Spin polarization strategy to deploy proton resource over atomic-level metal sites for highly selective CO2 electrolysis

Yingjie Zhao , Xinyue Wang , Xiahan Sang , Sixing Zheng , Bin Yang , Lecheng Lei , Yang Hou , Zhongjian Li

Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (12) : 1772 -1781.

PDF (12036KB)
Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (12) : 1772 -1781. DOI: 10.1007/s11705-022-2197-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Spin polarization strategy to deploy proton resource over atomic-level metal sites for highly selective CO2 electrolysis

Author information +
History +
PDF (12036KB)

Abstract

Unlocking of the extremely inert C=O bond during electrochemical CO2 reduction demands subtle regulation on a key “resource”, protons, necessary for intermediate conversion but also readily trapped in water splitting, which is still challenging for developing efficient single-atom catalysts limited by their structural simplicity usually incompetent to handle this task. Incorporation of extra functional units should be viable. Herein, a proton deployment strategy is demonstrated via “atomic and nanostructured iron (A/N-Fe) pairs”, comprising atomically dispersed iron active centers spin-polarized by nanostructured iron carbide ferromagnets, to boost the critical protonation steps. The as-designed catalyst displays a broad window (300 mV) for CO selectivity > 90% (98% maximum), even outperforming numerous cutting-edge M–N–C systems. The well-placed control of proton dynamics by A/N-Fe can promote *COOH/*CO formation and simultaneously suppress H2 evolution, benefiting from the magnetic-proximity-induced exchange splitting (spin polarization) that properly adjusts energy levels of the Fe sites’ d-shells, and further those of the adsorbed intermediates’ antibonding molecular orbitals.

Graphical abstract

Keywords

CO2 electrolysis / single-atom catalysts / spin polarization / proton dynamics / in situ IR spectroscopy / kinetic isotope effect

Cite this article

Download citation ▾
Yingjie Zhao, Xinyue Wang, Xiahan Sang, Sixing Zheng, Bin Yang, Lecheng Lei, Yang Hou, Zhongjian Li. Spin polarization strategy to deploy proton resource over atomic-level metal sites for highly selective CO2 electrolysis. Front. Chem. Sci. Eng., 2022, 16(12): 1772-1781 DOI:10.1007/s11705-022-2197-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Grim R G, Huang Z, Guarnieri M T, Ferrell J R, Tao L, Schaidle J A. Transforming the carbon economy: challenges and opportunities in the convergence of low-cost electricity and reductive CO2 utilization. Energy & Environmental Science, 2020, 13(2): 472–494

[2]

Kortlever R, Shen J, Schouten K J P, Calle-Vallejo F, Koper M T M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. Journal of Physical Chemistry Letters, 2015, 6(20): 4073–4082

[3]

Birdja Y Y, Perez-Gallent E, Figueiredo M C, Gottle A J, Calle-Vallejo F, Koper M T M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nature Energy, 2019, 4(9): 732–745

[4]

Ross M B, De Luna P, Li Y, Dinh C T, Kim D, Yang P, Sargent E H. Designing materials for electrochemical carbon dioxide recycling. Nature Catalysis, 2019, 2(8): 648–658

[5]

Zhang Y J, Sethuraman V, Michalsky R, Peterson A A. Competition between CO2 reduction and H2 evolution on transition-metal electrocatalysts. ACS Catalysis, 2014, 4(10): 3742–3748

[6]

Cave E R, Shi C, Kuhl K P, Hatsukade T, Abram D N, Hahn C, Chan K, Jaramillo T F. Trends in the catalytic activity of hydrogen evolution during CO2 electroreduction on transition metals. ACS Catalysis, 2018, 8(4): 3035–3040

[7]

Zheng T, Jiang K, Wang H. Recent advances in electrochemical CO2-to-CO conversion on heterogeneous catalysts. Advanced Materials, 2018, 30(48): 1802066

[8]

Wang Y, Liu Y, Liu W, Wu J, Li Q, Feng Q, Chen Z, Xiong X, Wang D, Lei Y. Regulating the coordination structure of metal single atoms for efficient electrocatalytic CO2 reduction. Energy & Environmental Science, 2020, 13(12): 4609–4624

[9]

Pan Y, Zhang C, Liu Z, Chen C, Li Y D. Structural regulation with atomic-level precision: from single-atomic site to diatomic and atomic interface catalysis. Matter, 2020, 2(1): 78–110

[10]

Zang W, Kou Z, Pennycook S J, Wang J. Heterogeneous single atom electrocatalysis, where “singles” are “married”. Advanced Energy Materials, 2020, 10(9): 1903181

[11]

Jiao J, Lin R, Liu S, Cheong W C, Zhang C, Chen Z, Pan Y, Tang J, Wu K, Hung S F, Chen H M, Zheng L, Lu Q, Yang X, Xu B, Xiao H, Li J, Wang D, Peng Q, Chen C, Li Y. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nature Chemistry, 2019, 11(3): 222–228

[12]

Liu C, Wu Y, Sun K, Fang J, Huang A, Pan Y, Cheong W C, Zhuang Z, Zhuang Z, Yuan Q, Xin H L, Zhang C, Zhang J, Xiao H, Chen C, Li Y. Constructing FeN4/graphitic nitrogen atomic interface for high-efficiency electrochemical CO2 reduction over a broad potential window. Chem, 2021, 7(5): 1297–1307

[13]

Bondue C J, Graf M, Goyal A, Koper M T M. Suppression of hydrogen evolution in acidic electrolytes by electrochemical CO2 reduction. Journal of the American Chemical Society, 2021, 143(1): 279–285

[14]

Ma W, Xie S, Zhang X G, Sun F, Kang J, Jiang Z, Zhang Q, Wu D Y, Wang Y. Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces. Nature Communications, 2019, 10(1): 892

[15]

Wang X, Sang X, Dong C L, Yao S, Shuai L, Lu J, Yang B, Li Z, Lei L, Qiu M, Dai L, Hou Y. Proton capture strategy for enhancing electrochemical CO2 reduction on atomically dispersed metal-nitrogen active sites. Angewandte Chemie International Edition, 2021, 60(21): 11959–11965

[16]

Ju W, Bagger A, Hao G P, Sofia Varela A, Sinev I, Bon V, Roldan Cuenya B, Kaskel S, Rossmeisl J, Strasser P. Understanding activity and selectivity of metal−nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nature Communications, 2017, 8(1): 944

[17]

Zhang H, Li J, Xi S, Du Y, Hai X, Wang J, Xu H, Wu G, Zhang J, Lu J, Wang J. A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction. Angewandte Chemie International Edition, 2019, 58(42): 14871–14876

[18]

Li J, Mao S, Hou Y, Lei L, Yuan C. 3D edge-enriched Fe3C@C nanocrystals with a core-shell structure grown on reduced graphene oxide networks for efficient oxygen reduction reaction. ChemSusChem, 2018, 11(18): 3292–3298

[19]

Zhang W, Yin J, Sun M, Wang W, Chen C, Altunkaya M, Emwas A H, Han Y, Schwingenschlogl U, Alshareef H N. Direct pyrolysis of supermolecules: an ultrahigh edge-nitrogen doping strategy of carbon anodes for potassium-ion batteries. Advanced Materials, 2020, 32(25): 2000732

[20]

Shao Y, Pang R, Shi X. Stability of two-dimensional iron carbides suspended across graphene pores: first-principles particle swarm optimization. Journal of Physical Chemistry C, 2015, 119(40): 22954–22960

[21]

Zutic I, Matos-Abiague A, Scharf B, Dery H, Belashchenko K. Proximitized materials. Materials Today, 2019, 22: 85–107

[22]

Stöhr J, Siegmann H C. Magnetism: From Fundamentals to Nanoscale Dynamics. Berlin: Springer, 2006, 235–240

[23]

Marder M P. Condensed Matter Physics. Hoboken: Wiley, 2010, 811–813

[24]

Norskov J K, Bligaard T, Rossmeisl J, Christensen C H. Towards the computational design of solid catalysts. Nature Chemistry, 2009, 1(1): 37–46

[25]

Zhao Z J, Liu S, Zha S, Cheng D, Studt F, Henkelman G, Gong J. Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nature Reviews Materials, 2019, 4(12): 792–804

[26]

Ren X, Wu T Z, Sun Y M, Li Y, Xian G Y, Liu X H, Shen C M, Gracia J, Gao H J, Yang H T, Xu Z J. Spin-polarized oxygen evolution reaction under magnetic field. Nature Communications, 2021, 12(1): 2608

[27]

Wu T Z, Ren X, Sun Y M, Sun S N, Xian G Y, Scherer G G, Fisher A C, Mandler D, Ager J W, Grimaud A, Wang J, Shen C, Yang H, Gracia J, Gao H J, Xu Z J. Spin pinning effect to reconstructed oxyhydroxide layer on ferromagnetic oxides for enhanced water oxidation. Nature Communications, 2021, 12(1): 3634

[28]

Demtröder W. Atoms, Molecules and Photons: An Introduction to Atomic-, Molecular- and Quantum Physics. Berlin: Springer, 2018, 320–322

[29]

Zhang X, Li X Q, Zhang D, Su N Q, Yang W T, Everitt H O, Liu J. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nature Communications, 2017, 8(1): 14542

[30]

Jiang W J, Gu L, Li L, Zhang Y, Zhang X, Zhang L J, Wang J Q, Hu J S, Wei Z, Wan L J. Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-Nx. Journal of the American Chemical Society, 2016, 138(10): 3570–3578

[31]

Hu J, Wang S, Yu J, Nie W, Sun J, Wang S. Duet Fe3C and FeNx sites for H2O2 generation and activation toward enhanced electro-Fenton performance in wastewater treatment. Environmental Science & Technology, 2021, 55(2): 1260–1269

[32]

Li J, Ghoshal S, Liang W, Sougrati M T, Jaouen F, Halevi B, McKinney S, McCool G, Ma C, Yuan X, Ma Z F, Mukerjee S, Jia Q. Structural and mechanistic basis for the high activity of Fe−N−C catalysts toward oxygen reduction. Energy & Environmental Science, 2016, 9(7): 2418–2432

[33]

Gu J, Hsu C S, Bai L, Chen H M, Hu X. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science, 2019, 364(6445): 1091–1094

[34]

Burdyny T, Smith W A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy & Environmental Science, 2019, 12(5): 1442–1453

[35]

Firet N J, Smith W A. Probing the reaction mechanism of CO2 electroreduction over Ag films via operando infrared spectroscopy. ACS Catalysis, 2017, 7(1): 606–612

[36]

Zhu S, Jiang B, Cai W B, Shao M. Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. Journal of the American Chemical Society, 2017, 139(44): 15664–15667

[37]

Günzler H, Gremlich H U I R. Spectroscopy: an Introduction. Weinheim: Wiley, 2002, 14–16

[38]

Rankin D W H, Mitzel N W, Morrison C A. Structural Methods in Molecular Inorganic Chemistry. Chichester: Wiley, 2013, 237–238

[39]

Kettle S F A. Physical Inorganic Chemistry: A Coordination Chemistry Approach. Berlin: Springer, 1996, 229–230

[40]

Bell R P. The Proton in Chemistry. London: Chapman & Hall, 1973, 232–235

[41]

Goyal A, Marcandalli G, Mints V A, Koper M T M. Competition between CO2 reduction and hydrogen evolution on a gold electrode under well-defined mass transport conditions. Journal of the American Chemical Society, 2020, 142(9): 4154–4161

[42]

Hammes-Schiffer S. Theory of proton-coupled electron transfer in energy conversion processes. Accounts of Chemical Research, 2009, 42(12): 1881–1889

[43]

Liu E, Jiao L, Li J, Stracensky T, Sun Q, Mukerjee S, Jia Q. Interfacial water shuffling the intermediates of hydrogen oxidation and evolution reactions in aqueous media. Energy & Environmental Science, 2020, 13(9): 3064–3074

[44]

Goldsmith Z K, Lam Y C, Soudackov A V, Hammes-Schiffer S. Proton discharge on a gold electrode from triethylammonium in acetonitrile: theoretical modeling of potential-dependent kinetic isotope effects. Journal of the American Chemical Society, 2019, 141(2): 1084–1090

[45]

Lam Y C, Soudackov A V, Hammes-Schiffer S. Theory of electrochemical proton-coupled electron transfer in diabatic vibronic representation: application to proton discharge on metal electrodes in alkaline solution. Journal of Physical Chemistry C, 2020, 124(50): 27309–27322

[46]

Deng D H, Yu L, Chen X Q, Wang G X, Jin L, Pan X L, Deng J, Sun G Q, Bao X H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angewandte Chemie International Edition, 2013, 52(1): 371–375

[47]

Hu Y, Jensen J O, Zhang W, Cleemann L N, Xing W, Bjerrum N J, Li Q. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts. Angewandte Chemie International Edition, 2014, 53(14): 3675–3679

[48]

Xie J, Wang Y. Recent development of CO2 electrochemistry from Li–CO2 batteries to Zn–CO2 batteries. Accounts of Chemical Research, 2019, 52(6): 1721–1729

[49]

Wang X, Xie J, Ghausi M A, Lv J, Huang Y, Wu M, Wang Y, Yao J. Rechargeable Zn–CO2 electrochemical cells mimicking two-step photosynthesis. Advanced Materials, 2019, 31(17): 1807807

[50]

Liang X, Xiao J, Weng W, Xiao W. Electrochemical reduction of carbon dioxide and iron oxide in molten salts to Fe/Fe3C modified carbon for electrocatalytic oxygen evolution. Angewandte Chemie International Edition, 2021, 60(4): 2120–2124

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (12036KB)

Supplementary files

FCE-22025-OF-ZY_suppl_1

4520

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/