Cystine-assisted accumulation of gold nanoparticles on ZnO to construct a sensitive surface-enhanced Raman spectroscopy substrate

Qi Qu, Chuan Zeng, Jing Huang, Mengfan Wang, Wei Qi, Zhimin He

PDF(9120 KB)
PDF(9120 KB)
Front. Chem. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (1) : 15-23. DOI: 10.1007/s11705-022-2177-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Cystine-assisted accumulation of gold nanoparticles on ZnO to construct a sensitive surface-enhanced Raman spectroscopy substrate

Author information +
History +

Abstract

Recently, various semiconductor/metal composites have been developed to fabricate surface-enhanced Raman spectroscopy substrates. However, low metal loading on semiconductors is still a challenge. In this study, cystine was introduced to increase the accumulation of gold nanoparticles on zinc oxide, owing to the biomineralization property of cystine. Morphological analysis revealed that the obtained ZnO/Au/cystine composite not only had a higher metal loading but also formed a porous structure, which is beneficial for Raman performance. Compared with ZnO/Au, the ZnO/Au/cystine substrate displayed a 40-fold enhancement in the Raman signal and a lower limit of detection (10–11 mol·L−1) in the detection of rhodamine 6G. Moreover, the substrate has favorable homogeneity and stability. Finally, ZnO/Au/cystine displayed excellent performance toward crystal violet and methylene blue in a test based on river water samples. This study provided a promising method to fabricate sensitive semiconductor/noble metal-based surface-enhanced Raman spectroscopy substrates for Raman detection.

Graphical abstract

Keywords

biomineralization / cystine / semiconductor/metal composite / SERS detection / Raman detection

Cite this article

Download citation ▾
Qi Qu, Chuan Zeng, Jing Huang, Mengfan Wang, Wei Qi, Zhimin He. Cystine-assisted accumulation of gold nanoparticles on ZnO to construct a sensitive surface-enhanced Raman spectroscopy substrate. Front. Chem. Sci. Eng., 2023, 17(1): 15‒23 https://doi.org/10.1007/s11705-022-2177-8

References

[1]
Fan M, Andrade G F S, Brolo A G. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Analytica Chimica Acta, 2020, 1097 : 1– 29
CrossRef Google scholar
[2]
Neng J, Zhang Q, Sun P L. Application of surface-enhanced Raman spectroscopy in fast detection of toxic and harmful substances in food. Biosensors & Bioelectronics, 2020, 167 : 112480
CrossRef Google scholar
[3]
Zong C, Xu M, Xu L J, Wei T, Ma X, Zheng X S, Hu R, Ren B. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chemical Reviews, 2018, 118( 10): 4946– 4980
CrossRef Google scholar
[4]
Cialla May D, Zheng X S, Weber K, Popp J. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chemical Society Reviews, 2017, 46( 13): 3945– 3961
CrossRef Google scholar
[5]
Xu M L, Gao Y, Han X X, Zhao B. Detection of pesticide residues in food using surface-enhanced Raman spectroscopy: a review. Journal of Agricultural and Food Chemistry, 2017, 65( 32): 6719– 6726
CrossRef Google scholar
[6]
Chakraborty A, Ghosh A, Barui A. Advances in surface-enhanced Raman spectroscopy for cancer diagnosis and staging. Journal of Raman Spectroscopy, 2020, 51( 1): 7– 36
CrossRef Google scholar
[7]
Yang B, Wang Y, Guo S, Jin S, Park E, Chen L, Jung Y M. Charge transfer study for semiconductor and semiconductor/metal composites based on surface-enhanced Raman scattering. Bulletin of the Korean Chemical Society, 2021, 42( 11): 1411– 1418
CrossRef Google scholar
[8]
Sharma B, Frontiera R R, Henry A I, Ringe E, Van Duyne R P. SERS: materials, applications, and the future. Materials Today, 2012, 15( 1-2): 16– 25
CrossRef Google scholar
[9]
Itoh T, Yamamoto Y S. Recent topics on single-molecule fluctuation analysis using blinking in surface-enhanced resonance Raman scattering: clarification by the electromagnetic mechanism. Analyst (London), 2016, 141( 17): 5000– 5009
CrossRef Google scholar
[10]
Yang M, Yu J, Lei F, Zhou H, Wei Y, Man B, Zhang C, Li C, Ren J, Yuan X. Synthesis of low-cost 3D-porous ZnO/Ag SERS-active substrate with ultrasensitive and repeatable detectability. Sensors and Actuators B: Chemical, 2018, 256 : 268– 275
CrossRef Google scholar
[11]
Hsieh S, Lin P Y, Chu L Y. Improved performance of solution-phase surface-enhanced Raman scattering at Ag/CuO nanocomposite surfaces. Journal of Physical Chemistry C, 2014, 118( 23): 12500– 12505
CrossRef Google scholar
[12]
Yang L, Wang W, Jiang H, Zhang Q, Shan H, Zhang M, Zhu K, Lv J, He G, Sun Z. Improved SERS performance of single-crystalline TiO2 nanosheet arrays with coexposed {001} and {101} facets decorated with Ag nanoparticles. Sensors and Actuators B: Chemical, 2017, 242 : 932– 939
CrossRef Google scholar
[13]
Li P, Wang X, Zhang X, Zhang L, Yang X, Zhao B. Investigation of the charge-transfer between Ga-doped ZnO nanoparticles and molecules using surface-enhanced Raman scattering: doping induced band-gap shrinkage. Frontiers in Chemistry, 2019, 7 : 144
CrossRef Google scholar
[14]
Doan Q K, Nguyen M H, Sai C D, Pham V T, Mai H H, Pham N H, Bach T C, Nguyen V T, Nguyen T T, Ho K H, Tran T H. Enhanced optical properties of ZnO nanorods decorated with gold nanoparticles for self-cleaning surface enhanced Raman applications. Applied Surface Science, 2020, 505 : 7
CrossRef Google scholar
[15]
Liu Y, Ma H, Han X X, Zhao B. Metal-semiconductor heterostructures for surface-enhanced Raman scattering: synergistic contribution of plasmons and charge transfer. Materials Horizons, 2021, 8( 2): 370– 382
CrossRef Google scholar
[16]
Han X X, Ji W, Zhao B, Ozaki Y. Semiconductor-enhanced Raman scattering: active nanomaterials and applications. Nanoscale, 2017, 9( 15): 4847– 4861
CrossRef Google scholar
[17]
Yang B, Jin S, Guo S, Park Y, Chen L, Zhao B, Jung Y M. Recent development of SERS technology: semiconductor-based study. ACS Omega, 2019, 4( 23): 20101– 20108
CrossRef Google scholar
[18]
Araújo A, Pimentel A, Oliveira M J, Mendes M J, Franco R, Fortunato E, Águas H, Martins R. Direct growth of plasmonic nanorod forests on paper substrates for low-cost flexible 3D SERS platforms. Flexible and Printed Electronics, 2017, 2( 1): 014001
CrossRef Google scholar
[19]
Pimentel A, Araújo A, Coelho B, Nunes D, Oliveira M, Mendes M, Águas H, Martins R, Fortunato E. 3D ZnO/Ag surface-enhanced Raman scattering on disposable and flexible cardboard platforms. Materials, 2017, 10( 12): 1351
CrossRef Google scholar
[20]
Kim W, Lee S H, Kim J H, Ahn Y J, Kim Y H, Yu J S, Choi S. Paper-based surface-enhanced Raman spectroscopy for diagnosing prenatal diseases in women. ACS Nano, 2018, 12( 7): 7100– 7108
CrossRef Google scholar
[21]
Barbillon G, Graniel O, Bechelany M. Assembled Au/ZnO nano-urchins for SERS sensing of the pesticide thiram. Nanomaterials, 2021, 11( 9): 2174
CrossRef Google scholar
[22]
Graniel O, Iatsunskyi I, Coy E, Humbert C, Barbillon G, Michel T, Maurin D, Balme S, Miele P, Bechelany M. Au-covered hollow urchin-like ZnO nanostructures for surface-enhanced Raman scattering sensing. Journal of Materials Chemistry C, 2019, 7( 47): 15066– 15073
CrossRef Google scholar
[23]
Dong S, Wang Y, Liu Z, Zhang W, Yi K, Zhang X, Zhang X, Jiang C, Yang S, Wang F, Xiao X. Beehive-inspired macroporous SERS probe for cancer detection through capturing and analyzing exosomes in plasma. ACS Applied Materials & Interfaces, 2020, 12( 4): 5136– 5146
CrossRef Google scholar
[24]
Liu K, Yuan C Q, Zou Q L, Xie Z C, Yan X H. Self-assembled zinc/cystine-based chloroplast mimics capable of photoenzymatic reactions for sustainable fuel synthesis. Angewandte Chemie International Edition, 2017, 56( 27): 7876– 7880
CrossRef Google scholar
[25]
Guan M, Wang M, Qi W, Su R, He Z. Biomineralization-inspired copper-cystine nanoleaves capable of laccase-like catalysis for the colorimetric detection of epinephrine. Frontiers of Chemical Science and Engineering, 2020, 15( 2): 310– 318
CrossRef Google scholar
[26]
Ejgenberg M, Mastai Y. Biomimetic crystallization of L-cystine hierarchical structures. Crystal Growth & Design, 2012, 12( 10): 4995– 5001
CrossRef Google scholar
[27]
Moe O W. Kidney stones: pathophysiology and medical management. Lancet, 2006, 367( 9507): 333– 344
CrossRef Google scholar
[28]
Jana N R, Gearheart L, Murphy C J. Seeding growth for size control of 5-40 nm diameter gold nanoparticles. Langmuir, 2001, 17( 22): 6782– 6786
CrossRef Google scholar
[29]
Yang L L, Yang Y, Ma Y F, Li S, Wei Y Q, Huang Z R, Long N V. Fabrication of semiconductor ZnO nanostructures for versatile SERS application. Nanomaterials, 2017, 7( 11): 398
CrossRef Google scholar
[30]
Subramanian V, Wolf E E, Kamat P V. Green emission to probe photoinduced charging events in ZnO−Au nanoparticles. Charge distribution and fermi-level equilibration. Journal of Physical Chemistry B, 2003, 107( 30): 7479– 7485
CrossRef Google scholar
[31]
Nuzzo R G, Fusco F A, Allara D L. Spontaneously organized molecular assemblies. 3. Preparation and properties of solution adsorbed monolayers of organic disulfides on gold surfaces. Journal of the American Chemical Society, 1987, 109( 8): 2358– 2368
CrossRef Google scholar
[32]
Nuzzo R G, Allara D L. Adsorption of bifunctional organic disulfides on gold surfaces. Journal of the American Chemical Society, 1983, 105( 13): 4481– 4483
CrossRef Google scholar
[33]
Nuzzo R G, Zegarski B R, Dubois L H. Fundamental studies of the chemisorption of organosulfur compounds on gold (111). Implications for molecular self-assembly on gold surfaces. Journal of the American Chemical Society, 1987, 109( 3): 733– 740
CrossRef Google scholar
[34]
Pal A K, Pagal S, Prashanth K, Chandra G K, Umapathy S, Mohan D B. Ag/ZnO/Au 3D hybrid structured reusable SERS substrate as highly sensitive platform for DNA detection. Sensors and Actuators B: Chemical, 2019, 279 : 157– 169
CrossRef Google scholar
[35]
Bharadwaj S, Pandey A, Yagci B, Ozguz V, Qureshi A. Graphene nano−mesh−Ag−ZnO hybrid paper for sensitive SERS sensing and self-cleaning of organic pollutants. Chemical Engineering Journal, 2018, 336 : 445– 455
CrossRef Google scholar
[36]
Zhang J, Liu X, Wu S, Cao B, Zheng S. One-pot synthesis of Au-supported ZnO nanoplates with enhanced gas sensor performance. Sensors and Actuators B: Chemical, 2012, 169 : 61– 66
CrossRef Google scholar
[37]
Ma Z F, Han H L. One-step synthesis of cystine-coated gold nanoparticles in aqueous solution. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2008, 317( 1-3): 229– 233
CrossRef Google scholar
[38]
Di Felice R, Selloni A. Adsorption modes of cysteine on Au(111): thiolate, amino-thiolate, disulfide. Journal of Chemical Physics, 2004, 120( 10): 4906– 4914
CrossRef Google scholar
[39]
Qi D, Lu L, Wang L, Zhang J. Improved SERS sensitivity on plasmon-free TiO2 photonic microarray by enhancing light-matter coupling. Journal of the American Chemical Society, 2014, 136( 28): 9886– 9889
CrossRef Google scholar
[40]
Macias Montero M, Pelaez R J, Rico V J, Saghi Z, Midgley P, Afonso C N, Gonzalez Elipe A R, Borras A. Laser treatment of Ag@ZnO nanorods as long-life-span SERS surfaces. ACS Applied Materials & Interfaces, 2015, 7( 4): 2331– 2339
CrossRef Google scholar
[41]
He X, Wang H, Li Z, Chen D, Liu J, Zhang Q. Ultrasensitive SERS detection of trinitrotoluene through capillarity-constructed reversible hot spots based on ZnO−Ag nanorod hybrids. Nanoscale, 2015, 7( 18): 8619– 8626
CrossRef Google scholar

Acknowledgements

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (Grant Nos. 21621004 and 22178260), the Tianjin Development Program for Innovation and Entrepreneurship (2018), and the Cooperative Program of Technical Center of Gongbei Customs District of China (Grant No. 2020GKF-0281).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://dx.doi.org/10.1007/s11705-022-2177-8 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(9120 KB)

Accesses

Citations

Detail

Sections
Recommended

/