Gas marbles: ultra-long-lasting and ultra-robust bubbles formed by particle stabilization

Xuxin Zhao , Kunling Yang , Zhou Liu , Ho Cheung Shum , Tiantian Kong

Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (11) : 1681 -1687.

PDF (8289KB)
Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (11) : 1681 -1687. DOI: 10.1007/s11705-022-2180-0
VIEWS & COMMENTS
VIEWS & COMMENTS

Gas marbles: ultra-long-lasting and ultra-robust bubbles formed by particle stabilization

Author information +
History +
PDF (8289KB)

Abstract

Bubbles and foams are ubiquitous in daily life and industrial processes. Studying their dynamic behaviors is of key importance for foam manufacturing processes in food packaging, cosmetics and pharmaceuticals. Bare bubbles are inherently fragile and transient; enhancing their robustness and shelf lives is an ongoing challenge. Their rupture can be attributed to liquid evaporation, thin film drainage and the nuclei of environmental dust. Inspired by particle-stabilized interfaces in Pickering emulsions, armored bubbles and liquid marble, bubbles are protected by an enclosed particle-entrapping liquid thin film, and the resultant soft object is termed gas marble. The gas marble exhibits mechanical strength orders of magnitude higher than that of soap bubbles when subjected to overpressure and underpressure, owing to the compact particle monolayer straddling the surface liquid film. By using a water-absorbent glycerol solution, the resulting gas marble can persist for 465 d in normal atmospheric settings. This particle-stabilizing approach not only has practical implications for foam manufacturing processes but also can inspire the new design and fabrication of functional biomaterials and biomedicines.

Graphical abstract

Keywords

bubble / particles / interfaces / armored bubble / liquid marble / gas marble / Pickering emulsion

Cite this article

Download citation ▾
Xuxin Zhao, Kunling Yang, Zhou Liu, Ho Cheung Shum, Tiantian Kong. Gas marbles: ultra-long-lasting and ultra-robust bubbles formed by particle stabilization. Front. Chem. Sci. Eng., 2022, 16(11): 1681-1687 DOI:10.1007/s11705-022-2180-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang J, Nguyen A V, Farrokhpay S. A critical review of the growth, drainage and collapse of foams. Advances in Colloid and Interface Science, 2016, 228 : 55– 70

[2]

Hill C, Eastoe J. Foams: from nature to industry. Advances in Colloid and Interface Science, 2017, 247 : 496– 513

[3]

Lubetkin S D. The fundamentals of bubble evolution. Chemical Society Reviews, 1995, 24( 4): 243– 250

[4]

Dollet B, Marmottant P, Garbin V. Bubble dynamics in soft and biological matter. Annual Review of Fluid Mechanics, 2019, 51( 1): 331– 355

[5]

Debrégeas G, de Gennes P G, Brochard-Wyart F. The life and death of “bare” viscous bubbles. Science, 1998, 279( 5357): 1704– 1707

[6]

Frazier S, Jiang X, Burton J C. How to make a giant bubble. Physical Review Fluids, 2020, 5( 1): 013304

[7]

Schwartz L W, Roy R V. Modeling draining flow in mobile and immobile soap films. Journal of Colloid and Interface Science, 1999, 218( 1): 309– 323

[8]

Roux A, Duchesne A, Baudoin M. Everlasting bubbles and liquid films resisting drainage, evaporation, and nuclei-induced bursting. Physical Review Fluids, 2022, 7( 1): L011601

[9]

Ramsden W, Gotch F. Separation of solids in the surface-layers of solutions and ‘suspensions’; (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation); preliminary account. Proceedings of the Royal Society of London, 1904, 72( 477−486): 156– 164

[10]

Pickering S U. CXCVI—emulsions. Journal of the Chemical Society, Transactions, 1907, 91 : 2001– 2021

[11]

Cui M, Emrick T, Russell T P. Stabilizing liquid drops in nonequilibrium shapes by the interfacial jamming of nanoparticles. Science, 2013, 342( 6157): 460– 463

[12]

Dinsmore A D, Hsu M F, Nikolaides M G, Marquez M, Bausch A R, Weitz D A. Colloidosomes: selectively permeable capsules composed of colloidal particles. Science, 2002, 298( 5595): 1006– 1009

[13]

Kaz D M, McGorty R, Mani M, Brenner M P, Manoharan V N. Physical ageing of the contact line on colloidal particles at liquid interfaces. Nature Materials, 2012, 11( 2): 138– 142

[14]

Li M, Harbron R L, Weaver J V M, Binks B P, Mann S. Electrostatically gated membrane permeability in inorganic protocells. Nature Chemistry, 2013, 5( 6): 529– 536

[15]

Rozynek Z, Mikkelsen A, Dommersnes P, Fossum J O. Electroformation of Janus and patchy capsules. Nature Communications, 2014, 5( 1): 3945

[16]

Wu J, Ma G H. Recent studies of pickering emulsions: particles make the difference. Small, 2016, 12( 34): 4633– 4648

[17]

Bala Subramaniam A, Abkarian M, Mahadevan L, Stone H A. Non-spherical bubbles. Nature, 2005, 438( 7070): 930

[18]

Bala Subramaniam A, Abkarian M, Mahadevan L, Stone H A. Mechanics of interfacial composite materials. Langmuir, 2006, 22( 24): 10204– 10208

[19]

Bala Subramaniam A, Abkarian M, Stone H A. Controlled assembly of jammed colloidal shells on fluid droplets. Nature Materials, 2005, 4( 7): 553– 556

[20]

Huerre A, De Corato M, Garbin V. Dynamic capillary assembly of colloids at interfaces with 10000 g accelerations. Nature Communications, 2018, 9( 1): 3620

[21]

Abkarian M, Bala Subramaniam A, Kim S H, Larsen R J, Yang S M, Stone H A. Dissolution arrest and stability of particle-covered bubbles. Physical Review Letters, 2007, 99( 18): 188301

[22]

Pierre J, Dollet B, Leroy V. Resonant acoustic propagation and negative density in liquid foams. Physical Review Letters, 2014, 112( 14): 148307

[23]

Taccoen N, Lequeux F, Gunes D Z, Baroud C N. Probing the mechanical strength of an armored bubble and its implication to particle-stabilized foams. Physical Review X, 2016, 6( 1): 011010

[24]

Aussillous P, Quéré D. Liquid marbles. Nature, 2001, 411( 6840): 924– 927

[25]

Mahadevan L. Non-stick water. Nature, 2001, 411( 6840): 895– 896

[26]

Rong X, Ettelaie R, Lishchuk S V, Cheng H, Zhao N, Xiao F, Cheng F, Yang H. Liquid marble-derived solid−liquid hybrid superparticles for CO2 capture. Nature Communications, 2019, 10( 1): 1854

[27]

Xin Z, Skrydstrup T. Liquid marbles: a promising and versatile platform for miniaturized chemical reactions. Angewandte Chemie International Edition, 2019, 58( 35): 11952– 11954

[28]

Anyfantakis M, Jampani V S R, Kizhakidathazhath R, Binks B P, Lagerwall J P F. Responsive photonic liquid marbles. Angewandte Chemie International Edition, 2020, 59( 43): 19260– 19267

[29]

Vialetto J, Hayakawa M, Kavokine N, Takinoue M, Varanakkottu S N, Rudiuk S, Anyfantakis M, Morel M, Baigl D. Magnetic actuation of drops and liquid marbles using a deformable paramagnetic liquid substrate. Angewandte Chemie International Edition, 2017, 56( 52): 16565– 16570

[30]

Sheng L, Zhang J, Liu J. Diverse transformations of liquid metals between different morphologies. Advanced Materials, 2014, 26( 34): 6036– 6042

[31]

Hatti-Kaul R. Aqueous two-phase systems. Molecular Biotechnology, 2001, 19( 3): 269– 277

[32]

Albertsson P E R Å. Partition of proteins in liquid polymer-polymer two-phase systems. Nature, 1958, 182( 4637): 709– 711

[33]

Chao Y, Shum H C. Emerging aqueous two-phase systems: from fundamentals of interfaces to biomedical applications. Chemical Society Reviews, 2020, 49( 1): 114– 142

[34]

Balakrishnan G, Nicolai T, Benyahia L, Durand D. Particles trapped at the droplet interface in water-in-water emulsions. Langmuir, 2012, 28( 14): 5921– 5926

[35]

Song Y, Shimanovich U, Michaels T C T, Ma Q, Li J, Knowles T P J, Shum H C. Fabrication of fibrillosomes from droplets stabilized by protein nanofibrils at all-aqueous interfaces. Nature Communications, 2016, 7( 1): 12934

[36]

Song Y, Michaels T C T, Ma Q, Liu Z, Yuan H, Takayama S, Knowles T P J, Shum H C. Budding-like division of all-aqueous emulsion droplets modulated by networks of protein nanofibrils. Nature Communications, 2018, 9( 1): 2110

[37]

Cervantes-Álvarez A M, Escobar-Ortega Y Y, Sauret A, Pacheco-Vázquez F. Air entrainment and granular bubbles generated by a jet of grains entering water. Journal of Colloid and Interface Science, 2020, 574 : 285– 292

[38]

Liu Z, Yang T, Huang Y, Liu Y, Chen L, Deng L, Shum H C, Kong T. Electrocontrolled liquid marbles for rapid miniaturized organic reactions. Advanced Functional Materials, 2019, 29( 19): 1901101

[39]

Geyer F, Asaumi Y, Vollmer D, Butt H J, Nakamura Y, Fujii S. Polyhedral liquid marbles. Advanced Functional Materials, 2019, 29( 25): 1808826

[40]

Li X, Shi H, Wang Y, Wang R, Huang S, Huang J, Geng X, Zang D. Liquid shaping based on liquid pancakes. Advanced Materials Interfaces, 2018, 5( 2): 1701139

[41]

Binks B P Horozov T S. Colloidal Particles at Liquid Interfaces. Cambridge: Cambridge University Press, 2006

[42]

Sun Z, Wu B, Ren Y, Wang Z, Zhao C X, Hai M, Weitz D A, Chen D. Diverse particle carriers prepared by co-precipitation and phase separation: formation and applications. ChemPlusChem, 2021, 86( 1): 49– 58

[43]

Fujiwara J, Geyer F, Butt H J, Hirai T, Nakamura Y, Fujii S. Liquid marbles: shape-designable polyhedral liquid marbles/plasticines stabilized with polymer plates. Advanced Materials Interfaces, 2020, 7( 24): 2070133

[44]

Sun Z, Yan X, Xiao Y, Hu L, Eggersdorfer M, Chen D, Yang Z, Weitz D A. Pickering emulsions stabilized by colloidal surfactants: role of solid particles. Particuology, 2022, 64 : 153– 163

[45]

Binks B P, Fletcher P D I. Particles adsorbed at the oil-water interface: a theoretical comparison between spheres of uniform wettability and “Janus” particles. Langmuir, 2001, 17( 16): 4708– 4710

[46]

Chen D, Amstad E, Zhao C X, Cai L, Fan J, Chen Q, Hai M, Koehler S, Zhang H, Liang F, Yang Z, Weitz D A. Biocompatible amphiphilic hydrogel-solid dimer particles as colloidal surfactants. ACS Nano, 2017, 11( 12): 11978– 11985

[47]

Sun Z, Yang C, Wang F, Wu B, Shao B, Li Z, Chen D, Yang Z, Liu K. Biocompatible and pH-responsive colloidal surfactants with tunable shape for controlled interfacial curvature. Angewandte Chemie International Edition, 2020, 59( 24): 9365– 9369

[48]

Timounay Y, Pitois O, Rouyer F. Gas marbles: much stronger than liquid marbles. Physical Review Letters, 2017, 118( 22): 228001

[49]

Timounay Y, Ou E, Lorenceau E, Rouyer F. Low gas permeability of particulate films slows down the aging of gas marbles. Soft Matter, 2017, 13( 42): 7717– 7720

[50]

Liu Z, Zhang Y, Chen C, Yang T, Wang J, Guo L, Liu P, Kong T. Larger stabilizing particles make stronger liquid marble. Small, 2019, 15( 3): 1804549

[51]

Saczek J, Yao X, Zivkovic V, Mamlouk M, Wang D, Pramana S S, Wang S. Long-lived liquid marbles for green applications. Advanced Functional Materials, 2021, 31( 35): 2011198

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (8289KB)

4671

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/