef
Google scholar
|
[18] |
Burks D B, Vasiliu M, Dixon D A, Papish E T. Thermodynamic acidity studies of 6,6′-dihydroxy-2,2′-bipyridine: a combined experimental and computational approach. Journal of Physical Chemistry A, 2018, 122(8): 2221–2231
CrossRef
Google scholar
|
[19] |
Wang W H, Muckerman J T, Fujita E, Himeda Y. Mechanistic insight through factors controlling effective hydrogenation of CO2 catalyzed by bioinspired proton-responsive iridium(III) complexes. ACS Catalysis, 2013, 3(5): 856–860
CrossRef
Google scholar
|
[20] |
Zhao Y, Truhlar D G. Density functionals with broad applicability in chemistry. Accounts of Chemical Research, 2008, 41(2): 157–167
CrossRef
Google scholar
|
[21] |
Hay P J, Wadt W R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. Journal of Chemical Physics, 1985, 82(1): 270–283
CrossRef
Google scholar
|
[22] |
Wadt W R, Hay P J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. Journal of Chemical Physics, 1985, 82(1): 284–298
CrossRef
Google scholar
|
[23] |
Hehre W J, Ditchfield R, Pople J A. Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. Journal of Chemical Physics, 1972, 56(5): 2257–2261
CrossRef
Google scholar
|
[24] |
Schlegel H B. Optimization of equilibrium geometries and transition structures. Journal of Computational Chemistry, 1982, 3(2): 214–218
CrossRef
Google scholar
|
[25] |
Bryantsev V S, Diallo M S, Goddard W A III. Calculation of solvation free energies of charged solutes using mixed cluster/continuum models. Journal of Physical Chemistry B, 2008, 112(32): 9709–9719
CrossRef
Google scholar
|
[26] |
Kelly C P, Cramer C J, Truhlar D G. Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. Journal of Physical Chemistry B, 2006, 110(32): 16066–16081
CrossRef
Google scholar
|
[27] |
Reed A E, Curtiss L A, Weinhold F. Intermolecular interactions from a natural bond orbital, donor−acceptor viewpoint. Chemical Reviews, 1988, 88(6): 899–926
CrossRef
Google scholar
|
[28] |
Avilés T, Dinis A, Orlando Gonçalves J, Félix V, Calhorda M J, Prazeres Â, Drew M G B, Alves H, Henriques R T, Gama V, Zanello P, Fontani M. Synthesis, X-ray structures, electrochemistry, magnetic properties, and theoretical studies of the novel monomeric [CoI2(dppfO2)] and polymeric chain. Dalton Transactions, 2002,
CrossRef
Google scholar
|
[29] |
Nielsen M, Alberico E, Baumann W, Drexler H J, Junge H, Gladiali S, Beller M. Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide. Nature, 2013, 495(7439): 85–89
CrossRef
Google scholar
|
[30] |
Badiei Y M, Wang W H, Hull J F, Szalda D J, Muckerman J T, Himeda Y, Fujita E. Cp*Co(III) catalysts with proton-responsive ligands for carbon dioxide hydrogenation in aqueous media. Inorganic Chemistry, 2013, 52(21): 12576–12586
CrossRef
Google scholar
|
[31] |
Sanchez P, Hernandez-Juarez M, Rendon N, Lopez-Serrano J, Santos L L, Alvarez E, Paneque M, Suarez A. Hydrogenation/dehydrogenation of N-heterocycles catalyzed by ruthenium complexes based on multimodal proton-responsive CNN(H) pincer ligands. Dalton Transactions, 2020, 49(28): 9583–9587
CrossRef
Google scholar
|
/
〈 | 〉 |