Scale up of reactors for carbon dioxide reduction

Andrew Nattestad , Klaudia Wagner , Gordon G. Wallace

Front. Chem. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (1) : 116 -122.

PDF (6707KB)
Front. Chem. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (1) : 116 -122. DOI: 10.1007/s11705-022-2178-7
COMMUNICATION
COMMUNICATION

Scale up of reactors for carbon dioxide reduction

Author information +
History +
PDF (6707KB)

Abstract

In recent times there has been a great deal of interest in the conversion of carbon dioxide into more useful chemical compounds. On the other hand, the translation of these developments in electrochemical reduction of carbon dioxide from the laboratory bench to practical scale remains an underexplored topic. Here we examine some of the major challenges, demonstrating some promising strategies towards such scale-up, including increased electrode area and stacking of electrode pairs in different configurations. We observed that increasing the electrode area from 1 to 10 cm 2 led to only a 4% drop in current density, with similarly small penalties realised when stacking sub-cells together.

Graphical abstract

Keywords

CO 2 reduction / electrochemical cell / electrosynthesis / upscaling

Cite this article

Download citation ▾
Andrew Nattestad, Klaudia Wagner, Gordon G. Wallace. Scale up of reactors for carbon dioxide reduction. Front. Chem. Sci. Eng., 2023, 17(1): 116-122 DOI:10.1007/s11705-022-2178-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gong J, English N J, Pant D, Patzke G R, Protti S, Zhang T. Power-to-X: lighting the path to a net-zero-emission future. ACS Sustainable Chemistry & Engineering, 2021, 9( 21): 7179– 7181

[2]

Zhang W, Mohamed A R, Ong W J. Z-scheme photocatalytic systems for carbon dioxide reduction: where are we now?. Angewandte Chemie International Edition, 2020, 59( 51): 22894– 22915

[3]

Prabhu P, Jose V, Lee J M. Heterostructured catalysts for electrocatalytic and photocatalytic carbon dioxide reduction. Advanced Functional Materials, 2020, 30( 24): 1910768

[4]

Wang J, Huang X, Xi S, Lee J M, Wang C, Du Y, Wang X. Linkage effect in the heterogenization of cobalt complexes by doped graphene for electrocatalytic CO2 reduction. Angewandte Chemie International Edition, 2019, 58( 38): 13532– 13539

[5]

Huang Z, Grim R G, Schaidle J A, Tao L. The economic outlook for converting CO2 and electrons to molecules. Energy & Environmental Science, 2021, 14( 7): 3664– 3678

[6]

Tufa R A, Chanda D, Ma M, Aili D, Demissie T B, Vaes J, Li Q, Liu S, Pant D. Towards highly efficient electrochemical CO2 reduction: cell designs, membranes and electrocatalysts. Applied Energy, 2020, 277 : 115557

[7]

Smith W A, Burdyny T, Vermaas D A, Geerlings H. Pathways to industrial-scale fuel out of thin air from CO2 electrolysis. Joule, 2019, 3( 8): 1822– 1834

[8]

Nguyen D L T, Do H H, Nguyen M T, Vo D V N, Nguyen V H, Nguyen C C, Kim S Y, Le Q V. Electrochemical conversion of carbon dioxide over silver-based catalysts: recent progress in cathode structure and interface engineering. Chemical Engineering Science, 2021, 234 : 116403

[9]

Gao F Y, Bao R C, Gao M R, Yu S H. Electrochemical CO2-to-CO conversion: electrocatalysts, electrolytes, and electrolyzers. Journal of Materials Chemistry A, 2020, 8( 31): 15458– 15478

[10]

Park S, Wijaya D T, Na J, Lee C W. Towards the large-scale electrochemical reduction of carbon dioxide. Catalysts, 2021, 11( 2): 253

[11]

Jeanty P, Scherer C, Magori E, Wiesner-Fleischer K, Hinrichsen O, Fleischer M. Upscaling and continuous operation of electrochemical CO2 to CO conversion in aqueous solutions on silver gas diffusion electrodes. Journal of CO2 Utilization , 2018, 24 : 454– 462

[12]

Kim K, Lee W H, Na J, Hwang Y, Oh H S, Lee U. Data-driven pilot optimization for electrochemical CO mass production. Journal of Materials Chemistry A, 2020, 8( 33): 16943– 16950

[13]

Sun D, Xu X, Qin Y, Jiang S P, Shao Z. Rational design of Ag-based catalysts for the electrochemical CO2 reduction to CO: a review. ChemSusChem, 2020, 13( 1): 39– 58

[14]

Kas R, Yang K, Bohra D, Kortlever R, Burdyny T, Smith W A. Electrochemical CO2 reduction on nanostructured metal electrodes: fact or defect?. Chemical Science (Cambridge), 2020, 11( 7): 1738– 1749

[15]

Burdyny T, Smith W A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy & Environmental Science, 2019, 12( 5): 1442– 1453

[16]

Higgins D, Hahn C, Xiang C, Jaramillo T F, Weber A Z. Gas-diffusion electrodes for carbon dioxide reduction: a new paradigm. ACS Energy Letters, 2019, 4( 1): 317– 324

[17]

Dodds W S, Stutzman L F, Sollami B J. Carbon dioxide solubility in water. Chemical & Engineering Data Series, 1956, 1( 1): 92– 95

[18]

Endrodi B, Kecsenovity E, Samu A, Darvas F, Jones R V, Torok V, Danyi A, Janaky C. Multilayer electrolyzer stack converts carbon dioxide to gas products at high pressure with high efficiency. ACS Energy Letters, 2019, 4( 7): 1770– 1777

[19]

Dufek E J, Lister T E, McIlwain M E. Bench-scale electrochemical system for generation of CO and syn-gas. Journal of Applied Electrochemistry, 2011, 41( 6): 623– 631

[20]

Kreysa G, Kuelps H J. Experimental study of the gas bubble effects on the IR drop at inclined electrodes. Journal of the Electrochemical Society, 1981, 128( 5): 979– 984

AI Summary AI Mindmap
PDF (6707KB)

Supplementary files

FCE-22006-OF-NA_suppl_1

5700

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/