Bright future of polymerizing small-molecule acceptors in realizing high performance all-polymer solar cells

Qi Chen, Cen Zhang, Lingwei Xue, Zhi-Guo Zhang

PDF(996 KB)
PDF(996 KB)
Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (10) : 1526-1529. DOI: 10.1007/s11705-022-2161-3
VIEWS & COMMENTS
VIEWS & COMMENTS

Bright future of polymerizing small-molecule acceptors in realizing high performance all-polymer solar cells

Author information +
History +

Graphical abstract

Cite this article

Download citation ▾
Qi Chen, Cen Zhang, Lingwei Xue, Zhi-Guo Zhang. Bright future of polymerizing small-molecule acceptors in realizing high performance all-polymer solar cells. Front. Chem. Sci. Eng., 2022, 16(10): 1526‒1529 https://doi.org/10.1007/s11705-022-2161-3

References

[1]
Sun H, Guo X, Facchetti A. High-performance n-type polymer semiconductors: applications, recent development, and challenges. Chem, 2020, 6( 6): 1310– 1326
CrossRef Google scholar
[2]
Zhang Z G, Li Y. Polymerized small molecule acceptors for high performance all-polymer solar cells. Angewandte Chemie International Edition, 2021, 60( 9): 4422– 4433
CrossRef Google scholar
[3]
Wang G, Melkonyan F S, Facchetti A, Marks T J. All-polymer solar cells: recent progress, challenges, and prospects. Angewandte Chemie International Edition, 2019, 58( 13): 4129– 4142
CrossRef Google scholar
[4]
Kang H, Lee W, Oh J, Kim T, Lee C, Kim B J. From fullerene-polymer to all-polymer solar cells: the importance of molecular packing, orientation, and morphology control. Accounts of Chemical Research, 2016, 49( 11): 2424– 2434
CrossRef Google scholar
[5]
Yu G, Heeger A J. Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions. Journal of Applied Physics, 1995, 78( 7): 4510– 4515
CrossRef Google scholar
[6]
Halls J J M, Walsh C A, Greenham N C, Marseglia E A, Friend R H, Moratti S C, Holmes A B. Efficient photodiodes from interpenetrating polymer networks. Nature, 1995, 376( 6540): 498– 500
CrossRef Google scholar
[7]
Zhan X, Tan Z, Domercq B, An Z, Zhang X, Barlow S, Li Y, Zhu D, Kippelen B, Marder S R. A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. Journal of the American Chemical Society, 2007, 129( 23): 7246– 7247
CrossRef Google scholar
[8]
Zhao R, Liu J, Wang L. Polymer acceptors containing B←N units for organic photovoltaics. Accounts of Chemical Research, 2020, 53( 8): 1557– 1567
CrossRef Google scholar
[9]
Shi S, Chen P, Chen Y, Feng K, Liu B, Chen J, Liao Q, Tu B, Luo J, Su M. . A narrow-bandgap n-type polymer semiconductor enabling efficient all-polymer solar cells. Advanced Materials, 2019, 31( 46): 1905161
CrossRef Google scholar
[10]
Gao L, Zhang Z G, Xue L, Min J, Zhang J, Wei Z, Li Y. All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%. Advanced Materials, 2016, 28( 9): 1884– 1890
CrossRef Google scholar
[11]
Zhang Z G, Yang Y, Yao J, Xue L, Chen S, Li X, Morrison W, Yang C, Li Y. Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells. Angewandte Chemie International Edition, 2017, 56( 43): 13503– 13507
CrossRef Google scholar
[12]
Wu J, Meng Y, Guo X, Zhu L, Liu F, Zhang M. All-polymer solar cells based on a novel narrow-bandgap polymer acceptor with power conversion efficiency over 10%. Journal of Materials Chemistry A, 2019, 7( 27): 16190– 16196
CrossRef Google scholar
[13]
Yuan J, Zhang Y, Zhou L, Zhang G, Yip H L, Lau T K, Lu X, Zhu C, Peng H, Johnson P A. . Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3( 4): 1140– 1151
CrossRef Google scholar
[14]
Yuan J, Huang T, Cheng P, Zou Y, Zhang H, Yang J L, Chang S Y, Zhang Z, Huang W, Wang R. . Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics. Nature Communications, 2019, 10( 1): 570
CrossRef Google scholar
[15]
Zhu C, Yuan J, Cai F, Meng L, Zhang H, Chen H, Li J, Qiu B, Peng H, Chen S. . Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell. Energy & Environmental Science, 2020, 13( 8): 2459– 2466
CrossRef Google scholar
[16]
Jia T, Zhang J, Zhong W, Liang Y, Zhang K, Dong S, Ying L, Liu F, Wang X, Huang F. . 14.4% efficiency all-polymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor. Nano Energy, 2020, 72 : 104718
CrossRef Google scholar
[17]
Wang W, Wu Q, Sun R, Guo J, Wu Y, Shi M, Yang W, Li H, Min J. Controlling molecular mass of low-band-gap polymer acceptors for high-performance all-polymer solar cells. Joule, 2020, 4( 5): 1070– 1086
CrossRef Google scholar
[18]
Du J, Hu K, Meng L, Angunawela I, Zhang J, Qin S, Liebman-Pelaez A, Zhu C, Zhang Z, Ade H. . High performance all-polymer solar cells with the polymer acceptor synthesized via a random ternary copolymerization strategy. Angewandte Chemie International Edition, 2020, 59( 35): 15181– 15185
CrossRef Google scholar
[19]
Du J, Hu K, Zhang J, Meng L, Yue J, Angunawela I, Yan H, Qin S, Kong X, Zhang Z. . Polymerized small molecular acceptor based all-polymer solar cells with an efficiency of 16.16% via tuning polymer blend morphology by molecular design. Nature Communications, 2021, 12( 1): 5264
CrossRef Google scholar
[20]
Sun H, Yu H, Shi Y, Yu J, Peng Z, Zhang X, Liu B, Wang J, Singh R, Lee J. . A narrow-bandgap n-type polymer with an acceptor-acceptor backbone enabling efficient all-polymer solar cells. Advanced Materials, 2020, 32( 43): 2004183
CrossRef Google scholar
[21]
Fu H, Li Y, Yu J, Wu Z, Fan Q, Lin F, Woo H Y, Gao F, Zhu Z, Jen A K Y. High efficiency (15.8%) all-polymer solar cells enabled by a regioregular narrow bandgap polymer acceptor. Journal of the American Chemical Society, 2021, 143( 7): 2665– 2670
CrossRef Google scholar
[22]
Luo Z, Liu T, Ma R, Xiao Y, Zhan L, Zhang G, Sun H, Ni F, Chai G, Wang J. . Precisely controlling the position of bromine on the end group enables well-regular polymer acceptors for all-polymer solar cells with efficiencies over 15%. Advanced Materials, 2020, 32( 48): 2005942
CrossRef Google scholar
[23]
Yu H, Pan M, Sun R, Agunawela I, Zhang J, Li Y, Qi Z, Han H, Zou X, Zhou W. . Regio-regular polymer acceptors enabled by determined fluorination on end groups for all-polymer solar cells with 15.2% efficiency. Angewandte Chemie International Edition, 2021, 60( 18): 10137– 10146
CrossRef Google scholar
[24]
Sun R, Wang W, Yu H, Chen Z, Xia X, Shen H, Guo J, Shi M, Zheng Y, Wu Y. . Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors. Joule, 2021, 5( 6): 1548– 1565
CrossRef Google scholar
[25]
Genene Z, Lee J W, Lee S W, Chen Q, Tan Z, Abdulahi B A, Yu D, Kim T S, Kim B J, Wang E. Polymer acceptors with flexible spacers afford efficient and mechanically robust all-polymer solar cells. Advanced Materials, 2022, 34( 6): 2107361
CrossRef Google scholar
[26]
Sun C, Pan F, Bin H, Zhang J, Xue L, Qiu B, Wei Z, Zhang Z G, Li Y. A low cost and high performance polymer donor material for polymer solar cells. Nature Communications, 2018, 9( 1): 743
CrossRef Google scholar
[27]
Zhao T, Cao C, Wang H, Shen X, Lai H, Zhu Y, Chen H, Han L, Rehman T, He F. Highly efficient all-polymer solar cells from a dithieno[3,2-f:2′,3′-h]quinoxaline-based wide band gap donor. Macromolecules, 2021, 54( 24): 11468– 11477
CrossRef Google scholar
[28]
Peng F, An K, Zhong W, Li Z, Ying L, Li N, Huang Z, Zhu C, Fan B, Huang F. . A universal fluorinated polymer acceptor enables all-polymer solar cells with >15% efficiency. ACS Energy Letters, 2020, 5( 12): 3702– 3707
CrossRef Google scholar
[29]
Shi Y, Ma R, Wang X, Liu T, Li Y, Fu S, Yang K, Wang Y, Yu C, Jiao L. . Influence of fluorine substitution on the photovoltaic performance of wide band gap polymer donors for polymer solar cells. ACS Applied Materials & Interfaces, 2022, 14( 4): 5740– 5749
CrossRef Google scholar
[30]
Jia T, Zhang J, Zhang K, Tang H, Dong S, Tan C H, Wang X, Huang F. All-polymer solar cells with efficiency approaching 16% enabled using a dithieno[3′,2′:3,4;2′′,3′′:5,6]benzo[1,2-c][1,2,5]thiadiazole (fDTBT)-based polymer donor. Journal of Materials Chemistry A, 2021, 9( 14): 8975– 8983
CrossRef Google scholar
[31]
Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, Xiong J, Liu J, Xiao Z, Sun K. . 18% efficiency organic solar cells. Science Bulletin, 2020, 65( 4): 272– 275
CrossRef Google scholar
[32]
Zhang Z G, Bai Y, Li Y. Benzotriazole based 2d-conjugated polymer donors for high performance polymer solar cells. Chinese Journal of Polymer Science, 2021, 39( 1): 1– 13
CrossRef Google scholar
[33]
Wu Y, Guo J, Wang W, Chen Z, Chen Z, Sun R, Wu Q, Wang T, Hao X, Zhu H. . A conjugated donor-acceptor block copolymer enables over 11% efficiency for single-component polymer solar cells. Joule, 2021, 5( 7): 1800– 1815
CrossRef Google scholar
[34]
Li S, Yuan X, Zhang Q, Li B, Li Y, Sun J, Feng Y, Zhang X, Wu Z, Wei H. . Narrow-bandgap single-component polymer solar cells with approaching 9% efficiency. Advanced Materials, 2021, 33( 32): 2101295
CrossRef Google scholar
[35]
Fan Q, Su W, Chen S, Kim W, Chen X, Lee B, Liu T, Méndez-Romero U A, Ma R, Yang T. . Mechanically robust all-polymer solar cells from narrow band gap acceptors with hetero-bridging atoms. Joule, 2020, 4( 3): 658– 672
CrossRef Google scholar

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant Nos. 22175014 and 21734008), the Fundamental Research Funds for the Central Universities (buctrc201822, XK1802-2).

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(996 KB)

Accesses

Citations

Detail

Sections
Recommended

/