A ternary mechanism for the facilitated transfer of metal ions onto metal–organic frameworks: implications for the ‘‘versatility’’ of these materials as solid sorbents

Xiyuan Bu , Ming Tian , Hongqing Wang , Lin Wang , Liyong Yuan , Weiqun Shi

Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (11) : 1632 -1642.

PDF (4807KB)
Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (11) : 1632 -1642. DOI: 10.1007/s11705-022-2187-6
RESEARCH ARTICLE
RESEARCH ARTICLE

A ternary mechanism for the facilitated transfer of metal ions onto metal–organic frameworks: implications for the ‘‘versatility’’ of these materials as solid sorbents

Author information +
History +
PDF (4807KB)

Abstract

Although metal–organic frameworks offer a new platform for developing versatile sorption materials, yet coordinating the functionality, structure and component of these materials remains a great challenge. It depends on a comprehensive knowledge of a “real sorption mechanism”. Herein, a ternary mechanism for U(VI) uptake in metal–organic frameworks was reported. Analogous MIL-100s (Al, Fe, Cr) were prepared and studied for their ability to sequestrate U(VI) from aqueous solutions. As a result, MIL-100(Al) performed the best among the tested materials, and MIL-100(Cr) performed the worst. The nuclear magnetic resonance technique combined with energy-dispersive X-ray spectroscopy and zeta potential measurement reveal that U(VI) uptake in the three metal–organic frameworks involves different mechanisms. Specifically, hydrated uranyl ions form outer-sphere complexes in the surface of MIL-100s (Al, Fe) by exchanging with hydrogen ions of terminal hydroxyl groups (Al-OH2, Fe-OH2), and/or, hydrated uranyl ions are bound directly to Al(III) center in MIL-100(Al) through a strong inner-sphere coordination. For MIL-100(Cr), however, the U(VI) uptake is attributed to electrostatic attraction. Besides, the sorption mechanism is also pH and ionic strength dependent. The present study suggests that changing metal center of metal–organic frameworks and sorption conditions alters sorption mechanism, which helps to construct effective metal–organic frameworks-based sorbents for water purification.

Graphical abstract

Keywords

U(VI) / metal–organic frameworks / adsorption mechanism / metal node

Cite this article

Download citation ▾
Xiyuan Bu, Ming Tian, Hongqing Wang, Lin Wang, Liyong Yuan, Weiqun Shi. A ternary mechanism for the facilitated transfer of metal ions onto metal–organic frameworks: implications for the ‘‘versatility’’ of these materials as solid sorbents. Front. Chem. Sci. Eng., 2022, 16(11): 1632-1642 DOI:10.1007/s11705-022-2187-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dresselhaus M S, Thomas I L. Alternative energy technologies. Nature, 2001, 414( 6861): 332– 337

[2]

Whitfield S C, Rosa E A, Dan A, Dietz T. The future of nuclear power: value orientations and risk perception. Risk Analysis, 2009, 29( 3): 425– 437

[3]

Chakravarty R, Dash A. Nanomaterial-based adsorbents: the prospect of developing new generation radionuclide generators to meet future research and clinical demands. Journal of Radioanalytical and Nuclear Chemistry, 2013, 299( 1): 741– 757

[4]

Yang D X, Song S, Zou Y D, Wang X X, Yu S J, Wen T, Wang H Q, Hayat T, Alsaedi A, Wang X K. Rational design and synthesis of monodispersed hierarchical SiO2@layered double hydroxide nanocomposites for efficient removal of pollutants from aqueous solution. Chemical Engineering Journal, 2017, 323 : 143– 152

[5]

Wang X X, Chen L, Wang L, Fan Q H, Pan D Q, Li J X, Chi F T, Xie Y, Yu S J, Xiao C L, Luo F, Wang J, Wang X, Chen C, Wu W, Shi W, Wang S, Wang X. Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Science China Chemistry, 2019, 62( 8): 933– 967

[6]

Yu J P, Yuan LY, Wang S, Lan J H, Zheng L R, Xu C, Chen J, Wang L, Huang Z W, Tao W Q, Liu Z R, Chai Z F, Gibson J K, Shi W Q. Phosphonate-decorated covalent organic frameworks for actinide extraction: a breakthrough under highly acidic conditions. CCS Chemistry, 2019, 1( 3): 286– 295

[7]

Ahmad Z, Li Y, Ali S, Yang J J, Jan F, Fan Y, Gou X Y, Sun Q Y, Chen J P. Benignly-fabricated supramolecular poly(amidoxime)-alginate-poly(acrylic acid) beads synergistically enhance uranyl capture from seawater. Chemical Engineering Journal, 2022, 441 : 136076

[8]

Ahmad Z, Li Y, Yang J J, Geng N B, Fan Y, Gou X Y, Sun Q Y, Chen J P. A membrane-supported bifunctional poly(amidoxime-ethyleneimine) network for enhanced uranium extraction from seawater and wastewater. Journal of Hazardous Materials, 2022, 425 : 127995

[9]

Xie Y, Chen C L, Ren X M, Wang X X, Wang H Y, Wang X K. Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. Progress in Materials Science, 2019, 103 : 180– 234

[10]

Zhang N, Peng W T, Guo H, Wang H H, Li Y, Liu J, Zhang S L, Mei P, Hayat T, Sun Y. Fabrication of porous carbon and application of Eu(III) removal from aqueous solutions. Journal of Molecular Liquids, 2019, 280 : 34– 39

[11]

Zheng B N, Lin X D, Zhang X C, Wu D C, Matyjaszewski K. Emerging functional porous polymeric and carbonaceous materials for environmental treatment and energy storage. Advanced Functional Materials, 2019, 30( 41): 1907006

[12]

Kim C, Lee S S, Kwan K T, Lee J, Li W, Lafferty B J, Giammar D E, Fortner J D. Surface functionalized nanoscale metal oxides for arsenic(V), chromium(VI), and uranium(VI) sorption: considering single- and multi-sorbate dynamics. Environmental Science: Nano, 2020, 7( 12): 3805– 3813

[13]

Li K D, Xiong T, Liao J, Lei Y Q, Zhang Y, Zhu W K. Design of MXene/graphene oxide nanocomposites with micro-wrinkle structure for efficient separating of uranium(VI) from wastewater. Chemical Engineering Journal, 2022, 433 : 134449

[14]

Liu T, Zhang R Q, Chen M W, Liu Y J, Xie Z J, Tang S, Yuan Y H, Wang N. Vertically aligned polyamidoxime/graphene oxide hybrid sheets’ membrane for ultrafast and selective extraction of uranium from seawater. Advanced Functional Materials, 2021, 32( 14): 2111049

[15]

Boulanger N, Kuzenkova A S, Iakunkov A, Romanchuk A Y, Trigub A L, Egorov A V, Bauters S, Amidani L, Retegan M, Kvashnina K O, Kalmykov S N, Talyzin A V. Enhanced sorption of radionuclides by defect-rich graphene oxide. ACS Applied Materials & Interfaces, 2020, 12( 40): 45122– 45135

[16]

Jana A, Unni A, Ravuru S S, Das A, Das D, Biswas S, Sheshadri H, De S. In-situ polymerization into the basal spacing of LDH for selective and enhanced uranium adsorption: a case study with real life uranium alkaline leach liquor. Chemical Engineering Journal, 2022, 428 : 131180

[17]

Guo X L, Ruan Y, Diao Z H, Shih K, Su M H, Song G, Chen D Y, Wang S, Kong L J. Environmental-friendly preparation of Ni–Co layered double hydroxide (LDH) hierarchical nanoarrays for efficient removing uranium(VI). Journal of Cleaner Production, 2021, 308 : 127384

[18]

Chen Z, Mian M R, Lee S J, Chen H, Zhang X, Kirlikovali K O, Shulda S, Melix P, Rosen A S, Parilla P A, Gennett T, Snurr R Q, Islamoglu T, Yildirim T, Farha O K. Fine-tuning a robust metal–organic framework toward enhanced clean energy gas storage. Journal of the American Chemical Society, 2021, 143( 45): 18838– 18843

[19]

Zhang Y F, Zhang Z H, Ritter L, Fang H, Wang Q, Space B, Zhang Y B, Xue D X, Bai J. New reticular chemistry of the rod secondary building unit: synthesis, structure, and natural gas storage of a series of three-way rod amide-functionalized metal–organic frameworks. Journal of the American Chemical Society, 2021, 143( 31): 12202– 12211

[20]

Gong W, Xie Y, Pham T D, Shetty S, Son F A, Idrees K B, Chen Z, Xie H, Liu Y, Snurr R Q, Chen B, Alameddine B, Cui Y, Farha O K. Creating optimal pockets in a clathrochelate-based metal-organic framework for gas adsorption and separation: experimental and computational studies. Journal of the American Chemical Society, 2022, 144( 8): 3737– 3745

[21]

Pei J, Gu X W, Liang C C, Chen B, Li B, Qian G. Robust and radiation-resistant hofmann-type metal–organic frameworks for record xenon/krypton separation. Journal of the American Chemical Society, 2022, 144( 7): 3200– 3209

[22]

Shu L, Peng Y, Yao R, Song H L, Zhu C Y, Yang W S. Flexible soft-solid metal–organic framework composite membranes for H2/CO2 separation. Angewandte Chemie International Edition, 2022, 61( 14): e202117577

[23]

Moumen E, Bazzi L, El Hankari S. Metal–organic frameworks and their composites for the adsorption and sensing of phosphate. Coordination Chemistry Reviews, 2022, 455 : 214376

[24]

Platero-Prats A E, Mavrandonakis A, Liu J, Chen Z, Chen Z, Li Z, Yakovenko A A, Gallington L C, Hupp J T, Farha O K, Cramer C J, Chapman K W. The molecular path approaching the active site in catalytic metal–organic frameworks. Journal of the American Chemical Society, 2021, 143( 48): 20090– 20094

[25]

Mallakpour S, Nikkhoo E, Hussain C M. Application of MOF materials as drug delivery systems for cancer therapy and dermal treatment. Coordination Chemistry Reviews, 2022, 451 : 214262

[26]

Carboni M, Abney C W, Liu S, Lin W. Highly porous and stable metal–organic frameworks for uranium extraction. Chemical Science (Cambridge), 2013, 4( 6): 2396

[27]

Bai Z Q, Yuan L Y, Zhu L, Liu Z R, Chu S Q, Zheng L R, Zhang J, Chai Z F, Shi W Q. Introduction of amino groups into acid-resistant MOFs for enhanced U(VI) sorption. Journal of Materials Chemistry A, 2015, 3( 2): 525– 534

[28]

Zhang N, Yuan L Y, Guo W L, Luo S Z, Chai Z F, Shi W Q. Extending the use of highly porous and functionalized MOFs to Th(IV) capture. ACS Applied Materials & Interfaces, 2017, 9( 30): 25216– 25224

[29]

Yuan L Y, Tian M, Lan J H, Cao X Z, Wang X L, Chai Z F, Gibson J K, Shi W Q. Defect engineering in metal–organic frameworks: a new strategy to develop applicable actinide sorbents. Chemical Communications (Cambridge), 2018, 54( 4): 370– 373

[30]

Yoon J W, Chang H, Lee S J, Hwang Y K, Hong D Y, Lee S K, Lee J S, Jang S, Yoon T U, Kwac K, Jung Y, Pillai R S, Faucher F, Vimont A, Daturi M, Férey G, Serre C, Maurin G, Bae Y S, Chang J S. Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites. Nature Materials, 2017, 16( 5): 526– 531

[31]

Tong M M, Liu D H, Yang Q Y, Devautour-Vinot S, Maurin G, Zhong C L. Influence of framework metal ions on the dye capture behavior of MIL-100 (Fe, Cr) MOF type solids. Journal of Materials Chemistry A, 2013, 1( 30): 8534

[32]

Zhang Z H, Lan J H, Yuan L Y, Sheng P P, He M Y, Zheng L R, Chen Q, Chai Z F, Gibson J K, Shi W Q. Rational construction of porous metal–organic frameworks for uranium(VI) extraction: the strong periodic tendency with a metal node. ACS Applied Materials & Interfaces, 2020, 12( 12): 14087– 14094

[33]

Férey G, Serre C, Mellot-Draznieks C, Millange F, Surblé S, Dutour J, Margiolaki I. A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. Angewandte Chemie International Edition, 2004, 43( 46): 6296– 6301

[34]

Horcajada P, Surble S, Serre C, Hong D Y, Seo Y K, Chang J S, Greneche J M, Margiolaki I, Ferey G. Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chemical Communications (Cambridge), 2007, 27( 27): 2820– 2822

[35]

Volkringer C, Popov D, Loiseau T, Férey G R, Burghammer M, Riekel C, Haouas M, Taulelle F. Synthesis, single-crystal X-ray microdiffraction, and NMR characterizations of the giant pore metal–organic framework aluminum trimesate MIL-100. Chemistry of Materials, 2009, 21( 24): 5695– 5697

[36]

Haouas M, Volkringer C, Loiseau T, Férey G, Taulelle F. Monitoring the activation process of the giant pore MIL-100(Al) by solid state NMR. Journal of Physical Chemistry C, 2011, 115( 36): 17934– 17944

[37]

Low J J, Benin A I, Jakubczak P, Abrahamian J F, Faheem S A, Willis R R. Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration. Journal of the American Chemical Society, 2009, 131( 43): 15834– 15842

[38]

Hwang Y K, Hong D Y, Chang J S, Jhung S H, Seo Y K, Kim J, Vimont A, Daturi M, Serre C, Ferey G. Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. Angewandte Chemie International Edition, 2008, 47( 22): 4144– 4148

[39]

Loiseau T, Lecroq L, Volkringer C, Marrot J, Férey G, Haouas M, Taulelle F, Bourrelly S, Llewellyn P, Latroche M. MIL-96, a porous aluminum trimesate 3D structure constructed from a hexagonal network of 18-membered rings and μ 3-oxo-centered trinuclear units. Journal of the American Chemical Society, 2006, 128( 31): 10223– 10230

[40]

Yuan L Y, Liu Y L, Shi W Q, Lv Y L, Lan J H, Zhao Y L, Chai Z F. High performance of phosphonate-functionalized mesoporous silica for U(VI) sorption from aqueous solution. Dalton Transactions (Cambridge, England), 2011, 40( 28): 7446– 7453

[41]

Ho Y S, McKay G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Research, 2000, 334( 3): 735– 742

[42]

Foo K Y, Hameed B H. Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 2010, 156( 1): 2– 10

[43]

Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 1918, 40( 9): 1361– 1403

[44]

Lützenkirchen J. Ionic strength effects on cation sorption to oxides: macroscopic observations and their significance in microscopic interpretation. Journal of Colloid and Interface Science, 1997, 15( 1): 149– 155

[45]

Jia W, Fang Y, Zeng G M. Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal–organic frameworks: a review of studies from the last decade. Chemosphere, 2018, 201 : 627– 643

[46]

Jun J W, Tong M, Jung B K, Hasan Z, Zhong C, Jhung S H. Effect of central metal ions of analogous metal–organic frameworks on adsorption of organoarsenic compounds from water: plausible mechanism of adsorption and water purification. Chemistry (Weinheim an der Bergstrasse, Germany), 2015, 21( 1): 347– 354

[47]

Lamb A C M, Grieser F, Healy T W. The adsorption of uranium(VI) onto colloidal TiO2, SiO2 and carbon black. Colloids and Surfaces A, 2016, 499 : 156– 162

[48]

Zou Y D, Wang X X, Wu F, Yu S J, Hu Y Z, Song W C, Liu Y H, Wang H Q, Hayat T, Wang X K. Controllable synthesis of Ca–Mg–Al layered double hydroxides and calcined layered double oxides for the efficient removal of U(VI) from wastewater solutions. ACS Sustainable Chemistry & Engineering, 2016, 5( 1): 1173– 1185

[49]

Herbst A, Khutia A, Janiak C. Bronsted instead of Lewis acidity in functionalized MIL-101Cr MOFs for efficient heterogeneous (nano-MOF) catalysis in the condensation reaction of aldehydes with alcohols. Inorganic Chemistry, 2014, 53( 14): 7319– 7333

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4807KB)

Supplementary files

FCE-22015-OF-BX_suppl_1

7317

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/