A ternary mechanism for the facilitated transfer of metal ions onto metal–organic frameworks: implications for the ‘‘versatility’’ of these materials as solid sorbents
Xiyuan Bu, Ming Tian, Hongqing Wang, Lin Wang, Liyong Yuan, Weiqun Shi
A ternary mechanism for the facilitated transfer of metal ions onto metal–organic frameworks: implications for the ‘‘versatility’’ of these materials as solid sorbents
Although metal–organic frameworks offer a new platform for developing versatile sorption materials, yet coordinating the functionality, structure and component of these materials remains a great challenge. It depends on a comprehensive knowledge of a “real sorption mechanism”. Herein, a ternary mechanism for U(VI) uptake in metal–organic frameworks was reported. Analogous MIL-100s (Al, Fe, Cr) were prepared and studied for their ability to sequestrate U(VI) from aqueous solutions. As a result, MIL-100(Al) performed the best among the tested materials, and MIL-100(Cr) performed the worst. The nuclear magnetic resonance technique combined with energy-dispersive X-ray spectroscopy and zeta potential measurement reveal that U(VI) uptake in the three metal–organic frameworks involves different mechanisms. Specifically, hydrated uranyl ions form outer-sphere complexes in the surface of MIL-100s (Al, Fe) by exchanging with hydrogen ions of terminal hydroxyl groups (Al-OH2, Fe-OH2), and/or, hydrated uranyl ions are bound directly to Al(III) center in MIL-100(Al) through a strong inner-sphere coordination. For MIL-100(Cr), however, the U(VI) uptake is attributed to electrostatic attraction. Besides, the sorption mechanism is also pH and ionic strength dependent. The present study suggests that changing metal center of metal–organic frameworks and sorption conditions alters sorption mechanism, which helps to construct effective metal–organic frameworks-based sorbents for water purification.
U(VI) / metal–organic frameworks / adsorption mechanism / metal node
[1] |
Dresselhaus M S, Thomas I L. Alternative energy technologies. Nature, 2001, 414( 6861): 332– 337
CrossRef
Google scholar
|
[2] |
Whitfield S C, Rosa E A, Dan A, Dietz T. The future of nuclear power: value orientations and risk perception. Risk Analysis, 2009, 29( 3): 425– 437
CrossRef
Google scholar
|
[3] |
Chakravarty R, Dash A. Nanomaterial-based adsorbents: the prospect of developing new generation radionuclide generators to meet future research and clinical demands. Journal of Radioanalytical and Nuclear Chemistry, 2013, 299( 1): 741– 757
CrossRef
Google scholar
|
[4] |
Yang D X, Song S, Zou Y D, Wang X X, Yu S J, Wen T, Wang H Q, Hayat T, Alsaedi A, Wang X K. Rational design and synthesis of monodispersed hierarchical SiO2@layered double hydroxide nanocomposites for efficient removal of pollutants from aqueous solution. Chemical Engineering Journal, 2017, 323 : 143– 152
CrossRef
Google scholar
|
[5] |
Wang X X, Chen L, Wang L, Fan Q H, Pan D Q, Li J X, Chi F T, Xie Y, Yu S J, Xiao C L, Luo F, Wang J, Wang X, Chen C, Wu W, Shi W, Wang S, Wang X. Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Science China Chemistry, 2019, 62( 8): 933– 967
CrossRef
Google scholar
|
[6] |
Yu J P, Yuan LY, Wang S, Lan J H, Zheng L R, Xu C, Chen J, Wang L, Huang Z W, Tao W Q, Liu Z R, Chai Z F, Gibson J K, Shi W Q. Phosphonate-decorated covalent organic frameworks for actinide extraction: a breakthrough under highly acidic conditions. CCS Chemistry, 2019, 1( 3): 286– 295
|
[7] |
Ahmad Z, Li Y, Ali S, Yang J J, Jan F, Fan Y, Gou X Y, Sun Q Y, Chen J P. Benignly-fabricated supramolecular poly(amidoxime)-alginate-poly(acrylic acid) beads synergistically enhance uranyl capture from seawater. Chemical Engineering Journal, 2022, 441 : 136076
CrossRef
Google scholar
|
[8] |
Ahmad Z, Li Y, Yang J J, Geng N B, Fan Y, Gou X Y, Sun Q Y, Chen J P. A membrane-supported bifunctional poly(amidoxime-ethyleneimine) network for enhanced uranium extraction from seawater and wastewater. Journal of Hazardous Materials, 2022, 425 : 127995
CrossRef
Google scholar
|
[9] |
Xie Y, Chen C L, Ren X M, Wang X X, Wang H Y, Wang X K. Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. Progress in Materials Science, 2019, 103 : 180– 234
CrossRef
Google scholar
|
[10] |
Zhang N, Peng W T, Guo H, Wang H H, Li Y, Liu J, Zhang S L, Mei P, Hayat T, Sun Y. Fabrication of porous carbon and application of Eu(III) removal from aqueous solutions. Journal of Molecular Liquids, 2019, 280 : 34– 39
CrossRef
Google scholar
|
[11] |
Zheng B N, Lin X D, Zhang X C, Wu D C, Matyjaszewski K. Emerging functional porous polymeric and carbonaceous materials for environmental treatment and energy storage. Advanced Functional Materials, 2019, 30( 41): 1907006
CrossRef
Google scholar
|
[12] |
Kim C, Lee S S, Kwan K T, Lee J, Li W, Lafferty B J, Giammar D E, Fortner J D. Surface functionalized nanoscale metal oxides for arsenic(V), chromium(VI), and uranium(VI) sorption: considering single- and multi-sorbate dynamics. Environmental Science: Nano, 2020, 7( 12): 3805– 3813
CrossRef
Google scholar
|
[13] |
Li K D, Xiong T, Liao J, Lei Y Q, Zhang Y, Zhu W K. Design of MXene/graphene oxide nanocomposites with micro-wrinkle structure for efficient separating of uranium(VI) from wastewater. Chemical Engineering Journal, 2022, 433 : 134449
CrossRef
Google scholar
|
[14] |
Liu T, Zhang R Q, Chen M W, Liu Y J, Xie Z J, Tang S, Yuan Y H, Wang N. Vertically aligned polyamidoxime/graphene oxide hybrid sheets’ membrane for ultrafast and selective extraction of uranium from seawater. Advanced Functional Materials, 2021, 32( 14): 2111049
CrossRef
Google scholar
|
[15] |
Boulanger N, Kuzenkova A S, Iakunkov A, Romanchuk A Y, Trigub A L, Egorov A V, Bauters S, Amidani L, Retegan M, Kvashnina K O, Kalmykov S N, Talyzin A V. Enhanced sorption of radionuclides by defect-rich graphene oxide. ACS Applied Materials & Interfaces, 2020, 12( 40): 45122– 45135
CrossRef
Google scholar
|
[16] |
Jana A, Unni A, Ravuru S S, Das A, Das D, Biswas S, Sheshadri H, De S. In-situ polymerization into the basal spacing of LDH for selective and enhanced uranium adsorption: a case study with real life uranium alkaline leach liquor. Chemical Engineering Journal, 2022, 428 : 131180
CrossRef
Google scholar
|
[17] |
Guo X L, Ruan Y, Diao Z H, Shih K, Su M H, Song G, Chen D Y, Wang S, Kong L J. Environmental-friendly preparation of Ni–Co layered double hydroxide (LDH) hierarchical nanoarrays for efficient removing uranium(VI). Journal of Cleaner Production, 2021, 308 : 127384
CrossRef
Google scholar
|
[18] |
Chen Z, Mian M R, Lee S J, Chen H, Zhang X, Kirlikovali K O, Shulda S, Melix P, Rosen A S, Parilla P A, Gennett T, Snurr R Q, Islamoglu T, Yildirim T, Farha O K. Fine-tuning a robust metal–organic framework toward enhanced clean energy gas storage. Journal of the American Chemical Society, 2021, 143( 45): 18838– 18843
CrossRef
Google scholar
|
[19] |
Zhang Y F, Zhang Z H, Ritter L, Fang H, Wang Q, Space B, Zhang Y B, Xue D X, Bai J. New reticular chemistry of the rod secondary building unit: synthesis, structure, and natural gas storage of a series of three-way rod amide-functionalized metal–organic frameworks. Journal of the American Chemical Society, 2021, 143( 31): 12202– 12211
CrossRef
Google scholar
|
[20] |
Gong W, Xie Y, Pham T D, Shetty S, Son F A, Idrees K B, Chen Z, Xie H, Liu Y, Snurr R Q, Chen B, Alameddine B, Cui Y, Farha O K. Creating optimal pockets in a clathrochelate-based metal-organic framework for gas adsorption and separation: experimental and computational studies. Journal of the American Chemical Society, 2022, 144( 8): 3737– 3745
CrossRef
Google scholar
|
[21] |
Pei J, Gu X W, Liang C C, Chen B, Li B, Qian G. Robust and radiation-resistant hofmann-type metal–organic frameworks for record xenon/krypton separation. Journal of the American Chemical Society, 2022, 144( 7): 3200– 3209
CrossRef
Google scholar
|
[22] |
Shu L, Peng Y, Yao R, Song H L, Zhu C Y, Yang W S. Flexible soft-solid metal–organic framework composite membranes for H2/CO2 separation. Angewandte Chemie International Edition, 2022, 61( 14): e202117577
CrossRef
Google scholar
|
[23] |
Moumen E, Bazzi L, El Hankari S. Metal–organic frameworks and their composites for the adsorption and sensing of phosphate. Coordination Chemistry Reviews, 2022, 455 : 214376
CrossRef
Google scholar
|
[24] |
Platero-Prats A E, Mavrandonakis A, Liu J, Chen Z, Chen Z, Li Z, Yakovenko A A, Gallington L C, Hupp J T, Farha O K, Cramer C J, Chapman K W. The molecular path approaching the active site in catalytic metal–organic frameworks. Journal of the American Chemical Society, 2021, 143( 48): 20090– 20094
CrossRef
Google scholar
|
[25] |
Mallakpour S, Nikkhoo E, Hussain C M. Application of MOF materials as drug delivery systems for cancer therapy and dermal treatment. Coordination Chemistry Reviews, 2022, 451 : 214262
CrossRef
Google scholar
|
[26] |
Carboni M, Abney C W, Liu S, Lin W. Highly porous and stable metal–organic frameworks for uranium extraction. Chemical Science (Cambridge), 2013, 4( 6): 2396
CrossRef
Google scholar
|
[27] |
Bai Z Q, Yuan L Y, Zhu L, Liu Z R, Chu S Q, Zheng L R, Zhang J, Chai Z F, Shi W Q. Introduction of amino groups into acid-resistant MOFs for enhanced U(VI) sorption. Journal of Materials Chemistry A, 2015, 3( 2): 525– 534
CrossRef
Google scholar
|
[28] |
Zhang N, Yuan L Y, Guo W L, Luo S Z, Chai Z F, Shi W Q. Extending the use of highly porous and functionalized MOFs to Th(IV) capture. ACS Applied Materials & Interfaces, 2017, 9( 30): 25216– 25224
CrossRef
Google scholar
|
[29] |
Yuan L Y, Tian M, Lan J H, Cao X Z, Wang X L, Chai Z F, Gibson J K, Shi W Q. Defect engineering in metal–organic frameworks: a new strategy to develop applicable actinide sorbents. Chemical Communications (Cambridge), 2018, 54( 4): 370– 373
CrossRef
Google scholar
|
[30] |
Yoon J W, Chang H, Lee S J, Hwang Y K, Hong D Y, Lee S K, Lee J S, Jang S, Yoon T U, Kwac K, Jung Y, Pillai R S, Faucher F, Vimont A, Daturi M, Férey G, Serre C, Maurin G, Bae Y S, Chang J S. Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites. Nature Materials, 2017, 16( 5): 526– 531
CrossRef
Google scholar
|
[31] |
Tong M M, Liu D H, Yang Q Y, Devautour-Vinot S, Maurin G, Zhong C L. Influence of framework metal ions on the dye capture behavior of MIL-100 (Fe, Cr) MOF type solids. Journal of Materials Chemistry A, 2013, 1( 30): 8534
CrossRef
Google scholar
|
[32] |
Zhang Z H, Lan J H, Yuan L Y, Sheng P P, He M Y, Zheng L R, Chen Q, Chai Z F, Gibson J K, Shi W Q. Rational construction of porous metal–organic frameworks for uranium(VI) extraction: the strong periodic tendency with a metal node. ACS Applied Materials & Interfaces, 2020, 12( 12): 14087– 14094
CrossRef
Google scholar
|
[33] |
Férey G, Serre C, Mellot-Draznieks C, Millange F, Surblé S, Dutour J, Margiolaki I. A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. Angewandte Chemie International Edition, 2004, 43( 46): 6296– 6301
CrossRef
Google scholar
|
[34] |
Horcajada P, Surble S, Serre C, Hong D Y, Seo Y K, Chang J S, Greneche J M, Margiolaki I, Ferey G. Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chemical Communications (Cambridge), 2007, 27( 27): 2820– 2822
CrossRef
Google scholar
|
[35] |
Volkringer C, Popov D, Loiseau T, Férey G R, Burghammer M, Riekel C, Haouas M, Taulelle F. Synthesis, single-crystal X-ray microdiffraction, and NMR characterizations of the giant pore metal–organic framework aluminum trimesate MIL-100. Chemistry of Materials, 2009, 21( 24): 5695– 5697
CrossRef
Google scholar
|
[36] |
Haouas M, Volkringer C, Loiseau T, Férey G, Taulelle F. Monitoring the activation process of the giant pore MIL-100(Al) by solid state NMR. Journal of Physical Chemistry C, 2011, 115( 36): 17934– 17944
CrossRef
Google scholar
|
[37] |
Low J J, Benin A I, Jakubczak P, Abrahamian J F, Faheem S A, Willis R R. Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration. Journal of the American Chemical Society, 2009, 131( 43): 15834– 15842
CrossRef
Google scholar
|
[38] |
Hwang Y K, Hong D Y, Chang J S, Jhung S H, Seo Y K, Kim J, Vimont A, Daturi M, Serre C, Ferey G. Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. Angewandte Chemie International Edition, 2008, 47( 22): 4144– 4148
CrossRef
Google scholar
|
[39] |
Loiseau T, Lecroq L, Volkringer C, Marrot J, Férey G, Haouas M, Taulelle F, Bourrelly S, Llewellyn P, Latroche M. MIL-96, a porous aluminum trimesate 3D structure constructed from a hexagonal network of 18-membered rings and μ 3-oxo-centered trinuclear units. Journal of the American Chemical Society, 2006, 128( 31): 10223– 10230
CrossRef
Google scholar
|
[40] |
Yuan L Y, Liu Y L, Shi W Q, Lv Y L, Lan J H, Zhao Y L, Chai Z F. High performance of phosphonate-functionalized mesoporous silica for U(VI) sorption from aqueous solution. Dalton Transactions (Cambridge, England), 2011, 40( 28): 7446– 7453
CrossRef
Google scholar
|
[41] |
Ho Y S, McKay G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Research, 2000, 334( 3): 735– 742
CrossRef
Google scholar
|
[42] |
Foo K Y, Hameed B H. Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 2010, 156( 1): 2– 10
CrossRef
Google scholar
|
[43] |
Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 1918, 40( 9): 1361– 1403
CrossRef
Google scholar
|
[44] |
Lützenkirchen J. Ionic strength effects on cation sorption to oxides: macroscopic observations and their significance in microscopic interpretation. Journal of Colloid and Interface Science, 1997, 15( 1): 149– 155
CrossRef
Google scholar
|
[45] |
Jia W, Fang Y, Zeng G M. Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal–organic frameworks: a review of studies from the last decade. Chemosphere, 2018, 201 : 627– 643
CrossRef
Google scholar
|
[46] |
Jun J W, Tong M, Jung B K, Hasan Z, Zhong C, Jhung S H. Effect of central metal ions of analogous metal–organic frameworks on adsorption of organoarsenic compounds from water: plausible mechanism of adsorption and water purification. Chemistry (Weinheim an der Bergstrasse, Germany), 2015, 21( 1): 347– 354
CrossRef
Google scholar
|
[47] |
Lamb A C M, Grieser F, Healy T W. The adsorption of uranium(VI) onto colloidal TiO2, SiO2 and carbon black. Colloids and Surfaces A, 2016, 499 : 156– 162
CrossRef
Google scholar
|
[48] |
Zou Y D, Wang X X, Wu F, Yu S J, Hu Y Z, Song W C, Liu Y H, Wang H Q, Hayat T, Wang X K. Controllable synthesis of Ca–Mg–Al layered double hydroxides and calcined layered double oxides for the efficient removal of U(VI) from wastewater solutions. ACS Sustainable Chemistry & Engineering, 2016, 5( 1): 1173– 1185
CrossRef
Google scholar
|
[49] |
Herbst A, Khutia A, Janiak C. Bronsted instead of Lewis acidity in functionalized MIL-101Cr MOFs for efficient heterogeneous (nano-MOF) catalysis in the condensation reaction of aldehydes with alcohols. Inorganic Chemistry, 2014, 53( 14): 7319– 7333
CrossRef
Google scholar
|
/
〈 | 〉 |