Spin polarization strategy to deploy proton resource over atomic-level metal sites for highly selective CO2 electrolysis
Yingjie Zhao, Xinyue Wang, Xiahan Sang, Sixing Zheng, Bin Yang, Lecheng Lei, Yang Hou, Zhongjian Li
Spin polarization strategy to deploy proton resource over atomic-level metal sites for highly selective CO2 electrolysis
Unlocking of the extremely inert C=O bond during electrochemical CO2 reduction demands subtle regulation on a key “resource”, protons, necessary for intermediate conversion but also readily trapped in water splitting, which is still challenging for developing efficient single-atom catalysts limited by their structural simplicity usually incompetent to handle this task. Incorporation of extra functional units should be viable. Herein, a proton deployment strategy is demonstrated via “atomic and nanostructured iron (A/N-Fe) pairs”, comprising atomically dispersed iron active centers spin-polarized by nanostructured iron carbide ferromagnets, to boost the critical protonation steps. The as-designed catalyst displays a broad window (300 mV) for CO selectivity > 90% (98% maximum), even outperforming numerous cutting-edge M–N–C systems. The well-placed control of proton dynamics by A/N-Fe can promote *COOH/*CO formation and simultaneously suppress H2 evolution, benefiting from the magnetic-proximity-induced exchange splitting (spin polarization) that properly adjusts energy levels of the Fe sites’ d-shells, and further those of the adsorbed intermediates’ antibonding molecular orbitals.
CO2 electrolysis / single-atom catalysts / spin polarization / proton dynamics / in situ IR spectroscopy / kinetic isotope effect
[1] |
Grim R G, Huang Z, Guarnieri M T, Ferrell J R, Tao L, Schaidle J A. Transforming the carbon economy: challenges and opportunities in the convergence of low-cost electricity and reductive CO2 utilization. Energy & Environmental Science, 2020, 13(2): 472–494
CrossRef
Google scholar
|
[2] |
Kortlever R, Shen J, Schouten K J P, Calle-Vallejo F, Koper M T M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. Journal of Physical Chemistry Letters, 2015, 6(20): 4073–4082
CrossRef
Google scholar
|
[3] |
Birdja Y Y, Perez-Gallent E, Figueiredo M C, Gottle A J, Calle-Vallejo F, Koper M T M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nature Energy, 2019, 4(9): 732–745
CrossRef
Google scholar
|
[4] |
Ross M B, De Luna P, Li Y, Dinh C T, Kim D, Yang P, Sargent E H. Designing materials for electrochemical carbon dioxide recycling. Nature Catalysis, 2019, 2(8): 648–658
CrossRef
Google scholar
|
[5] |
Zhang Y J, Sethuraman V, Michalsky R, Peterson A A. Competition between CO2 reduction and H2 evolution on transition-metal electrocatalysts. ACS Catalysis, 2014, 4(10): 3742–3748
CrossRef
Google scholar
|
[6] |
Cave E R, Shi C, Kuhl K P, Hatsukade T, Abram D N, Hahn C, Chan K, Jaramillo T F. Trends in the catalytic activity of hydrogen evolution during CO2 electroreduction on transition metals. ACS Catalysis, 2018, 8(4): 3035–3040
CrossRef
Google scholar
|
[7] |
Zheng T, Jiang K, Wang H. Recent advances in electrochemical CO2-to-CO conversion on heterogeneous catalysts. Advanced Materials, 2018, 30(48): 1802066
CrossRef
Google scholar
|
[8] |
Wang Y, Liu Y, Liu W, Wu J, Li Q, Feng Q, Chen Z, Xiong X, Wang D, Lei Y. Regulating the coordination structure of metal single atoms for efficient electrocatalytic CO2 reduction. Energy & Environmental Science, 2020, 13(12): 4609–4624
CrossRef
Google scholar
|
[9] |
Pan Y, Zhang C, Liu Z, Chen C, Li Y D. Structural regulation with atomic-level precision: from single-atomic site to diatomic and atomic interface catalysis. Matter, 2020, 2(1): 78–110
CrossRef
Google scholar
|
[10] |
Zang W, Kou Z, Pennycook S J, Wang J. Heterogeneous single atom electrocatalysis, where “singles” are “married”. Advanced Energy Materials, 2020, 10(9): 1903181
CrossRef
Google scholar
|
[11] |
Jiao J, Lin R, Liu S, Cheong W C, Zhang C, Chen Z, Pan Y, Tang J, Wu K, Hung S F, Chen H M, Zheng L, Lu Q, Yang X, Xu B, Xiao H, Li J, Wang D, Peng Q, Chen C, Li Y. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nature Chemistry, 2019, 11(3): 222–228
CrossRef
Google scholar
|
[12] |
Liu C, Wu Y, Sun K, Fang J, Huang A, Pan Y, Cheong W C, Zhuang Z, Zhuang Z, Yuan Q, Xin H L, Zhang C, Zhang J, Xiao H, Chen C, Li Y. Constructing FeN4/graphitic nitrogen atomic interface for high-efficiency electrochemical CO2 reduction over a broad potential window. Chem, 2021, 7(5): 1297–1307
CrossRef
Google scholar
|
[13] |
Bondue C J, Graf M, Goyal A, Koper M T M. Suppression of hydrogen evolution in acidic electrolytes by electrochemical CO2 reduction. Journal of the American Chemical Society, 2021, 143(1): 279–285
CrossRef
Google scholar
|
[14] |
Ma W, Xie S, Zhang X G, Sun F, Kang J, Jiang Z, Zhang Q, Wu D Y, Wang Y. Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces. Nature Communications, 2019, 10(1): 892
CrossRef
Google scholar
|
[15] |
Wang X, Sang X, Dong C L, Yao S, Shuai L, Lu J, Yang B, Li Z, Lei L, Qiu M, Dai L, Hou Y. Proton capture strategy for enhancing electrochemical CO2 reduction on atomically dispersed metal-nitrogen active sites. Angewandte Chemie International Edition, 2021, 60(21): 11959–11965
CrossRef
Google scholar
|
[16] |
Ju W, Bagger A, Hao G P, Sofia Varela A, Sinev I, Bon V, Roldan Cuenya B, Kaskel S, Rossmeisl J, Strasser P. Understanding activity and selectivity of metal−nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nature Communications, 2017, 8(1): 944
CrossRef
Google scholar
|
[17] |
Zhang H, Li J, Xi S, Du Y, Hai X, Wang J, Xu H, Wu G, Zhang J, Lu J, Wang J. A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction. Angewandte Chemie International Edition, 2019, 58(42): 14871–14876
CrossRef
Google scholar
|
[18] |
Li J, Mao S, Hou Y, Lei L, Yuan C. 3D edge-enriched Fe3C@C nanocrystals with a core-shell structure grown on reduced graphene oxide networks for efficient oxygen reduction reaction. ChemSusChem, 2018, 11(18): 3292–3298
CrossRef
Google scholar
|
[19] |
Zhang W, Yin J, Sun M, Wang W, Chen C, Altunkaya M, Emwas A H, Han Y, Schwingenschlogl U, Alshareef H N. Direct pyrolysis of supermolecules: an ultrahigh edge-nitrogen doping strategy of carbon anodes for potassium-ion batteries. Advanced Materials, 2020, 32(25): 2000732
CrossRef
Google scholar
|
[20] |
Shao Y, Pang R, Shi X. Stability of two-dimensional iron carbides suspended across graphene pores: first-principles particle swarm optimization. Journal of Physical Chemistry C, 2015, 119(40): 22954–22960
CrossRef
Google scholar
|
[21] |
Zutic I, Matos-Abiague A, Scharf B, Dery H, Belashchenko K. Proximitized materials. Materials Today, 2019, 22: 85–107
CrossRef
Google scholar
|
[22] |
Stöhr J, Siegmann H C. Magnetism: From Fundamentals to Nanoscale Dynamics. Berlin: Springer, 2006,
|
[23] |
Marder M P. Condensed Matter Physics. Hoboken: Wiley, 2010,
|
[24] |
Norskov J K, Bligaard T, Rossmeisl J, Christensen C H. Towards the computational design of solid catalysts. Nature Chemistry, 2009, 1(1): 37–46
CrossRef
Google scholar
|
[25] |
Zhao Z J, Liu S, Zha S, Cheng D, Studt F, Henkelman G, Gong J. Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nature Reviews Materials, 2019, 4(12): 792–804
CrossRef
Google scholar
|
[26] |
Ren X, Wu T Z, Sun Y M, Li Y, Xian G Y, Liu X H, Shen C M, Gracia J, Gao H J, Yang H T, Xu Z J. Spin-polarized oxygen evolution reaction under magnetic field. Nature Communications, 2021, 12(1): 2608
CrossRef
Google scholar
|
[27] |
Wu T Z, Ren X, Sun Y M, Sun S N, Xian G Y, Scherer G G, Fisher A C, Mandler D, Ager J W, Grimaud A, Wang J, Shen C, Yang H, Gracia J, Gao H J, Xu Z J. Spin pinning effect to reconstructed oxyhydroxide layer on ferromagnetic oxides for enhanced water oxidation. Nature Communications, 2021, 12(1): 3634
CrossRef
Google scholar
|
[28] |
Demtröder W. Atoms, Molecules and Photons: An Introduction to Atomic-, Molecular- and Quantum Physics. Berlin: Springer, 2018,
|
[29] |
Zhang X, Li X Q, Zhang D, Su N Q, Yang W T, Everitt H O, Liu J. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nature Communications, 2017, 8(1): 14542
CrossRef
Google scholar
|
[30] |
Jiang W J, Gu L, Li L, Zhang Y, Zhang X, Zhang L J, Wang J Q, Hu J S, Wei Z, Wan L J. Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-Nx. Journal of the American Chemical Society, 2016, 138(10): 3570–3578
CrossRef
Google scholar
|
[31] |
Hu J, Wang S, Yu J, Nie W, Sun J, Wang S. Duet Fe3C and FeNx sites for H2O2 generation and activation toward enhanced electro-Fenton performance in wastewater treatment. Environmental Science & Technology, 2021, 55(2): 1260–1269
CrossRef
Google scholar
|
[32] |
Li J, Ghoshal S, Liang W, Sougrati M T, Jaouen F, Halevi B, McKinney S, McCool G, Ma C, Yuan X, Ma Z F, Mukerjee S, Jia Q. Structural and mechanistic basis for the high activity of Fe−N−C catalysts toward oxygen reduction. Energy & Environmental Science, 2016, 9(7): 2418–2432
CrossRef
Google scholar
|
[33] |
Gu J, Hsu C S, Bai L, Chen H M, Hu X. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science, 2019, 364(6445): 1091–1094
CrossRef
Google scholar
|
[34] |
Burdyny T, Smith W A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy & Environmental Science, 2019, 12(5): 1442–1453
CrossRef
Google scholar
|
[35] |
Firet N J, Smith W A. Probing the reaction mechanism of CO2 electroreduction over Ag films via operando infrared spectroscopy. ACS Catalysis, 2017, 7(1): 606–612
CrossRef
Google scholar
|
[36] |
Zhu S, Jiang B, Cai W B, Shao M. Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. Journal of the American Chemical Society, 2017, 139(44): 15664–15667
CrossRef
Google scholar
|
[37] |
Günzler H, Gremlich H U I R. Spectroscopy: an Introduction. Weinheim: Wiley, 2002,
|
[38] |
Rankin D W H, Mitzel N W, Morrison C A. Structural Methods in Molecular Inorganic Chemistry. Chichester: Wiley, 2013,
|
[39] |
Kettle S F A. Physical Inorganic Chemistry: A Coordination Chemistry Approach. Berlin: Springer, 1996,
|
[40] |
Bell R P. The Proton in Chemistry. London: Chapman & Hall, 1973,
|
[41] |
Goyal A, Marcandalli G, Mints V A, Koper M T M. Competition between CO2 reduction and hydrogen evolution on a gold electrode under well-defined mass transport conditions. Journal of the American Chemical Society, 2020, 142(9): 4154–4161
CrossRef
Google scholar
|
[42] |
Hammes-Schiffer S. Theory of proton-coupled electron transfer in energy conversion processes. Accounts of Chemical Research, 2009, 42(12): 1881–1889
CrossRef
Google scholar
|
[43] |
Liu E, Jiao L, Li J, Stracensky T, Sun Q, Mukerjee S, Jia Q. Interfacial water shuffling the intermediates of hydrogen oxidation and evolution reactions in aqueous media. Energy & Environmental Science, 2020, 13(9): 3064–3074
CrossRef
Google scholar
|
[44] |
Goldsmith Z K, Lam Y C, Soudackov A V, Hammes-Schiffer S. Proton discharge on a gold electrode from triethylammonium in acetonitrile: theoretical modeling of potential-dependent kinetic isotope effects. Journal of the American Chemical Society, 2019, 141(2): 1084–1090
CrossRef
Google scholar
|
[45] |
Lam Y C, Soudackov A V, Hammes-Schiffer S. Theory of electrochemical proton-coupled electron transfer in diabatic vibronic representation: application to proton discharge on metal electrodes in alkaline solution. Journal of Physical Chemistry C, 2020, 124(50): 27309–27322
CrossRef
Google scholar
|
[46] |
Deng D H, Yu L, Chen X Q, Wang G X, Jin L, Pan X L, Deng J, Sun G Q, Bao X H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angewandte Chemie International Edition, 2013, 52(1): 371–375
CrossRef
Google scholar
|
[47] |
Hu Y, Jensen J O, Zhang W, Cleemann L N, Xing W, Bjerrum N J, Li Q. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts. Angewandte Chemie International Edition, 2014, 53(14): 3675–3679
CrossRef
Google scholar
|
[48] |
Xie J, Wang Y. Recent development of CO2 electrochemistry from Li–CO2 batteries to Zn–CO2 batteries. Accounts of Chemical Research, 2019, 52(6): 1721–1729
CrossRef
Google scholar
|
[49] |
Wang X, Xie J, Ghausi M A, Lv J, Huang Y, Wu M, Wang Y, Yao J. Rechargeable Zn–CO2 electrochemical cells mimicking two-step photosynthesis. Advanced Materials, 2019, 31(17): 1807807
CrossRef
Google scholar
|
[50] |
Liang X, Xiao J, Weng W, Xiao W. Electrochemical reduction of carbon dioxide and iron oxide in molten salts to Fe/Fe3C modified carbon for electrocatalytic oxygen evolution. Angewandte Chemie International Edition, 2021, 60(4): 2120–2124
CrossRef
Google scholar
|
/
〈 | 〉 |