Bright future of polymerizing small-molecule acceptors in realizing high performance all-polymer solar cells

Qi Chen , Cen Zhang , Lingwei Xue , Zhi-Guo Zhang

Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (10) : 1526 -1529.

PDF (996KB)
Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (10) : 1526 -1529. DOI: 10.1007/s11705-022-2161-3
VIEWS & COMMENTS
VIEWS & COMMENTS

Bright future of polymerizing small-molecule acceptors in realizing high performance all-polymer solar cells

Author information +
History +
PDF (996KB)

Graphical abstract

Cite this article

Download citation ▾
Qi Chen, Cen Zhang, Lingwei Xue, Zhi-Guo Zhang. Bright future of polymerizing small-molecule acceptors in realizing high performance all-polymer solar cells. Front. Chem. Sci. Eng., 2022, 16(10): 1526-1529 DOI:10.1007/s11705-022-2161-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sun H, Guo X, Facchetti A. High-performance n-type polymer semiconductors: applications, recent development, and challenges. Chem, 2020, 6( 6): 1310– 1326

[2]

Zhang Z G, Li Y. Polymerized small molecule acceptors for high performance all-polymer solar cells. Angewandte Chemie International Edition, 2021, 60( 9): 4422– 4433

[3]

Wang G, Melkonyan F S, Facchetti A, Marks T J. All-polymer solar cells: recent progress, challenges, and prospects. Angewandte Chemie International Edition, 2019, 58( 13): 4129– 4142

[4]

Kang H, Lee W, Oh J, Kim T, Lee C, Kim B J. From fullerene-polymer to all-polymer solar cells: the importance of molecular packing, orientation, and morphology control. Accounts of Chemical Research, 2016, 49( 11): 2424– 2434

[5]

Yu G, Heeger A J. Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions. Journal of Applied Physics, 1995, 78( 7): 4510– 4515

[6]

Halls J J M, Walsh C A, Greenham N C, Marseglia E A, Friend R H, Moratti S C, Holmes A B. Efficient photodiodes from interpenetrating polymer networks. Nature, 1995, 376( 6540): 498– 500

[7]

Zhan X, Tan Z, Domercq B, An Z, Zhang X, Barlow S, Li Y, Zhu D, Kippelen B, Marder S R. A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. Journal of the American Chemical Society, 2007, 129( 23): 7246– 7247

[8]

Zhao R, Liu J, Wang L. Polymer acceptors containing B←N units for organic photovoltaics. Accounts of Chemical Research, 2020, 53( 8): 1557– 1567

[9]

Shi S, Chen P, Chen Y, Feng K, Liu B, Chen J, Liao Q, Tu B, Luo J, Su M. . A narrow-bandgap n-type polymer semiconductor enabling efficient all-polymer solar cells. Advanced Materials, 2019, 31( 46): 1905161

[10]

Gao L, Zhang Z G, Xue L, Min J, Zhang J, Wei Z, Li Y. All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%. Advanced Materials, 2016, 28( 9): 1884– 1890

[11]

Zhang Z G, Yang Y, Yao J, Xue L, Chen S, Li X, Morrison W, Yang C, Li Y. Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells. Angewandte Chemie International Edition, 2017, 56( 43): 13503– 13507

[12]

Wu J, Meng Y, Guo X, Zhu L, Liu F, Zhang M. All-polymer solar cells based on a novel narrow-bandgap polymer acceptor with power conversion efficiency over 10%. Journal of Materials Chemistry A, 2019, 7( 27): 16190– 16196

[13]

Yuan J, Zhang Y, Zhou L, Zhang G, Yip H L, Lau T K, Lu X, Zhu C, Peng H, Johnson P A. . Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3( 4): 1140– 1151

[14]

Yuan J, Huang T, Cheng P, Zou Y, Zhang H, Yang J L, Chang S Y, Zhang Z, Huang W, Wang R. . Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics. Nature Communications, 2019, 10( 1): 570

[15]

Zhu C, Yuan J, Cai F, Meng L, Zhang H, Chen H, Li J, Qiu B, Peng H, Chen S. . Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell. Energy & Environmental Science, 2020, 13( 8): 2459– 2466

[16]

Jia T, Zhang J, Zhong W, Liang Y, Zhang K, Dong S, Ying L, Liu F, Wang X, Huang F. . 14.4% efficiency all-polymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor. Nano Energy, 2020, 72 : 104718

[17]

Wang W, Wu Q, Sun R, Guo J, Wu Y, Shi M, Yang W, Li H, Min J. Controlling molecular mass of low-band-gap polymer acceptors for high-performance all-polymer solar cells. Joule, 2020, 4( 5): 1070– 1086

[18]

Du J, Hu K, Meng L, Angunawela I, Zhang J, Qin S, Liebman-Pelaez A, Zhu C, Zhang Z, Ade H. . High performance all-polymer solar cells with the polymer acceptor synthesized via a random ternary copolymerization strategy. Angewandte Chemie International Edition, 2020, 59( 35): 15181– 15185

[19]

Du J, Hu K, Zhang J, Meng L, Yue J, Angunawela I, Yan H, Qin S, Kong X, Zhang Z. . Polymerized small molecular acceptor based all-polymer solar cells with an efficiency of 16.16% via tuning polymer blend morphology by molecular design. Nature Communications, 2021, 12( 1): 5264

[20]

Sun H, Yu H, Shi Y, Yu J, Peng Z, Zhang X, Liu B, Wang J, Singh R, Lee J. . A narrow-bandgap n-type polymer with an acceptor-acceptor backbone enabling efficient all-polymer solar cells. Advanced Materials, 2020, 32( 43): 2004183

[21]

Fu H, Li Y, Yu J, Wu Z, Fan Q, Lin F, Woo H Y, Gao F, Zhu Z, Jen A K Y. High efficiency (15.8%) all-polymer solar cells enabled by a regioregular narrow bandgap polymer acceptor. Journal of the American Chemical Society, 2021, 143( 7): 2665– 2670

[22]

Luo Z, Liu T, Ma R, Xiao Y, Zhan L, Zhang G, Sun H, Ni F, Chai G, Wang J. . Precisely controlling the position of bromine on the end group enables well-regular polymer acceptors for all-polymer solar cells with efficiencies over 15%. Advanced Materials, 2020, 32( 48): 2005942

[23]

Yu H, Pan M, Sun R, Agunawela I, Zhang J, Li Y, Qi Z, Han H, Zou X, Zhou W. . Regio-regular polymer acceptors enabled by determined fluorination on end groups for all-polymer solar cells with 15.2% efficiency. Angewandte Chemie International Edition, 2021, 60( 18): 10137– 10146

[24]

Sun R, Wang W, Yu H, Chen Z, Xia X, Shen H, Guo J, Shi M, Zheng Y, Wu Y. . Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors. Joule, 2021, 5( 6): 1548– 1565

[25]

Genene Z, Lee J W, Lee S W, Chen Q, Tan Z, Abdulahi B A, Yu D, Kim T S, Kim B J, Wang E. Polymer acceptors with flexible spacers afford efficient and mechanically robust all-polymer solar cells. Advanced Materials, 2022, 34( 6): 2107361

[26]

Sun C, Pan F, Bin H, Zhang J, Xue L, Qiu B, Wei Z, Zhang Z G, Li Y. A low cost and high performance polymer donor material for polymer solar cells. Nature Communications, 2018, 9( 1): 743

[27]

Zhao T, Cao C, Wang H, Shen X, Lai H, Zhu Y, Chen H, Han L, Rehman T, He F. Highly efficient all-polymer solar cells from a dithieno[3,2-f:2′,3′-h]quinoxaline-based wide band gap donor. Macromolecules, 2021, 54( 24): 11468– 11477

[28]

Peng F, An K, Zhong W, Li Z, Ying L, Li N, Huang Z, Zhu C, Fan B, Huang F. . A universal fluorinated polymer acceptor enables all-polymer solar cells with >15% efficiency. ACS Energy Letters, 2020, 5( 12): 3702– 3707

[29]

Shi Y, Ma R, Wang X, Liu T, Li Y, Fu S, Yang K, Wang Y, Yu C, Jiao L. . Influence of fluorine substitution on the photovoltaic performance of wide band gap polymer donors for polymer solar cells. ACS Applied Materials & Interfaces, 2022, 14( 4): 5740– 5749

[30]

Jia T, Zhang J, Zhang K, Tang H, Dong S, Tan C H, Wang X, Huang F. All-polymer solar cells with efficiency approaching 16% enabled using a dithieno[3′,2′:3,4;2′′,3′′:5,6]benzo[1,2-c][1,2,5]thiadiazole (fDTBT)-based polymer donor. Journal of Materials Chemistry A, 2021, 9( 14): 8975– 8983

[31]

Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, Xiong J, Liu J, Xiao Z, Sun K. . 18% efficiency organic solar cells. Science Bulletin, 2020, 65( 4): 272– 275

[32]

Zhang Z G, Bai Y, Li Y. Benzotriazole based 2d-conjugated polymer donors for high performance polymer solar cells. Chinese Journal of Polymer Science, 2021, 39( 1): 1– 13

[33]

Wu Y, Guo J, Wang W, Chen Z, Chen Z, Sun R, Wu Q, Wang T, Hao X, Zhu H. . A conjugated donor-acceptor block copolymer enables over 11% efficiency for single-component polymer solar cells. Joule, 2021, 5( 7): 1800– 1815

[34]

Li S, Yuan X, Zhang Q, Li B, Li Y, Sun J, Feng Y, Zhang X, Wu Z, Wei H. . Narrow-bandgap single-component polymer solar cells with approaching 9% efficiency. Advanced Materials, 2021, 33( 32): 2101295

[35]

Fan Q, Su W, Chen S, Kim W, Chen X, Lee B, Liu T, Méndez-Romero U A, Ma R, Yang T. . Mechanically robust all-polymer solar cells from narrow band gap acceptors with hetero-bridging atoms. Joule, 2020, 4( 3): 658– 672

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (996KB)

1922

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/