Porous ultrathin-shell microcapsules designed by microfluidics for selective permeation and stimuli-triggered release

Li Chen , Yao Xiao , Zhiming Zhang , Chun-Xia Zhao , Baoling Guo , Fangfu Ye , Dong Chen

Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (11) : 1643 -1650.

PDF (2581KB)
Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (11) : 1643 -1650. DOI: 10.1007/s11705-022-2201-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Porous ultrathin-shell microcapsules designed by microfluidics for selective permeation and stimuli-triggered release

Author information +
History +
PDF (2581KB)

Abstract

Microcapsules are versatile delivery vehicles and widely used in various areas. Generally, microcapsules with solid shells lack selective permeation and only exhibit a simple release mode. Here, we use ultrathin-shell water-in-oil-in-water double emulsions as templates and design porous ultrathin-shell microcapsules for selective permeation and multiple stimuli-triggered release. After preparation of double emulsions by microfluidic devices, negatively charged shellac nanoparticles dispersed in the inner water core electrostatically complex with positively charged telechelic α,ω-diamino functionalized polydimethylsiloxane polymers dissolved in the middle oil shell at the water/oil interface, thus forming a porous shell of shellac nanoparticles cross-linked by telechelic polymers. Subsequently, the double emulsions become porous microcapsules upon evaporation of the middle oil phase. The porous ultrathin-shell microcapsules exhibit excellent properties, including tunable size, selective permeation and stimuli-triggered release. Small molecules or particles can diffuse across the shell, while large molecules or particles are encapsulated in the core, and release of the encapsulated cargos can be triggered by osmotic shock or a pH change. Due to their unique performance, porous ultrathin-shell microcapsules present promising platforms for various applications, such as drug delivery.

Graphical abstract

Keywords

microcapsule / emulsion / microfluidics / selective permeation / stimuli-triggered release

Cite this article

Download citation ▾
Li Chen, Yao Xiao, Zhiming Zhang, Chun-Xia Zhao, Baoling Guo, Fangfu Ye, Dong Chen. Porous ultrathin-shell microcapsules designed by microfluidics for selective permeation and stimuli-triggered release. Front. Chem. Sci. Eng., 2022, 16(11): 1643-1650 DOI:10.1007/s11705-022-2201-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lee H, Choi C H, Abbaspourrad A, Wesner C, Caggioni M, Zhu T, Weitz D A. Encapsulation and enhanced retention of fragrance in polymer microcapsules. ACS Applied Materials & Interfaces, 2016, 8(6): 4007–4013

[2]

Nam C, Yoon J, Ryu S A, Choi C H, Lee H. Water and oil insoluble PEGDA-based microcapsule: biocompatible and multicomponent encapsulation. ACS Applied Materials & Interfaces, 2018, 10(47): 40366–40371

[3]

Chu J O, Choi Y, Kim D W, Jeong H S, Park J P, Weitz D A, Lee S J, Lee H, Choi C H. Cell-inspired hydrogel microcapsules with a thin oil layer for enhanced retention of highly reactive antioxidants. ACS Applied Materials & Interfaces, 2022, 14(2): 2597–2604

[4]

Ling S D, Geng Y, Chen A, Du Y, Xu J. Enhanced single-cell encapsulation in microfluidic devices: from droplet generation to single-cell analysis. Biomicrofluidics, 2020, 14(6): 61508

[5]

Pessi J, Santos H A, Miroshnyk I, JoukoYliruusi D A, Weitz S. Microfluidics-assisted engineering of polymeric microcapsules with high encapsulation efficiency for protein drug delivery. International Journal of Pharmaceutics, 2014, 472(1): 82–87

[6]

Choi C H, Lee H, Abbaspourrad A, Kim J H, Fan J, Caggioni M, Wesner C, Zhu T, Weitz D A. Triple emulsion drops with an ultrathin water layer: high encapsulation efficiency and enhanced cargo retention in microcapsules. Advanced Materials, 2016, 28(17): 3340–3344

[7]

Zhu P, Kong T, Tang X, Wang L. Well-defined porous membranes for robust omniphobic surfaces via microfluidic emulsion templating. Nature Communications, 2017, 8(1): 15823

[8]

Chen L, Xiao Y, Wu Q, Yan X, Zhao P, Ruan J, Shan J, Chen D, Weitz D A, Ye F. Emulsion designer using microfluidic three-dimensional droplet printing in droplet. Small, 2021, 17(39): 2102579

[9]

Sobczak G, Wojciechowski T, Sashuk V. Submicron colloidosomes of tunable size and wall thickness. Langmuir, 2017, 33(7): 1725–1731

[10]

Wu S, Xin Z, Zhao S, Sun S. High-throughput droplet microfluidic synthesis of hierarchical metal−organic framework nanosheet microcapsules. Nano Research, 2019, 12(11): 2736–2742

[11]

Hitchcock J P, Tasker A L, Baxter E A, Biggs S, Cayre O J. Long-term retention of small, volatile molecular species within metallic microcapsules. ACS Applied Materials & Interfaces, 2015, 7(27): 14808–14815

[12]

Zhang M J, Zhang P, Qiu L D, Chen T, Wang W, Chu L Y. Controllable microfluidic fabrication of microstructured functional materials. Biomicrofluidics, 2020, 14(6): 061501

[13]

He F, Wang W, He X H, Yang X L, Li M, Xie R, Ju X J, Liu Z, Chu L Y. Controllable multicompartmental capsules with distinct cores and shells for synergistic release. ACS Applied Materials & Interfaces, 2016, 8(13): 8743–8754

[14]

You X R, Ju X J, He F, Wang Y, Liu Z, Wang W, Chu L Y. Polymersomes with rapid K(+)-triggered drug-release behaviors. ACS Applied Materials & Interfaces, 2017, 9(22): 19258–19268

[15]

Geryak R, Quigley E, Kim S, Korolovych V F, Calabrese R, Kaplan D L, Tsukruk V V. Tunable interfacial properties in silk ionomer microcapsules with tailored multilayer interactions. Macromolecular Bioscience, 2019, 19(3): 1800176

[16]

Tian T, Ruan J, Zhang J, Zhao C X, Chen D, Shan J. Nanocarrier-based tumor-targeting drug delivery systems for hepatocellular carcinoma treatments: enhanced therapeutic efficacy and reduced drug toxicity. Journal of Biomedical Nanotechnology, 2022, 18(3): 660–676

[17]

Xie X, Zhang W, Abbaspourrad A, Ahn J, Bader A, Bose S, Vegas A, Lin J, Tao J, Hang T, Lee H, Iverson N, Bisker G, Li L, Strano M S, Weitz D A, Anderson D G. Microfluidic fabrication of colloidal nanomaterials-encapsulated microcapsules for biomolecular sensing. Nano Letters, 2017, 17(3): 2015–2020

[18]

Sun H, Zheng H, Tang Q, Dong Y, Qu F, Wang Y, Yang G, Meng T. Monodisperse alginate microcapsules with spatially confined bioactive molecules via microfluid-generated W/W/O emulsions. ACS Applied Materials & Interfaces, 2019, 11(40): 37313–37321

[19]

Polenz I, Datta S S, Weitz D A. Controlling the morphology of polyurea microcapsules using microfluidics. Langmuir, 2014, 30(40): 13405–13410

[20]

Sun Z, Yang C, Eggersdorfer M, Cui J, Li Y, Hai M, Chen D, Weitz D A. A general strategy for one-step fabrication of biocompatible microcapsules with controlled active release. Chinese Chemical Letters, 2020, 31(1): 249–252

[21]

Liu Z, Ju X J, Wang W, Xie R, Jiang L, Chen Q, Zhang Y Q, Wu J F, Chu L Y. Stimuli-responsive capsule membranes for controlled release in pharmaceutical applications. Current Pharmaceutical Design, 2017, 23(2): 295–301

[22]

Chen L, Yang C, Xiao Y, Yan X, Hu L, Eggersdorfer M, Chen D, Weitz D A, Ye F. Millifluidics, microfluidics, and nanofluidics: manipulating fluids at varying length scales. Materials Today Nano, 2021, 16: 100136

[23]

Sun Z, Yan X, Xiao Y, Hu L, Eggersdorfer M, Chen D, Yang Z, Weitz D A. Pickering emulsions stabilized by colloidal surfactants: role of solid particles. Particuology, 2022, 64: 153–163

[24]

Choi Y H, Hwang J, Han S H, Lee C, Jeon S, Kim S. Thermo-responsive microcapsules with tunable molecular permeability for controlled encapsulation and release. Advanced Functional Materials, 2021, 31(24): 2100782

[25]

Lee T Y, Ku M, Kim B, Lee S, Yang J, Kim S H. Microfluidic production of biodegradable microcapsules for sustained release of hydrophilic actives. Small, 2017, 13(29): 1700646

[26]

Perrotton J, Ahijado-Guzmán R, Moleiro L H, Tinao B, Guerrero-Martinez A, Amstad E, Monroy F, Arriaga L R. Microfluidic fabrication of vesicles with hybrid lipid/nanoparticle bilayer membranes. Soft Matter, 2019, 15(6): 1388–1395

[27]

Wu B, Yang C, Xin Q, Kong L, Eggersdorfer M, Ruan J, Zhao P, Shan J, Liu K, Chen D, Weitz D A, Gao X. Attractive Pickering emulsion gels. Advanced Materials, 2021, 33(33): 2102362

[28]

Yan X, Wu B, Wu Q, Chen L, Ye F, Chen D. Interfacial engineering of attractive Pickering emulsion gel-templated porous materials for enhanced solar vapor generation. Energies, 2021, 14(19): 6077

[29]

Luo G, Yu Y, Yuan Y, Chen X, Liu Z, Kong T. Freeform, reconfigurable embedded printing of all-aqueous 3D architectures. Advanced Materials, 2019, 31(49): 1904631

[30]

Werner J G, Weitz D A, Lee H, Wiesner U. Ordered mesoporous microcapsules from double emulsion confined block copolymer self-assembly. ACS Nano, 2021, 15(2): 3490–3499

[31]

Thierry B, Griesser H J. Dense PEG layers for efficient immunotargeting of nanoparticles to cancer cells. Journal of Materials Chemistry, 2012, 22(18): 8810

[32]

Schiller L R, Emmett M, Santa Ana C A, Fordtran J S. Osmotic effects of polyethylene glycol. Gastroenterology, 1988, 94(4): 933–941

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2581KB)

Supplementary files

FCE-22029-OF-CL_suppl_1

3162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/