Rare-earth separation based on the differences of ionic magnetic moment via quasi-liquid strategy

Na Wang , Fujian Li , Bangyu Fan , Suojiang Zhang , Lu Bai , Xiangping Zhang

Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (11) : 1584 -1594.

PDF (7884KB)
Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (11) : 1584 -1594. DOI: 10.1007/s11705-022-2189-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Rare-earth separation based on the differences of ionic magnetic moment via quasi-liquid strategy

Author information +
History +
PDF (7884KB)

Abstract

The separation of rare earth elements is particularly difficult due to their similar physicochemical properties. Based on the tiny differences of ionic radius, solvent extraction has been developed as the “mass method” in industry with hundreds of stages, extremely intensive chemical consumption and large capital investments. The differences of the ionic magnetic moment among rare earths are greater than that of ionic radius. Herein, a novel method based on the large ionic magnetic moment differences of rare earth elements was proposed to promote the separation efficiency. Rare earths were firstly dissolved in the ionic liquid, then the ordering degree of them was improved with the Z-bond effect, and finally the magnetic moment differences between paramagnetic and diamagnetic rare earths in quasi-liquid system were enhanced. Taking the separation of Er/Y, Ho/Y and Er/Ho as examples, the results showed that Er(III) and Ho(III) containing ionic liquids had obvious magnetic response, while ionic liquids containing Y(III) had no response. The separation factors of Er/Y and Ho/Y were achieved at 9.0 and 28.82, respectively. Magnetic separation via quasi-liquid system strategy provides a possibility of the novel, green, and efficient method for rare earth separation.

Graphical abstract

Keywords

rare earth element / different magnetic moment / magnetic separation / ionic liquid

Cite this article

Download citation ▾
Na Wang, Fujian Li, Bangyu Fan, Suojiang Zhang, Lu Bai, Xiangping Zhang. Rare-earth separation based on the differences of ionic magnetic moment via quasi-liquid strategy. Front. Chem. Sci. Eng., 2022, 16(11): 1584-1594 DOI:10.1007/s11705-022-2189-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Eliseeva S V, Bünzli J C G. Rare earths: jewels for functional materials of the future. New Journal of Chemistry, 2011, 35( 6): 1165– 1176

[2]

Jiang Q, Cheng J Y, Gao Z Q. Direct synthesis of dimethyl carbonate over rare earth oxide supported catalyst. Frontiers of Chemical Engineering in China, 2007, 1( 3): 300– 303

[3]

Massari S, Ruberti M. Rare earth elements as critical raw materials: focus on international markets and future strategies. Resources Policy, 2013, 38( 1): 36– 43

[4]

Habashi F. Extractive metallurgy of rare earths. Canadian Metallurgical Quarterly, 2013, 52( 3): 224– 233

[5]

Xie F, Zhang T A, Dreisinger D, Doyle F. A critical review on solvent extraction of rare earths from aqueous solutions. Minerals Engineering, 2014, 56 : 10– 28

[6]

Rout A, Binnemans K. Liquid–liquid extraction of europium(III) and other trivalent rare-earth ions using a non-fluorinated functionalized ionic liquid. Dalton Transactions (Cambridge, England), 2014, 43( 4): 1862– 1872

[7]

Depuydt D, Dehaen W, Binnemans K. Solvent extraction of scandium(III) by an aqueous biphasic system with a nonfluorinated functionalized ionic liquid. Industrial & Engineering Chemistry Research, 2015, 54( 36): 8988– 8996

[8]

Li D Q. A review on yttrium solvent extraction chemistry and separation process. Journal of Rare Earths, 2017, 35( 2): 107– 119

[9]

Chen Y H, Wang H Y, Pei Y C, Wang J J. A green separation strategy for neodymium(III) from cobalt(II) and nickel(II) using an ionic liquid-based aqueous two-phase system. Talanta, 2018, 182 : 450– 455

[10]

Hérès X, Blet V, Di Natale P, Ouaattou A, Mazouz H, Dhiba D, Cuer F. Selective extraction of rare earth elements from phosphoric acid by ion exchange resins. Metals, 2018, 8( 9): 682– 698

[11]

Li F J, Wang Y L, Su X, Sun X Q. Towards zero-consumption of acid and alkali recycling rare earths from scraps: a precipitation-stripping-saponification extraction strategy using CYANEX®572. Journal of Cleaner Production, 2019, 228 : 692– 702

[12]

Li F J, Yan J J, Zhang X P, Wang N, Dong H F, Bai L, Gao H S. Removal of trace aluminum impurity for high-purity GdCl3 preparation using an amine-group-functionalized ionic liquid. Industrial & Engineering Chemistry Research, 2021, 60( 30): 11241– 11250

[13]

Zhang J Zhao B D Schreiner B. Separation Hydrometallurgy of Rare Earth Elements. Heidelberg: Springer, 2016: 5– 7

[14]

Wang X L, Li W, Meng S, Li D Q. The extraction of rare earths using mixtures of acidic phosphorus-based reagents or their thio-analogues. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2006, 81( 5): 761– 766

[15]

Moeller T. The Chemistry of the Lanthanides. Oxford: Pergamon Press, 1973: 6– 9

[16]

Yang H J, Peng F, Schier D E, Markotic S A, Zhao X, Hong A N, Wang Y X, Feng P Y, Bu X H. Selective crystallization of rare-earth ions into cationic metal–organic frameworks for rare-earth separation. Angewandte Chemie International Edition, 2021, 60( 20): 11148– 11152

[17]

Noddack W, Noddack I, Wicht E. Separate the rare earths in the inhomogeneous magnetic field. Zeitschrift fur elektrochemie, 1958, 62(1): 77–85 (In German)

[18]

Higgins R F, Cheisson T, Cole B E, Manor B C, Carroll P J, Schelter E J. Magnetic field directed rare-earth separations. Angewandte Chemie International Edition, 2020, 59( 5): 1851– 1856

[19]

Yang X G, Tschulik K, Uhlemann M, Odenbach S, Eckert K. Enrichment of paramagnetic ions from homogeneous solutions in inhomogeneous magnetic fields. Journal of Physical Chemistry Letters, 2012, 3( 23): 3559– 3564

[20]

Faris N, Ram R, Tardio J, Bhargava S, Pownceby M I. Characterisation of a ferruginous rare earth bearing lateritic ore and implications for rare earth mineral processing. Minerals Engineering, 2019, 134 : 23– 36

[21]

Pearse G Borduas J Gervais T Menard D Seddaoui D Ung B. Method and system for magnetic separation of rare earths. US Patent, 166788A1, 2014– 06-19

[22]

Wang K Y, Adidharma H, Radosz M, Wan P Y, Xu X, Russell C K, Tian H J, Fan M H, Yu J. Recovery of rare earth elements with ionic liquids. Green Chemistry, 2017, 19( 19): 4469– 4493

[23]

Prodius D, Mudring A V. Rare earth metal-containing ionic liquids. Coordination Chemistry Reviews, 2018, 363 : 1– 16

[24]

Machida H, Taguchi R, Sato A, Florusse L J, Peters C J, Smith R L Jr. Measurement and correlation of supercritical CO2 and ionic liquid systems for design of advanced unit operations. Frontiers of Chemical Engineering in China, 2009, 3( 1): 12– 19

[25]

Greer A J, Jacquemin J, Hardacre C. Industrial applications of ionic liquids. Molecules, 2020, 25( 21): 5207– 5237

[26]

Zhang S N, Wang X Y, Yao J, Li H R. Electron paramagnetic resonance studies of the chelate-based ionic liquid in different solvents. Green Energy & Environment, 2020, 5( 3): 341– 346

[27]

Shamsuri A A, Abdan K, Jamil S N A M. Properties and applications of cellulose regenerated from cellulose/imidazolium-based ionic liquid/co-solvent solutions: a short review. e-Polymers, 2021, 21 : 869– 880

[28]

Hayashi S, Hamaguchi H O. Discovery of a magnetic ionic liquid [bmim]FeCl4. Chemistry Letters, 2004, 33( 12): 1590– 1591

[29]

Hayashi S, Saha S, Hamaguchi H O. A new class of magnetic fluids: [bmim]FeCl4 and n[bmim]FeCl4 ionic liquids. IEEE Transactions on Magnetics, 2006, 42( 1): 12– 14

[30]

Dong K, Zhang S J, Wang Q. A new class of ion–ion interaction: Z-bond. Science China Chemistry, 2015, 58( 3): 495– 500

[31]

Zhang S J, Sun J, Zhang X C, Xin J Y, Miao Q Q, Wang J J. Ionic liquid-based green processes for energy production. Chemical Society Reviews, 2014, 43( 22): 7838– 7869

[32]

Zhang S J, Wang Y L, He H Y, Huo F, Lu Y M, Zhang X C, Dong K. A new era of precise liquid regulation: quasi-liquid. Green Energy & Environment, 2017, 2( 4): 329– 330

[33]

Wang Y L, He H Y, Wang C L, Lu Y, Dong K, Huo F, Zhang S J. Insights into ionic liquids: from Z-bonds to quasi-liquids. Journal of the American Chemical Society Au, 2022, 2( 3): 543– 561

[34]

Lu Y M, Chen W, Wang Y L, Huo F, Zhang L, He H, Zhang S J. A space-confined strategy toward large-area two-dimensional crystals of ionic liquid. Physical Chemistry Chemical Physics, 2020, 22( 4): 1820– 1825

[35]

Kubota F, Shigyo E, Yoshidai W, Goto M. Extraction and separation of Pt and Pd by an imidazolium-based ionic liquid combined with phosphonium chloride. Solvent Extraction Research and Development, Japan, 2017, 24( 2): 97– 104

[36]

Hughes I D, Dane M, Ernst A, Hergert W, Luders M, Poulter J, Staunton J B, Svane A, Szotek Z, Temmerman W M. Lanthanide contraction and magnetism in the heavy rare earth elements. Nature, 2007, 446( 7136): 650– 653

[37]

Li Y T, Li Y J, Yang Z X, Zhang X J, Zeng F M, Li C, Lin H, Su Z M, Mahadevan C K, Liu J H. The structure and liquid flow effect of melt during NaCl crystal growth. Crystal Research and Technology, 2020, 55( 7): 1900229

[38]

Hayashi S, Ozawa R, Hamaguchi H O. Raman spectra, crystal polymorphism, and structure of a prototype ionic-liquid [bmim]Cl. Chemistry Letters, 2003, 32( 6): 498– 499

[39]

Katayanagi H, Hayashi S, Hamaguchi H O, Nishikawa K. Structure of an ionic liquid, 1-n-butyl-3-methylimidazolium iodide, studied by wide-angle X-ray scattering and raman spectroscopy. Chemical Physics Letters, 2004, 392( 4): 460– 464

[40]

Ozawa R, Hayashi S, Saha S, Kobayashi A, Hamaguchi H O. Rotational isomerism and structure of the 1-butyl-3-methylimidazolium cation in the ionic liquid state. Chemistry Letters, 2003, 32( 10): 948– 949

[41]

Saha S, Hayashi S, Kobayashi A, Hamaguchi H O. Crystal structure of 1-butyl-3-methylimidazolium chloride. A clue to the elucidation of the ionic liquid structure. Chemistry Letters, 2003, 32( 8): 740– 741

[42]

Habenschuss A, Spedding F H. The coordination (hydration) of rare earth ions in aqueous chloride solutions from X-ray diffraction. I. TbCl3, DyCl3, ErCl3, TmCl3, and LuCl3. Journal of Chemical Physics , 1979, 70( 6): 2797– 2806

[43]

Starzak M, Mathlouthi M. Cluster composition of liquid water derived from laser-Raman spectra and molecular simulation data. Food Chemistry, 2003, 82( 1): 3– 22

[44]

Rodrigues I R, Lukina L, Dehaeck S, Colinet P, Binnemans K, Fransaer J. Magnetophoretic sprinting: a study on the magnetic properties of aqueous lanthanide solutions. Journal of Physical Chemistry C, 2018, 122( 41): 23675– 23682

[45]

Shirvani S, Mallah M H, Moosavian M A, Safdari J. Magnetic ionic liquid in magmolecular process for uranium removal. Chemical Engineering Research & Design, 2016, 109 : 108– 115

[46]

Trujillo-Rodriguez M J, Nacham O, Clark K D, Pino V, Anderson J L, Ayala J H, Afonso A M. Magnetic ionic liquids as non-conventional extraction solvents for the determination of polycyclic aromatic hydrocarbons. Analytica Chimica Acta, 2016, 934 : 106– 113

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (7884KB)

Supplementary files

FCE-22017-OF-WN_suppl_1

6505

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/