Continuous amino-functionalized University of Oslo 66 membranes as efficacious polysulfide barriers for lithium−sulfur batteries

Bowen Du, Yuhong Luo, Feichao Wu, Guihua Liu, Jingde Li, Wei Xue

PDF(14695 KB)
PDF(14695 KB)
Front. Chem. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (2) : 194-205. DOI: 10.1007/s11705-022-2206-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Continuous amino-functionalized University of Oslo 66 membranes as efficacious polysulfide barriers for lithium−sulfur batteries

Author information +
History +

Abstract

The shuttle effect of soluble polysulfides is a serious problem impeding the development of lithium−sulfur batteries. Herein, continuous amino-functionalized University of Oslo 66 membranes supported on carbon nanotube films are proposed as ion-permselective interlayers that overcome these issues and show outstanding suppression of the polysulfide shuttle effect. The proposed membrane material has appropriately sized pores, and can act as ionic sieves and serve as barriers to polysulfides transport while allowing the passage of lithium ions during electrochemical cycles, thereby validly preventing the shuttling of polysulfides. Moreover, a fast catalytic conversion of polysulfides is also achieved with the as-developed interlayer. Therefore, lithium−sulfur batteries with this interlayer show a desirable initial capacity of 999.21 mAh·g–1 at 1 C and a durable cyclic stability with a decay rate of only 0.04% per cycle over 300 cycles. Moreover, a high area capacity of 4.82 mAh·cm–2 is also obtained even under increased sulfur loading (5.12 mg·cm–2) and a lean-electrolyte condition (E/S = 4.8 μL·mg–1).

Graphical abstract

Keywords

lithium−sulfur batteries / amino-functionalized University of Oslo 66 membrane / polysulfide / interlayer

Cite this article

Download citation ▾
Bowen Du, Yuhong Luo, Feichao Wu, Guihua Liu, Jingde Li, Wei Xue. Continuous amino-functionalized University of Oslo 66 membranes as efficacious polysulfide barriers for lithium−sulfur batteries. Front. Chem. Sci. Eng., 2023, 17(2): 194‒205 https://doi.org/10.1007/s11705-022-2206-7

References

[1]
Luo D, Zhang Z, Li G R, Cheng S B, Li S, Li J D, Gao R, Li M, Sy S, Deng Y P, Jiang Y, Zhu Y, Dou H, Hu Y, Yu A, Chen Z. Revealing the rapid electrocatalytic behavior of ultrafine amorphous defective Nb2O5−x nanocluster toward superior Li–S performance. ACS Nano, 2020, 14(4): 4849–4860
CrossRef Google scholar
[2]
Kalaiappan K, Rengapillai S, Marimuthu S, Murugan R, Thiru P. Kombucha SCOBY-based carbon and graphene oxide wrapped sulfur/polyacrylonitrile as a high-capacity cathode in lithium–sulfur batteries. Frontiers of Chemical Science and Engineering, 2020, 14(6): 976–987
CrossRef Google scholar
[3]
Du Z Z, Chen X J, Hu W, Chuang C H, Xie S, Hu A, Yan W S, Kong X H, Wu X J, Ji H X, Wan L J. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium–sulfur batteries. Journal of the American Chemical Society, 2019, 141(9): 3977–3985
CrossRef Google scholar
[4]
Yuan H, Peng H J, Li B Q, Xie J, Kong L, Zhao M, Chen X, Huang J Q, Zhang Q. Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium–sulfur batteries. Advanced Energy Materials, 2019, 9(1): 1–8
CrossRef Google scholar
[5]
Park J, Moon J, Ri V, Lee S, Kim C, Cairns E J. Nitrogen-doped graphene quantum dots: sulfiphilic additives for the high-performance Li–S cells. ACS Applied Energy Materials, 2021, 4(4): 3518–3525
CrossRef Google scholar
[6]
Yang X F, Luo J, Sun X L. Towards high-performance solid-state Li–S batteries: from fundamental understanding to engineering design. Chemical Society Reviews, 2020, 49(7): 2140–2195
CrossRef Google scholar
[7]
Song J J, Guo X, Zhang J Q, Chen Y, Zhang C Y, Luo L Q, Wang F Y, Wang G X. Rational design of free-standing 3D porous MXene/RGO hybrid aerogels as polysulfide reservoirs for high-energy lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7(14): 6507–6513
CrossRef Google scholar
[8]
Wu Z L, Chen S X, Wang L, Deng Q, Zeng Z L, Wang J, Deng S G. Implanting nickel and cobalt phosphide into well-defined carbon nanocages: a synergistic adsorption-electrocatalysis separator mediator for durable high-power Li–S batteries. Energy Storage Materials, 2021, 38: 381–388
CrossRef Google scholar
[9]
Bai M H, Hong B, Zhang K, Yuan K, Xie K Y, Wei W F, Lai Y Q. Defect-rich carbon nitride as electrolyte additive for in-situ electrode interface modification in lithium metal battery. Chemical Engineering Journal, 2021, 407: 127123
CrossRef Google scholar
[10]
Zhang Z Q, Zhao B B, Zhang S, Zhang J J, Han P X, Wang X G, Ma F R, Sun D Y, Jin Y C, Kanamura K, Cui G. A mixed electron/ion conducting interlayer enabling ultra-stable cycle performance for solid state lithium–sulfur batteries. Journal of Power Sources, 2021, 487: 229428
CrossRef Google scholar
[11]
Chen L, Yu H, Li W X, Dirican M, Liu Y, Zhang X W. Interlayer design based on carbon materials for lithium–sulfur batteries: a review. Journal of Materials Chemistry A, 2020, 8(21): 10709–10735
CrossRef Google scholar
[12]
Ye Z Q, Jiang Y, Feng T, Wang Z H, Li L, Wu F, Chen R J. Curbing polysulfide shuttling by synergistic engineering layer composed of supported Sn4P3 nanodots electrocatalyst in lithium–sulfur batteries. Nano Energy, 2020, 70: 104532
CrossRef Google scholar
[13]
Wang Y, Deng Z, Huang J Y, Li H J, Li Z Y, Peng X S, Tian Y, Lu J G, Tang H C, Chen L X, Ye Z. 2D Zr–Fc metal–organic frameworks with highly efficient anchoring and catalytic conversion ability towards polysulfides for advanced Li–S battery. Energy Storage Materials, 2021, 36: 466–477
CrossRef Google scholar
[14]
Mao Y Y, Li G R, Guo Y, Li Z P, Liang C D, Peng X S, Lin Z. Foldable interpenetrated metal–organic frameworks/carbon nanotubes thin film for lithium–sulfur batteries. Nature Communications, 2017, 8(1): 14628
CrossRef Google scholar
[15]
Zheng Y, Zheng S S, Xue H G, Pang H. Metal–organic frameworks for lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7(8): 3469–3491
CrossRef Google scholar
[16]
Xiao X, Zou L L, Pang H, Xu Q. Synthesis of micro/nanoscaled metal–organic frameworks and their direct electrochemical applications. Chemical Society Reviews, 2020, 49(1): 301–331
CrossRef Google scholar
[17]
Guo D, Li X, Wahyudi W, Li C Y, Emwas A H, Hedhili M N, Li Y X, Lai Z P. Electropolymerized conjugated microporous nanoskin regulating polysulfide and electrolyte for high-energy Li–S batteries. ACS Nano, 2020, 14(12): 17163–17173
CrossRef Google scholar
[18]
Tian M, Pei F, Yao M S, Fu Z H, Lin L L, Wu G D, Xu G, Kitagawa H, Fang X L. Ultrathin MOF nanosheet assembled highly oriented microporous membrane as an interlayer for lithium–sulfur batteries. Energy Storage Materials, 2019, 21: 14–21
CrossRef Google scholar
[19]
Zang Y, Pei F, Huang J H, Fu Z H, Xu G, Fang X L. Large-area preparation of crack-free crystalline microporous conductive membrane to upgrade high energy lithium–sulfur batteries. Advanced Energy Materials, 2018, 8(31): 1–9
CrossRef Google scholar
[20]
Chen Y J, Liu S Y, Yuan X T, Hu X C, Ye W Q, Razzaq A A, Lian Y, Chen M Z, Zhao X H, Peng Y, Choi J-H, Ahn J-H, Deng Z. rGO-CNT aerogel embedding iron phosphide nanocubes for high-performance Li-polysulfide batteries. Carbon, 2020, 167: 446–454
CrossRef Google scholar
[21]
Wu F C, Cao Y, Liu H O, Zhang X F. High-performance UiO-66-NH2 tubular membranes by zirconia-induced synthesis for desulfurization of model gasoline via pervaporation. Journal of Membrane Science, 2018, 556: 54–65
CrossRef Google scholar
[22]
Tian Y, Li G R, Zhang Y G, Luo D, Wang X, Zhao Y, Liu H, Ji P G, Du X H, Li J D, Chen Z. Low-bandgap Se-deficient antimony selenide as a multifunctional polysulfide barrier toward high-performance lithium–sulfur batteries. Advanced Materials, 2020, 32(4): 1–11
CrossRef Google scholar
[23]
Wan T T, Liu S M, Wu C C, Tan Z Y, Lin S L, Zhang X J, Zhang Z S, Liu G H. Rational design of Co nano-dots embedded three-dimensional graphene gel as multifunctional sulfur cathode for fast sulfur conversion kinetics. Journal of Energy Chemistry, 2021, 56: 132–140
CrossRef Google scholar
[24]
Li N R, Yu L H, Yang J Y, Zheng B B, Qiu X P, Xi J Y. Identifying the active sites and multifunctional effects in nitrogen-doped carbon microtube interlayer for confining-trapping-catalyzing polysulfides. Nano Energy, 2021, 79: 105466
CrossRef Google scholar
[25]
Li Y J, Lin S Y, Wang D D, Gao T T, Song J W, Zhou P, Xu Z K, Yang Z H, Xiao N, Guo S J. Single atom array mimic on ultrathin MOF nanosheets boosts the safety and life of lithium–sulfur batteries. Advanced Materials, 2020, 32(8): 1–10
CrossRef Google scholar
[26]
Wang M Y, Han S H, Chao Z S, Li S Y, Tan B, Lai J X, Guo Z Y, Wei X L, Jin H G, Luo W B, Yi W J, Fan J C. Celgard-supported LiX Zeolite membrane as ion-permselective separator in lithium sulfur battery. Journal of Membrane Science, 2020, 611: 118386
CrossRef Google scholar
[27]
Deng S Z, Yan Y C, Wei L Q, Li T, Su X, Yang X J, Li Z T, Wu M B. Amorphous Al2O3 with N-doped porous carbon as efficient polysulfide barrier in Li–S batteries. ACS Applied Energy Materials, 2019, 2(2): 1266–1273
CrossRef Google scholar
[28]
Fan Y P, Niu Z H, Zhang F, Zhang R, Zhao Y, Lu G. Suppressing the shuttle effect in lithium–sulfur batteries by a UiO-66-modified polypropylene separator. ACS Omega, 2019, 4(6): 10328–10335
CrossRef Google scholar
[29]
Lin J H, Zhang K F, Zhu Z Q, Zhang R Z, Li N, Zhao C H. CoP/C nanocubes-modified separator suppressing polysulfide dissolution for high-rate and stable lithium–sulfur batteries. ACS Applied Materials & Interfaces, 2020, 12(2): 2497–2504
CrossRef Google scholar
[30]
Li M L, Wan Y, Huang J K, Assen A H, Hsiung C E, Jiang H, Han Y, Eddaoudi M, Lai Z P, Ming J, Li L J. Metal–organic framework-based separators for enhancing Li–S battery stability: mechanism of mitigating polysulfide diffusion. ACS Energy Letters, 2017, 2(10): 2362–2367
CrossRef Google scholar
[31]
Cai Y H, Shi D C, Liu G L, Ying Y P, Cheng Y D, Wang Y X, Chen D Y, Lu J M, Zhao D. Polycrystalline zirconium metal–organic framework membranes supported on flexible carbon cloth for organic solvent nanofiltration. Journal of Membrane Science, 2020, 615: 118551
CrossRef Google scholar
[32]
Strauss I, Chakarova K, Mundstock A, Mihaylov M, Hadjiivanov K, Guschanski N, Caro J. UiO-66 and UiO-66-NH2 based sensors: dielectric and FTIR investigations on the effect of CO2 adsorption. Microporous and Mesoporous Materials, 2020, 302: 110227
CrossRef Google scholar
[33]
Xie Y, Chen C L, Ren X M, Tan X L, Song G, Chen D Y, Alsaedi A, Hayat T. Coupling g-C3N4 nanosheets with metal–organic frameworks as 2D/3D composite for the synergetic removal of uranyl ions from aqueous solution. Journal of Colloid and Interface Science, 2019, 550: 117–127
CrossRef Google scholar
[34]
Lei T Y, Chen W, Lv W Q, Huang J W, Zhu J, Chu J W, Yan C Y, Wu C Y, Yan Y C, He W D, Xiong J, Li Y, Yan C, Goodenough J B, Duan X. Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium–sulfur batteries. Joule, 2018, 2(10): 2091–2104
CrossRef Google scholar
[35]
Chen J, Sun B Z, Sun C R, Zhang P L, Xu W F, Liu Y, Xiong B Q, Tang K W. Immobilization of lipase AYS on UiO-66-NH2 metal–organic framework nanoparticles as a recyclable biocatalyst for ester hydrolysis and kinetic resolution. Separation and Purification Technology, 2020, 251: 117398
CrossRef Google scholar
[36]
He Y B, Qiao Y, Chang Z, Zhou H S. The potential of electrolyte filled MOF membranes as ionic sieves in rechargeable batteries. Energy & Environmental Science, 2019, 12(8): 2327–2344
CrossRef Google scholar
[37]
Jin G F, Zhang J L, Dang B Y, Wu F C, Li J D. Engineering zirconium-based metal–organic framework-801 films on carbon cloth as shuttle-inhibiting interlayers for lithium–sulfur batteries. Frontiers of Chemical Science and Engineering, 2022, 16(4): 511–522
CrossRef Google scholar
[38]
Wang X X, Qi Y X, Shen Y, Yuan Y, Zhang L D, Zhang C Y, Sun Y H. A ratiometric electrochemical sensor for simultaneous detection of multiple heavy metal ions based on ferrocene-functionalized metal–organic framework. Sensors and Actuators B: Chemical, 2020, 310: 127756
CrossRef Google scholar
[39]
Xie Y, Pan G Y, Jin Q, Qi X Q, Wang T, Li W, Xu H, Zheng Y H, Li S, Qie L, Huang Y, Li J. Semi-flooded sulfur cathode with ultralean absorbed electrolyte in Li–S battery. Advanced Science, 2020, 7(9): 1903168
CrossRef Google scholar
[40]
Tian R Y, Park S H, King P J, Cunningham G, Coelho J, Nicolosi V, Coleman J N. Quantifying the factors limiting rate performance in battery electrodes. Nature Communications, 2019, 10(1): 1933
CrossRef Google scholar
[41]
Zhou X, Liu T T, Zhao G F, Yang X F, Guo H. Cooperative catalytic interface accelerates redox kinetics of sulfur species for high-performance Li–S batteries. Energy Storage Materials, 2021, 40: 139–149
CrossRef Google scholar
[42]
Wu X, Fan L S, Qiu Y, Wang M X, Cheng J H, Guan B, Guo Z K, Zhang N Q, Sun K N. Ion-selective prussian-blue-modified Celgard separator for high-performance lithium–sulfur battery. ChemSusChem, 2018, 11(18): 3345–3351
CrossRef Google scholar
[43]
Qian J, Wang F J, Li Y, Wang S, Zhao Y Y, Li W L, Xing Y, Deng L, Sun Q, Li L, Wu F, Chen R. Electrocatalytic interlayer with fast lithium-polysulfides diffusion for lithium–sulfur batteries to enhance electrochemical kinetics under lean electrolyte conditions. Advanced Functional Materials, 2020, 30(27): 1–9
CrossRef Google scholar
[44]
Zhang M, Chen W, Xue L X, Jiao Y, Lei T Y, Chu J W, Huang J W, Gong C H, Yan C Y, Yan Y C, Hu Y, Wang X, Xiong J. Adsorption-catalysis design in the lithium–sulfur battery. Advanced Energy Materials, 2020, 10(2): 1903008
CrossRef Google scholar
[45]
Li Y J, Wu J B, Zhang B, Wang W Y, Zhang G Q, Seh Z W, Zhang N, Sun J, Huang L, Jiang J J, Zhou J, Sun Y. Fast conversion and controlled deposition of lithium (poly)sulfides in lithium–sulfur batteries using high-loading cobalt single atoms. Energy Storage Materials, 2020, 30: 250–259
CrossRef Google scholar
[46]
Hong X J, Song C L, Yang Y, Tan H C, Li G H, Cai Y P, Wang H X. Cerium based metal–organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium–sulfur batteries. ACS Nano, 2019, 13(2): 1923–1931
CrossRef Google scholar
[47]
Pathak R, Chen K, Gurung A, Reza K M, Bahrami B, Pokharel J, Baniya A, He W, Wu F, Zhou Y, Xu K, Qiao Q Q. Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nature Communications, 2020, 11(1): 1–10
CrossRef Google scholar
[48]
Deng N P, Liu Y, Li Q X, Yan J, Lei W W, Wang G, Wang L Y, Liang Y Y, Kang W M, Cheng B W. Functional mechanism analysis and customized structure design of interlayers for high performance Li–S battery. Energy Storage Materials, 2019, 23: 314–349
CrossRef Google scholar
[49]
Zhou S Y, Yang S, Ding X W, Lai Y C, Nie H G, Zhang Y G, Chan D, Duan H, Huang S M, Yang Z. Dual-regulation strategy to improve anchoring and conversion of polysulfides in lithium–sulfur batteries. ACS Nano, 2020, 14(6): 7538–7551
CrossRef Google scholar
[50]
Baumann A, Han X, Butala M M, Thoi V S. Lithium thiophosphate functionalized zirconium MOFs for Li–S batteries with enhanced rate capabilities. Journal of the American Chemical Society, 2019, 141(44): 17891–17899
CrossRef Google scholar

Acknowledgments

The authors gratefully acknowledge the financial support from the Natural Science Foundation of Hebei Province (Grant No. B2019202289), the Outstanding Young Talents Project of Hebei High Education Institutions (Grant No. BJ2021020) and ‘Hundred Talents Program’ of Hebei Province (Grant No. E2019050013).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://dx.doi.org/10.1007/s11705-022-2206-7 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(14695 KB)

Accesses

Citations

Detail

Sections
Recommended

/