Porous ultrathin-shell microcapsules designed by microfluidics for selective permeation and stimuli-triggered release
Li Chen, Yao Xiao, Zhiming Zhang, Chun-Xia Zhao, Baoling Guo, Fangfu Ye, Dong Chen
Porous ultrathin-shell microcapsules designed by microfluidics for selective permeation and stimuli-triggered release
Microcapsules are versatile delivery vehicles and widely used in various areas. Generally, microcapsules with solid shells lack selective permeation and only exhibit a simple release mode. Here, we use ultrathin-shell water-in-oil-in-water double emulsions as templates and design porous ultrathin-shell microcapsules for selective permeation and multiple stimuli-triggered release. After preparation of double emulsions by microfluidic devices, negatively charged shellac nanoparticles dispersed in the inner water core electrostatically complex with positively charged telechelic α,ω-diamino functionalized polydimethylsiloxane polymers dissolved in the middle oil shell at the water/oil interface, thus forming a porous shell of shellac nanoparticles cross-linked by telechelic polymers. Subsequently, the double emulsions become porous microcapsules upon evaporation of the middle oil phase. The porous ultrathin-shell microcapsules exhibit excellent properties, including tunable size, selective permeation and stimuli-triggered release. Small molecules or particles can diffuse across the shell, while large molecules or particles are encapsulated in the core, and release of the encapsulated cargos can be triggered by osmotic shock or a pH change. Due to their unique performance, porous ultrathin-shell microcapsules present promising platforms for various applications, such as drug delivery.
microcapsule / emulsion / microfluidics / selective permeation / stimuli-triggered release
[1] |
Lee H, Choi C H, Abbaspourrad A, Wesner C, Caggioni M, Zhu T, Weitz D A. Encapsulation and enhanced retention of fragrance in polymer microcapsules. ACS Applied Materials & Interfaces, 2016, 8(6): 4007–4013
CrossRef
Google scholar
|
[2] |
Nam C, Yoon J, Ryu S A, Choi C H, Lee H. Water and oil insoluble PEGDA-based microcapsule: biocompatible and multicomponent encapsulation. ACS Applied Materials & Interfaces, 2018, 10(47): 40366–40371
CrossRef
Google scholar
|
[3] |
Chu J O, Choi Y, Kim D W, Jeong H S, Park J P, Weitz D A, Lee S J, Lee H, Choi C H. Cell-inspired hydrogel microcapsules with a thin oil layer for enhanced retention of highly reactive antioxidants. ACS Applied Materials & Interfaces, 2022, 14(2): 2597–2604
CrossRef
Google scholar
|
[4] |
Ling S D, Geng Y, Chen A, Du Y, Xu J. Enhanced single-cell encapsulation in microfluidic devices: from droplet generation to single-cell analysis. Biomicrofluidics, 2020, 14(6): 61508
CrossRef
Google scholar
|
[5] |
Pessi J, Santos H A, Miroshnyk I, JoukoYliruusi D A, Weitz S. Microfluidics-assisted engineering of polymeric microcapsules with high encapsulation efficiency for protein drug delivery. International Journal of Pharmaceutics, 2014, 472(1): 82–87
CrossRef
Google scholar
|
[6] |
Choi C H, Lee H, Abbaspourrad A, Kim J H, Fan J, Caggioni M, Wesner C, Zhu T, Weitz D A. Triple emulsion drops with an ultrathin water layer: high encapsulation efficiency and enhanced cargo retention in microcapsules. Advanced Materials, 2016, 28(17): 3340–3344
CrossRef
Google scholar
|
[7] |
Zhu P, Kong T, Tang X, Wang L. Well-defined porous membranes for robust omniphobic surfaces via microfluidic emulsion templating. Nature Communications, 2017, 8(1): 15823
CrossRef
Google scholar
|
[8] |
Chen L, Xiao Y, Wu Q, Yan X, Zhao P, Ruan J, Shan J, Chen D, Weitz D A, Ye F. Emulsion designer using microfluidic three-dimensional droplet printing in droplet. Small, 2021, 17(39): 2102579
CrossRef
Google scholar
|
[9] |
Sobczak G, Wojciechowski T, Sashuk V. Submicron colloidosomes of tunable size and wall thickness. Langmuir, 2017, 33(7): 1725–1731
CrossRef
Google scholar
|
[10] |
Wu S, Xin Z, Zhao S, Sun S. High-throughput droplet microfluidic synthesis of hierarchical metal−organic framework nanosheet microcapsules. Nano Research, 2019, 12(11): 2736–2742
CrossRef
Google scholar
|
[11] |
Hitchcock J P, Tasker A L, Baxter E A, Biggs S, Cayre O J. Long-term retention of small, volatile molecular species within metallic microcapsules. ACS Applied Materials & Interfaces, 2015, 7(27): 14808–14815
CrossRef
Google scholar
|
[12] |
Zhang M J, Zhang P, Qiu L D, Chen T, Wang W, Chu L Y. Controllable microfluidic fabrication of microstructured functional materials. Biomicrofluidics, 2020, 14(6): 061501
CrossRef
Google scholar
|
[13] |
He F, Wang W, He X H, Yang X L, Li M, Xie R, Ju X J, Liu Z, Chu L Y. Controllable multicompartmental capsules with distinct cores and shells for synergistic release. ACS Applied Materials & Interfaces, 2016, 8(13): 8743–8754
CrossRef
Google scholar
|
[14] |
You X R, Ju X J, He F, Wang Y, Liu Z, Wang W, Chu L Y. Polymersomes with rapid K(+)-triggered drug-release behaviors. ACS Applied Materials & Interfaces, 2017, 9(22): 19258–19268
CrossRef
Google scholar
|
[15] |
Geryak R, Quigley E, Kim S, Korolovych V F, Calabrese R, Kaplan D L, Tsukruk V V. Tunable interfacial properties in silk ionomer microcapsules with tailored multilayer interactions. Macromolecular Bioscience, 2019, 19(3): 1800176
CrossRef
Google scholar
|
[16] |
Tian T, Ruan J, Zhang J, Zhao C X, Chen D, Shan J. Nanocarrier-based tumor-targeting drug delivery systems for hepatocellular carcinoma treatments: enhanced therapeutic efficacy and reduced drug toxicity. Journal of Biomedical Nanotechnology, 2022, 18(3): 660–676
CrossRef
Google scholar
|
[17] |
Xie X, Zhang W, Abbaspourrad A, Ahn J, Bader A, Bose S, Vegas A, Lin J, Tao J, Hang T, Lee H, Iverson N, Bisker G, Li L, Strano M S, Weitz D A, Anderson D G. Microfluidic fabrication of colloidal nanomaterials-encapsulated microcapsules for biomolecular sensing. Nano Letters, 2017, 17(3): 2015–2020
CrossRef
Google scholar
|
[18] |
Sun H, Zheng H, Tang Q, Dong Y, Qu F, Wang Y, Yang G, Meng T. Monodisperse alginate microcapsules with spatially confined bioactive molecules via microfluid-generated W/W/O emulsions. ACS Applied Materials & Interfaces, 2019, 11(40): 37313–37321
CrossRef
Google scholar
|
[19] |
Polenz I, Datta S S, Weitz D A. Controlling the morphology of polyurea microcapsules using microfluidics. Langmuir, 2014, 30(40): 13405–13410
CrossRef
Google scholar
|
[20] |
Sun Z, Yang C, Eggersdorfer M, Cui J, Li Y, Hai M, Chen D, Weitz D A. A general strategy for one-step fabrication of biocompatible microcapsules with controlled active release. Chinese Chemical Letters, 2020, 31(1): 249–252
CrossRef
Google scholar
|
[21] |
Liu Z, Ju X J, Wang W, Xie R, Jiang L, Chen Q, Zhang Y Q, Wu J F, Chu L Y. Stimuli-responsive capsule membranes for controlled release in pharmaceutical applications. Current Pharmaceutical Design, 2017, 23(2): 295–301
CrossRef
Google scholar
|
[22] |
Chen L, Yang C, Xiao Y, Yan X, Hu L, Eggersdorfer M, Chen D, Weitz D A, Ye F. Millifluidics, microfluidics, and nanofluidics: manipulating fluids at varying length scales. Materials Today Nano, 2021, 16: 100136
CrossRef
Google scholar
|
[23] |
Sun Z, Yan X, Xiao Y, Hu L, Eggersdorfer M, Chen D, Yang Z, Weitz D A. Pickering emulsions stabilized by colloidal surfactants: role of solid particles. Particuology, 2022, 64: 153–163
CrossRef
Google scholar
|
[24] |
Choi Y H, Hwang J, Han S H, Lee C, Jeon S, Kim S. Thermo-responsive microcapsules with tunable molecular permeability for controlled encapsulation and release. Advanced Functional Materials, 2021, 31(24): 2100782
CrossRef
Google scholar
|
[25] |
Lee T Y, Ku M, Kim B, Lee S, Yang J, Kim S H. Microfluidic production of biodegradable microcapsules for sustained release of hydrophilic actives. Small, 2017, 13(29): 1700646
CrossRef
Google scholar
|
[26] |
Perrotton J, Ahijado-Guzmán R, Moleiro L H, Tinao B, Guerrero-Martinez A, Amstad E, Monroy F, Arriaga L R. Microfluidic fabrication of vesicles with hybrid lipid/nanoparticle bilayer membranes. Soft Matter, 2019, 15(6): 1388–1395
CrossRef
Google scholar
|
[27] |
Wu B, Yang C, Xin Q, Kong L, Eggersdorfer M, Ruan J, Zhao P, Shan J, Liu K, Chen D, Weitz D A, Gao X. Attractive Pickering emulsion gels. Advanced Materials, 2021, 33(33): 2102362
CrossRef
Google scholar
|
[28] |
Yan X, Wu B, Wu Q, Chen L, Ye F, Chen D. Interfacial engineering of attractive Pickering emulsion gel-templated porous materials for enhanced solar vapor generation. Energies, 2021, 14(19): 6077
CrossRef
Google scholar
|
[29] |
Luo G, Yu Y, Yuan Y, Chen X, Liu Z, Kong T. Freeform, reconfigurable embedded printing of all-aqueous 3D architectures. Advanced Materials, 2019, 31(49): 1904631
CrossRef
Google scholar
|
[30] |
Werner J G, Weitz D A, Lee H, Wiesner U. Ordered mesoporous microcapsules from double emulsion confined block copolymer self-assembly. ACS Nano, 2021, 15(2): 3490–3499
CrossRef
Google scholar
|
[31] |
Thierry B, Griesser H J. Dense PEG layers for efficient immunotargeting of nanoparticles to cancer cells. Journal of Materials Chemistry, 2012, 22(18): 8810
CrossRef
Google scholar
|
[32] |
Schiller L R, Emmett M, Santa Ana C A, Fordtran J S. Osmotic effects of polyethylene glycol. Gastroenterology, 1988, 94(4): 933–941
CrossRef
Google scholar
|
/
〈 | 〉 |