An investigation of the CH3OH and CO selectivity of CO2 hydrogenation over Cu–Ce–Zr catalysts

Weiwei Wang, Xiaoyu Zhang, Min Guo, Jianan Li, Chong Peng

PDF(5061 KB)
PDF(5061 KB)
Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (6) : 950-962. DOI: 10.1007/s11705-022-2162-2
RESEARCH ARTICLE
RESEARCH ARTICLE

An investigation of the CH3OH and CO selectivity of CO2 hydrogenation over Cu–Ce–Zr catalysts

Author information +
History +

Abstract

A series of Cu–Ce–Zr catalysts with different Ce contents are applied to the hydrogenation of CO2 to CO/CH3OH products. The Cu–Ce–Zr catalyst with 2 wt% Ce loading shows higher CO selectivity (SCO = 0.0%–87.8%) from 200–300 °C, while the Cu–Ce–Zr catalyst with 8 wt% Ce loading presents higher CO2 conversion ( X C O2 = 5.4%–15.6%) and CH3OH selectivity ( S C H3OH = 97.8%–40.6%). The number of hydroxyl groups and solid solution nature play a significant role in changing the reaction pathway. The solid solution enhances the CO2 adsorption ability. At the CO2 adsorption step, a larger number of hydroxyl groups over the Cu–Ce–Zr catalyst with 8 wt% Ce loading leads to the production of H-containing adsorption species. At the CO2 hydrogenation step, a larger number of hydroxyl groups assists in encouraging the further hydrogenation of intermediate species to CH3OH and improving the hydrogenation rate. Hence, the Cu–Ce–Zr catalyst with 8 wt% Ce loading favors CH3OH selectivity and CO2 activation, while CO is preferred on the Cu–Ce–Zr catalyst with 2 wt% Ce loading, a smaller number of hydroxyl groups and a solid solution nature. Additionally, high-pressure in situ diffuse reflectance infrared Fourier transform spectroscopy shows that CO is produced from formate decomposition and that both monodentate formate and bidentate formate are active intermediate species of CO2 hydrogenation to CH3OH.

Graphical abstract

Keywords

CO2 hydrogenation / Cu–Ce–Zr / hydroxyls / CO/CH3OH selectivity

Cite this article

Download citation ▾
Weiwei Wang, Xiaoyu Zhang, Min Guo, Jianan Li, Chong Peng. An investigation of the CH3OH and CO selectivity of CO2 hydrogenation over Cu–Ce–Zr catalysts. Front. Chem. Sci. Eng., 2022, 16(6): 950‒962 https://doi.org/10.1007/s11705-022-2162-2

References

[1]
ZhouW, ChengK, KangJ C, ZhouC, SubramanianV, ZhangQ H, WangY. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chemical Society Reviews, 2019, 48( 12): 3193– 3228
CrossRef Google scholar
[2]
NieX, Jiang X, WangH Z, LuoW J, JanikM J, ChenY G, GuoX W, SongC S. Mechanistic understanding of alloy effect and water promotion for Pd-Cu bimetallic catalysts in CO2 hydrogenation to methanol. ACS Catalysis, 2018, 8( 6): 4873– 4892
CrossRef Google scholar
[3]
LiuX M, BaiS F, ZhuangH D, YanZ F. Preparation of Cu/ZrO2 catalysts for methanol synthesis from CO2/H2. Frontiers of Chemical Science and Engineering, 2012, 6( 1): 47– 52
CrossRef Google scholar
[4]
KattelS, LiuP, Chen J G. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. Journal of the American Chemical Society, 2017, 139( 29): 9739– 9754
CrossRef Google scholar
[5]
StangelandK, NavarroH H, HuynhH L, TuchoW M, YuZ X. Tuning the interfacial sites between copper and metal oxides (Zn, Zr, In) for CO2 hydrogenation to methanol. Chemical Engineering Science, 2021, 238 : 116603
CrossRef Google scholar
[6]
ZhuC, Wei X, LiW, PuY, Sun J F, TangK L, WanH Q, GeC Y, ZouW X, DongL. Crystal-plane effects of CeO2{110} and CeO2{100} on photocatalytic CO2 reduction: synergistic interactions of oxygen defects and hydroxyl groups. ACS Sustainable Chemistry & Engineering, 2020, 8( 38): 14397– 14406
CrossRef Google scholar
[7]
PanY X, LiuC J, GeQ F. Effect of surface hydroxyls on selective CO2 hydrogenation over Ni4/gamma-Al2O3: a density functional theory study. Journal of Catalysis, 2010, 272( 2): 227– 234
CrossRef Google scholar
[8]
YangC S, MuR T, WangG S, SongJ M, TianH, ZhaoZ J, GongJ L. Hydroxyl-mediated ethanol selectivity of CO2 hydrogenation. Chemical Science (Cambridge), 2019, 10( 11): 3161– 3167
CrossRef Google scholar
[9]
PengY H, WangL B, CaoY, Dai Y Z, LiZ L, LiH L, ZhengX S, YanW S, YangJ L, ZengJ. Molecular-level insight into how hydroxyl groups boost catalytic activity in CO2 hydrogenation into methanol. Chem, 2018, 4( 3): 613– 625
CrossRef Google scholar
[10]
JangamA, HongmanoromP, WaiM H, PoerjotoA J, XiS B, BorgnaA, KawiS. CO2 hydrogenation to methanol over partially reduced Cu–SiO2P catalysts: the crucial role of hydroxyls for methanol selectivity. ACS Applied Energy Materials, 2021, 4( 11): 12149– 12162
CrossRef Google scholar
[11]
XuX L, LiuL, Tong Y Y, FangX Z, XuJ W, JiangD, WangX. Facile Cr3+ doping strategy dramatically promoting Ru/CeO2 for low-temperature CO2 methanation: unraveling the roles of surface oxygen vacancies and hydroxyl groups. ACS Catalysis, 2021, 11( 9): 5762– 5775
CrossRef Google scholar
[12]
WangY H, GaoW H, LiK Z, NaW, Chen J G, WangH. Strong evidence of the role of H2O in affecting methanol selectivity from CO2 hydrogenation over Cu–ZnO–ZrO2. Chem, 2020, 6( 2): 419– 430
CrossRef Google scholar
[13]
ZhangR G, WangB J, LiuH Y, LingL X. Effect of surface hydroxyls on CO2 hydrogenation over Cu/γ-Al2O3 catalyst: a theoretical study. Journal of Physical Chemistry C, 2011, 115( 40): 19811– 19818
CrossRef Google scholar
[14]
KattelS, YanB, Yang Y, ChenJ G, LiuP. Optimizing binding energies of key intermediates for CO2 hydrogenation to methanol over oxide-supported copper. Journal of the American Chemical Society, 2016, 138( 38): 12440– 12450
CrossRef Google scholar
[15]
SunX, Gong C, LvG, BinF, Song C L. Effect of Ce/Zr molar ratio on the performance of CuCexZr1−x/TiO2 catalyst for selective catalytic reduction of NOx with NH3 in diesel exhaust. Materials Research Bulletin, 2014, 60 : 341– 347
CrossRef Google scholar
[16]
JeongD, JangW, NaH, Shim J O, JhaA, RohH S. Comparative study on cubic and tetragonal Cu–CeO2–ZrO2 catalysts for water gas shift reaction. Journal of Industrial and Engineering Chemistry, 2015, 27 : 35– 39
CrossRef Google scholar
[17]
XiX Y, ZengF, ZhangH, WuX F, RenJ, Bisswanger T, StampferC, HofmannJ P, PalkovitsR, HeeresH J. CO2 hydrogenation to higher alcohols over K-promoted bimetallic Fe–In catalysts on a Ce–ZrO2 support. ACS Sustainable Chemistry & Engineering, 2021, 9( 18): 6235– 6249
CrossRef Google scholar
[18]
FuG, Mao D, SunS, ZhiJ Y, YangQ. Preparation, characterization and CO oxidation activity of Cu–Ce–Zr mixed oxide catalysts via facile dry oxalate-precursor synthesis. Journal of Industrial and Engineering Chemistry, 2015, 31 : 283– 290
CrossRef Google scholar
[19]
BacarizaM C, GraçaI, LopesJ M, HenriquesC. Ni–Ce/Zeolites for CO2 hydrogenation to CH4: effect of the metal incorporation order. ChemCatChem, 2018, 10( 13): 2773– 2781
CrossRef Google scholar
[20]
Martínez-AriasA. Redox interplay at copper oxide-(Ce,Zr)Ox interfaces: influence of the presence of NO on the catalytic activity for CO oxidation over CuO/CeZrO4. Journal of Catalysis, 2003, 214( 2): 261– 272
CrossRef Google scholar
[21]
AcuñaL M, FuentesR O, FantiniM C A, LamasD G. Structural studies of mesoporous ZrO2–CeO2 and ZrO2–CeO2/SiO2 mixed oxides for catalytical applications. Journal of Alloys and Compounds, 2016, 671 : 396– 402
CrossRef Google scholar
[22]
YangB, DengW, GuoL M, IshiharaT. Copper-ceria solid solution with improved catalytic activity for hydrogenation of CO2 to CH3OH. Chinese Journal of Catalysis, 2020, 41( 9): 1348– 1359
CrossRef Google scholar
[23]
RodriguezJ A, MaS, Liu P, HrbekJ, EvansJ, PérezM. Activity of CeOx and TiOx nanoparticles grown on Au (111) in the water-gas shift reaction. Science, 2007, 318( 5857): 1757– 1759
CrossRef Google scholar
[24]
L’hospitalV, AngeloL, ZimmermannY, ParkhomenkoK, RogerA C. Influence of the Zn/Zr ratio in the support of a copper-based catalyst for the synthesis of methanol from CO2. Catalysis Today, 2021, 369 : 95– 104
CrossRef Google scholar
[25]
ZengS H, ZhangX H, FuX J, ZhangL, SuH Q, PanH. Co/CexZr1−xO2 solid-solution catalysts with cubic fluorite structure for carbon dioxide reforming of methane. Applied Catalysis B: Environmental, 2013, 136-137 : 308– 316
CrossRef Google scholar
[26]
PrymakI, KalevaruV N, WohlrabS, MartinA. Continuous synthesis of diethyl carbonate from ethanol and CO2 over Ce–Zr–O catalysts. Catalysis Science & Technology, 2015, 5( 4): 2322– 2331
CrossRef Google scholar
[27]
MariaM, PatrickD C, JacquesA, SimeonC, MichaelT, MaríaE, StephanieO. Tailoring physicochemical and electrical properties of Ni/CeZrOx doped catalysts for high efficiency of plasma catalytic CO2 methanation. Applied Catalysis B: Environmental, 2021, 294 : 120233
CrossRef Google scholar
[28]
WangW, GongJ L. Methanation of carbon dioxide: an overview. Frontiers of Chemical Science and Engineering, 2011, 5( 1): 2– 10
CrossRef Google scholar
[29]
CuiY, Xu L L, ChenM D, LianX B, WuC E, YangB, MiaoZ C, WangF G, HuX. Facilely fabricating mesoporous nanocrystalline Ce–Zr solid solution supported CuO-based catalysts with advanced low-temperature activity toward CO oxidation. Catalysis Science & Technology, 2019, 9( 20): 5605– 5625
CrossRef Google scholar
[30]
PuT C, ShenL, XuJ, Peng C, ZhuM H. Revealing the dependence of CO2 activation on hydrogen dissociation ability over supported nickel catalysts. AIChE Journal. American Institute of Chemical Engineers, 2021, 68( 1): 17458
[31]
JungK D, BellA T. Role of hydrogen spillover in methanol synthesis over Cu/ZrO2. Journal of Catalysis, 2021, 193( 2): 207– 223
CrossRef Google scholar
[32]
GuoH J, LiQ L, ZhangH R, PengF, XiongL, YaoS M, HuangC, ChenX D. CO2 hydrogenation over acid-activated Attapulgite/Ce0.75Zr0.25O2 nanocomposite supported Cu–ZnO based catalysts. Molecular Catalysis, 2019, 476 : 110499
CrossRef Google scholar
[33]
DongapureP, BagchiS, MayadeviS, DeviR N. Variations in activity of Ru/TiO2 and Ru/Al2O3 catalysts for CO2 hydrogenation: an investigation by in-situ infrared spectroscopy studies. Molecular Catalysis, 2019, 482 : 110700
CrossRef Google scholar
[34]
KarelovicA, RuizP. CO2 hydrogenation at low temperature over Rh/ gamma-Al2O3 catalysts: effect of the metal particle size on catalytic performances and reaction mechanism. Applied Catalysis B: Environmental, 2012, 113( 12): 237– 249
CrossRef Google scholar
[35]
LuoM, Ma J, LuJ, SongY, WangY. High-surface area CuO-CeO2 catalysts prepared by a surfactant-templated method for low-temperature CO oxidation. Journal of Catalysis, 2007, 246( 1): 52– 59
CrossRef Google scholar
[36]
NomuraN, TagawaT, GotoS. In situ FTIR study on hydrogenation of carbon dioxide over titania-supported copper catalysts. Applied Catalysis A: General, 1998, 166( 2): 321– 326
CrossRef Google scholar
[37]
KarelovicA, RuizP. The role of copper particle size in low pressure methanol synthesis via CO2 hydrogenation over Cu/ZnO catalysts. Catalysis Science & Technology, 2015, 5( 2): 869– 881
CrossRef Google scholar
[38]
ZhuJ, Zhang G H, LiW H, ZhangX B, DingF S, SongC S, GuoX W. Deconvolution of the particle size effect on CO2 hydrogenation over iron-based catalysts. ACS Catalysis, 2020, 10( 13): 7424– 7433
CrossRef Google scholar
[39]
HaoZ E, ShenJ D, LinS X, HanX Y, ChangX, LiuJ, Li M S, MaX B. Decoupling the effect of Ni particle size and surface oxygen deficiencies in CO2 methanation over ceria supported Ni. Applied Catalysis B: Environmental, 2021, 286 : 119922
CrossRef Google scholar
[40]
ChoiH, OhS Y, TranS B T, ParkJ Y. Size-controlled model Ni catalysts on Ga2O3 for CO2 hydrogenation to methanol. Journal of Catalysis, 2019, 376 : 68– 76
CrossRef Google scholar
[41]
ChoiH, OhS Y, ParkJ Y. High methane selective Pt cluster catalyst supported on Ga2O3 for CO2 hydrogenation. Catalysis Today, 2020, 352 : 212– 219
CrossRef Google scholar
[42]
Naumannd’Alnoncourt R, XiaX, Strunk J, LofflerE, HinrichsenO, MuhleM. The influence of strongly reducing conditions on strong metal-support interactions in Cu/ZnO catalysts used for methanol synthesis. Physical Chemistry Chemical Physics, 2006, 8( 13): 1525– 1538
CrossRef Google scholar
[43]
LiS W, XuY, Chen Y F, LiW Z, LinL L, LiM Z, DengY C, WangX P, GeB H, YangC. . Tuning the selectivity of catalytic carbon dioxide hydrogenation over iridium/cerium oxide catalysts with a strong metal-support interaction. Angewandte Chemie International Edition, 2017, 56( 36): 10761– 10765
CrossRef Google scholar
[44]
ZhouX W, QuJ, Xu F, HuJ P, FoordJ S, ZengZ Y, HongX L, TsangS C E. Shape selective plate-form Ga2O3 with strong metal-support interaction to overlying Pd for hydrogenation of CO2 to CH3OH. Chemical Communications, 2013, 49( 17): 1747– 1749
CrossRef Google scholar
[45]
TranS B T, ChoiH, OhS Y, ParkJ Y. Influence of support acidity of Pt/Nb2O5 catalysts on selectivity of CO2 hydrogenation. Catalysis Letters, 2019, 149( 10): 2823– 2835
CrossRef Google scholar
[46]
GaoP, Li F, ZhanH J, ZhaoN, XiaoF K, WeiW, Zhong L S, WangH, SunY H. Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. Journal of Catalysis, 2013, 298 : 51– 60
CrossRef Google scholar

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grant No. 22122807), Education and Scientific Research Project of Young and Middle-aged Teachers in Fujian Province (Science and Technology, JAT200979), National and Provincial College Students’ Innovation and Entrepreneurship Training Plan (Grant No. 202112992003), Doctoral Initiation Fund for Liaoning (Grant No. 2019-BS-054), Liao Ning Revitalization Talents Program (Grant No. XLYC1807245) and Natural Science Foundation of Shanghai (Grant No. 21ZR1425700).

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(5061 KB)

Accesses

Citations

Detail

Sections
Recommended

/