Cystine-assisted accumulation of gold nanoparticles on ZnO to construct a sensitive surface-enhanced Raman spectroscopy substrate
Qi Qu, Chuan Zeng, Jing Huang, Mengfan Wang, Wei Qi, Zhimin He
Cystine-assisted accumulation of gold nanoparticles on ZnO to construct a sensitive surface-enhanced Raman spectroscopy substrate
Recently, various semiconductor/metal composites have been developed to fabricate surface-enhanced Raman spectroscopy substrates. However, low metal loading on semiconductors is still a challenge. In this study, cystine was introduced to increase the accumulation of gold nanoparticles on zinc oxide, owing to the biomineralization property of cystine. Morphological analysis revealed that the obtained ZnO/Au/cystine composite not only had a higher metal loading but also formed a porous structure, which is beneficial for Raman performance. Compared with ZnO/Au, the ZnO/Au/cystine substrate displayed a 40-fold enhancement in the Raman signal and a lower limit of detection (10–11 mol·L−1) in the detection of rhodamine 6G. Moreover, the substrate has favorable homogeneity and stability. Finally, ZnO/Au/cystine displayed excellent performance toward crystal violet and methylene blue in a test based on river water samples. This study provided a promising method to fabricate sensitive semiconductor/noble metal-based surface-enhanced Raman spectroscopy substrates for Raman detection.
biomineralization / cystine / semiconductor/metal composite / SERS detection / Raman detection
[1] |
Fan M, Andrade G F S, Brolo A G. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Analytica Chimica Acta, 2020, 1097 : 1– 29
CrossRef
Google scholar
|
[2] |
Neng J, Zhang Q, Sun P L. Application of surface-enhanced Raman spectroscopy in fast detection of toxic and harmful substances in food. Biosensors & Bioelectronics, 2020, 167 : 112480
CrossRef
Google scholar
|
[3] |
Zong C, Xu M, Xu L J, Wei T, Ma X, Zheng X S, Hu R, Ren B. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chemical Reviews, 2018, 118( 10): 4946– 4980
CrossRef
Google scholar
|
[4] |
Cialla May D, Zheng X S, Weber K, Popp J. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chemical Society Reviews, 2017, 46( 13): 3945– 3961
CrossRef
Google scholar
|
[5] |
Xu M L, Gao Y, Han X X, Zhao B. Detection of pesticide residues in food using surface-enhanced Raman spectroscopy: a review. Journal of Agricultural and Food Chemistry, 2017, 65( 32): 6719– 6726
CrossRef
Google scholar
|
[6] |
Chakraborty A, Ghosh A, Barui A. Advances in surface-enhanced Raman spectroscopy for cancer diagnosis and staging. Journal of Raman Spectroscopy, 2020, 51( 1): 7– 36
CrossRef
Google scholar
|
[7] |
Yang B, Wang Y, Guo S, Jin S, Park E, Chen L, Jung Y M. Charge transfer study for semiconductor and semiconductor/metal composites based on surface-enhanced Raman scattering. Bulletin of the Korean Chemical Society, 2021, 42( 11): 1411– 1418
CrossRef
Google scholar
|
[8] |
Sharma B, Frontiera R R, Henry A I, Ringe E, Van Duyne R P. SERS: materials, applications, and the future. Materials Today, 2012, 15( 1-2): 16– 25
CrossRef
Google scholar
|
[9] |
Itoh T, Yamamoto Y S. Recent topics on single-molecule fluctuation analysis using blinking in surface-enhanced resonance Raman scattering: clarification by the electromagnetic mechanism. Analyst (London), 2016, 141( 17): 5000– 5009
CrossRef
Google scholar
|
[10] |
Yang M, Yu J, Lei F, Zhou H, Wei Y, Man B, Zhang C, Li C, Ren J, Yuan X. Synthesis of low-cost 3D-porous ZnO/Ag SERS-active substrate with ultrasensitive and repeatable detectability. Sensors and Actuators B: Chemical, 2018, 256 : 268– 275
CrossRef
Google scholar
|
[11] |
Hsieh S, Lin P Y, Chu L Y. Improved performance of solution-phase surface-enhanced Raman scattering at Ag/CuO nanocomposite surfaces. Journal of Physical Chemistry C, 2014, 118( 23): 12500– 12505
CrossRef
Google scholar
|
[12] |
Yang L, Wang W, Jiang H, Zhang Q, Shan H, Zhang M, Zhu K, Lv J, He G, Sun Z. Improved SERS performance of single-crystalline TiO2 nanosheet arrays with coexposed {001} and {101} facets decorated with Ag nanoparticles. Sensors and Actuators B: Chemical, 2017, 242 : 932– 939
CrossRef
Google scholar
|
[13] |
Li P, Wang X, Zhang X, Zhang L, Yang X, Zhao B. Investigation of the charge-transfer between Ga-doped ZnO nanoparticles and molecules using surface-enhanced Raman scattering: doping induced band-gap shrinkage. Frontiers in Chemistry, 2019, 7 : 144
CrossRef
Google scholar
|
[14] |
Doan Q K, Nguyen M H, Sai C D, Pham V T, Mai H H, Pham N H, Bach T C, Nguyen V T, Nguyen T T, Ho K H, Tran T H. Enhanced optical properties of ZnO nanorods decorated with gold nanoparticles for self-cleaning surface enhanced Raman applications. Applied Surface Science, 2020, 505 : 7
CrossRef
Google scholar
|
[15] |
Liu Y, Ma H, Han X X, Zhao B. Metal-semiconductor heterostructures for surface-enhanced Raman scattering: synergistic contribution of plasmons and charge transfer. Materials Horizons, 2021, 8( 2): 370– 382
CrossRef
Google scholar
|
[16] |
Han X X, Ji W, Zhao B, Ozaki Y. Semiconductor-enhanced Raman scattering: active nanomaterials and applications. Nanoscale, 2017, 9( 15): 4847– 4861
CrossRef
Google scholar
|
[17] |
Yang B, Jin S, Guo S, Park Y, Chen L, Zhao B, Jung Y M. Recent development of SERS technology: semiconductor-based study. ACS Omega, 2019, 4( 23): 20101– 20108
CrossRef
Google scholar
|
[18] |
Araújo A, Pimentel A, Oliveira M J, Mendes M J, Franco R, Fortunato E, Águas H, Martins R. Direct growth of plasmonic nanorod forests on paper substrates for low-cost flexible 3D SERS platforms. Flexible and Printed Electronics, 2017, 2( 1): 014001
CrossRef
Google scholar
|
[19] |
Pimentel A, Araújo A, Coelho B, Nunes D, Oliveira M, Mendes M, Águas H, Martins R, Fortunato E. 3D ZnO/Ag surface-enhanced Raman scattering on disposable and flexible cardboard platforms. Materials, 2017, 10( 12): 1351
CrossRef
Google scholar
|
[20] |
Kim W, Lee S H, Kim J H, Ahn Y J, Kim Y H, Yu J S, Choi S. Paper-based surface-enhanced Raman spectroscopy for diagnosing prenatal diseases in women. ACS Nano, 2018, 12( 7): 7100– 7108
CrossRef
Google scholar
|
[21] |
Barbillon G, Graniel O, Bechelany M. Assembled Au/ZnO nano-urchins for SERS sensing of the pesticide thiram. Nanomaterials, 2021, 11( 9): 2174
CrossRef
Google scholar
|
[22] |
Graniel O, Iatsunskyi I, Coy E, Humbert C, Barbillon G, Michel T, Maurin D, Balme S, Miele P, Bechelany M. Au-covered hollow urchin-like ZnO nanostructures for surface-enhanced Raman scattering sensing. Journal of Materials Chemistry C, 2019, 7( 47): 15066– 15073
CrossRef
Google scholar
|
[23] |
Dong S, Wang Y, Liu Z, Zhang W, Yi K, Zhang X, Zhang X, Jiang C, Yang S, Wang F, Xiao X. Beehive-inspired macroporous SERS probe for cancer detection through capturing and analyzing exosomes in plasma. ACS Applied Materials & Interfaces, 2020, 12( 4): 5136– 5146
CrossRef
Google scholar
|
[24] |
Liu K, Yuan C Q, Zou Q L, Xie Z C, Yan X H. Self-assembled zinc/cystine-based chloroplast mimics capable of photoenzymatic reactions for sustainable fuel synthesis. Angewandte Chemie International Edition, 2017, 56( 27): 7876– 7880
CrossRef
Google scholar
|
[25] |
Guan M, Wang M, Qi W, Su R, He Z. Biomineralization-inspired copper-cystine nanoleaves capable of laccase-like catalysis for the colorimetric detection of epinephrine. Frontiers of Chemical Science and Engineering, 2020, 15( 2): 310– 318
CrossRef
Google scholar
|
[26] |
Ejgenberg M, Mastai Y. Biomimetic crystallization of L-cystine hierarchical structures. Crystal Growth & Design, 2012, 12( 10): 4995– 5001
CrossRef
Google scholar
|
[27] |
Moe O W. Kidney stones: pathophysiology and medical management. Lancet, 2006, 367( 9507): 333– 344
CrossRef
Google scholar
|
[28] |
Jana N R, Gearheart L, Murphy C J. Seeding growth for size control of 5-40 nm diameter gold nanoparticles. Langmuir, 2001, 17( 22): 6782– 6786
CrossRef
Google scholar
|
[29] |
Yang L L, Yang Y, Ma Y F, Li S, Wei Y Q, Huang Z R, Long N V. Fabrication of semiconductor ZnO nanostructures for versatile SERS application. Nanomaterials, 2017, 7( 11): 398
CrossRef
Google scholar
|
[30] |
Subramanian V, Wolf E E, Kamat P V. Green emission to probe photoinduced charging events in ZnO−Au nanoparticles. Charge distribution and fermi-level equilibration. Journal of Physical Chemistry B, 2003, 107( 30): 7479– 7485
CrossRef
Google scholar
|
[31] |
Nuzzo R G, Fusco F A, Allara D L. Spontaneously organized molecular assemblies. 3. Preparation and properties of solution adsorbed monolayers of organic disulfides on gold surfaces. Journal of the American Chemical Society, 1987, 109( 8): 2358– 2368
CrossRef
Google scholar
|
[32] |
Nuzzo R G, Allara D L. Adsorption of bifunctional organic disulfides on gold surfaces. Journal of the American Chemical Society, 1983, 105( 13): 4481– 4483
CrossRef
Google scholar
|
[33] |
Nuzzo R G, Zegarski B R, Dubois L H. Fundamental studies of the chemisorption of organosulfur compounds on gold (111). Implications for molecular self-assembly on gold surfaces. Journal of the American Chemical Society, 1987, 109( 3): 733– 740
CrossRef
Google scholar
|
[34] |
Pal A K, Pagal S, Prashanth K, Chandra G K, Umapathy S, Mohan D B. Ag/ZnO/Au 3D hybrid structured reusable SERS substrate as highly sensitive platform for DNA detection. Sensors and Actuators B: Chemical, 2019, 279 : 157– 169
CrossRef
Google scholar
|
[35] |
Bharadwaj S, Pandey A, Yagci B, Ozguz V, Qureshi A. Graphene nano−mesh−Ag−ZnO hybrid paper for sensitive SERS sensing and self-cleaning of organic pollutants. Chemical Engineering Journal, 2018, 336 : 445– 455
CrossRef
Google scholar
|
[36] |
Zhang J, Liu X, Wu S, Cao B, Zheng S. One-pot synthesis of Au-supported ZnO nanoplates with enhanced gas sensor performance. Sensors and Actuators B: Chemical, 2012, 169 : 61– 66
CrossRef
Google scholar
|
[37] |
Ma Z F, Han H L. One-step synthesis of cystine-coated gold nanoparticles in aqueous solution. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2008, 317( 1-3): 229– 233
CrossRef
Google scholar
|
[38] |
Di Felice R, Selloni A. Adsorption modes of cysteine on Au(111): thiolate, amino-thiolate, disulfide. Journal of Chemical Physics, 2004, 120( 10): 4906– 4914
CrossRef
Google scholar
|
[39] |
Qi D, Lu L, Wang L, Zhang J. Improved SERS sensitivity on plasmon-free TiO2 photonic microarray by enhancing light-matter coupling. Journal of the American Chemical Society, 2014, 136( 28): 9886– 9889
CrossRef
Google scholar
|
[40] |
Macias Montero M, Pelaez R J, Rico V J, Saghi Z, Midgley P, Afonso C N, Gonzalez Elipe A R, Borras A. Laser treatment of Ag@ZnO nanorods as long-life-span SERS surfaces. ACS Applied Materials & Interfaces, 2015, 7( 4): 2331– 2339
CrossRef
Google scholar
|
[41] |
He X, Wang H, Li Z, Chen D, Liu J, Zhang Q. Ultrasensitive SERS detection of trinitrotoluene through capillarity-constructed reversible hot spots based on ZnO−Ag nanorod hybrids. Nanoscale, 2015, 7( 18): 8619– 8626
CrossRef
Google scholar
|
/
〈 | 〉 |