Ultrasonic emulsification: basic characteristics, cavitation, mechanism, devices and application
Chaoqun Yao, Shuainan Zhao, Lixue Liu, Zhikai Liu, Guangwen Chen
Ultrasonic emulsification: basic characteristics, cavitation, mechanism, devices and application
Emulsion systems are widely applied in agriculture, food, cosmetic, pharmaceutical and biomedical industries. Ultrasound has attracted much attention in emulsion preparation, especially for nanoemulsion, due to its advantages of being eco-friendly, cost-effective and energy-efficient. This review provides an overview for readers to the area of ultrasonic emulsification technology. It briefly introduces and summarizes knowledge of ultrasonic emulsification, including emulsion characteristics, acoustic cavitation, emulsification mechanism, ultrasonic devices and applications. The combination of microfluidics and ultrasound is highlighted with huge advantages in controlling cavitation phenomena and emulsification intensification. A novel scale of dμC0.6/μD0.33−EV is proposed to be able to compare the energy efficiency of emulsion preparation in different devices.
nanoemulsion / ultrasound / microreactor / multiphase / energy
[1] |
Gupta A, Eral H B, Hatton T A, Doyle P S. Nanoemulsions: formation, properties and applications. Soft Matter, 2016, 12( 11): 2826– 2841
CrossRef
Google scholar
|
[2] |
Partheniadis I Shah R R Nikolakakis I. Application of ultrasonics for nanosizing drugs and drug formulations. Journal of Dispersion Science and Technology, 2021, https://doi.org/10.1080/01932691.2021.1878035
|
[3] |
Wilson R J, Li Y, Yang G, Zhao C X. Nanoemulsions for drug delivery. Particuology, 2021, 64 : 85– 97
CrossRef
Google scholar
|
[4] |
Leong T S, Martin G J, Ashokkumar M. Ultrasonic encapsulation—a review. Ultrasonics Sonochemistry, 2017, 35 : 605– 614
CrossRef
Google scholar
|
[5] |
Taha A, Ahmed E, Ismaiel A, Ashokkumar M, Xu X, Pan S, Hu H. Ultrasonic emulsification: an overview on the preparation of different emulsifiers-stabilized emulsions. Trends in Food Science & Technology, 2020, 105 : 363– 377
CrossRef
Google scholar
|
[6] |
Modarres-Gheisari S M M, Gavagsaz-Ghoachani R, Malaki M, Safarpour P, Zandi M. Ultrasonic nano-emulsification—a review. Ultrasonics Sonochemistry, 2019, 52 : 88– 105
CrossRef
Google scholar
|
[7] |
Leong T, Wooster T, Kentish S, Ashokkumar M. Minimising oil droplet size using ultrasonic emulsification. Ultrasonics Sonochemistry, 2009, 16( 6): 721– 727
CrossRef
Google scholar
|
[8] |
Mahdi Jafari S, He Y, Bhandari B. Nano-emulsion production by sonication and microfluidization—a comparison. International Journal of Food Properties, 2006, 9( 3): 475– 485
CrossRef
Google scholar
|
[9] |
Periasamy V S, Athinarayanan J, Alshatwi A A. Anticancer activity of an ultrasonic nanoemulsion formulation of Nigella sativaL. essential oil on human breast cancer cells. Ultrasonics Sonochemistry, 2016, 31 : 449– 455
CrossRef
Google scholar
|
[10] |
Kentish S, Wooster T, Ashokkumar M, Balachandran S, Mawson R, Simons L. The use of ultrasonics for nanoemulsion preparation. Innovative Food Science & Emerging Technologies, 2008, 9( 2): 170– 175
CrossRef
Google scholar
|
[11] |
Peshkovsky A S, Bystryak S. Continuous-flow production of a pharmaceutical nanoemulsion by high-amplitude ultrasound: process scale-up. Chemical Engineering and Processing, 2014, 82 : 132– 136
CrossRef
Google scholar
|
[12] |
Agrawal N, Maddikeri G L, Pandit A B. Sustained release formulations of citronella oil nanoemulsion using cavitational techniques. Ultrasonics Sonochemistry, 2017, 36 : 367– 374
CrossRef
Google scholar
|
[13] |
Gaikwad S G, Pandit A B. Ultrasound emulsification: effect of ultrasonic and physicochemical properties on dispersed phase volume and droplet size. Ultrasonics Sonochemistry, 2008, 15( 4): 554– 563
CrossRef
Google scholar
|
[14] |
Sivakumar M, Tang S Y, Tan K W. Cavitation technology—a greener processing technique for the generation of pharmaceutical nanoemulsions. Ultrasonics Sonochemistry, 2014, 21( 6): 2069– 2083
CrossRef
Google scholar
|
[15] |
Ghosh V, Mukherjee A, Chandrasekaran N. Ultrasonic emulsification of food-grade nanoemulsion formulation and evaluation of its bactericidal activity. Ultrasonics Sonochemistry, 2013, 20( 1): 338– 344
CrossRef
Google scholar
|
[16] |
Abbas S, Hayat K, Karangwa E, Bashari M, Zhang X. An overview of ultrasound-assisted food-grade nanoemulsions. Food Engineering Reviews, 2013, 5( 3): 139– 157
CrossRef
Google scholar
|
[17] |
Awad T, Moharram H, Shaltout O, Asker D, Youssef M. Applications of ultrasound in analysis, processing and quality control of food: a review. Food Research International, 2012, 48( 2): 410– 427
CrossRef
Google scholar
|
[18] |
Akdeniz V, Akalın A S. New approach for yoghurt and ice cream production: high-intensity ultrasound. Trends in Food Science & Technology, 2019, 86 : 392– 398
CrossRef
Google scholar
|
[19] |
Saani S M, Abdolalizadeh J, Heris S Z. Ultrasonic/sonochemical synthesis and evaluation of nanostructured oil in water emulsions for topical delivery of protein drugs. Ultrasonics Sonochemistry, 2019, 55 : 86– 95
CrossRef
Google scholar
|
[20] |
Rao J, McClements D J. Lemon oil solubilization in mixed surfactant solutions: rationalizing microemulsion & nanoemulsion formation. Food Hydrocolloids, 2012, 26( 1): 268– 276
CrossRef
Google scholar
|
[21] |
Fryd M M, Mason T G. Advanced nanoemulsions. Annual Review of Physical Chemistry, 2012, 63( 1): 493– 518
CrossRef
Google scholar
|
[22] |
Kong M, Chen X G, Kweon D K, Park H J. Investigations on skin permeation of hyaluronic acid based nanoemulsion as transdermal carrier. Carbohydrate Polymers, 2011, 86( 2): 837– 843
CrossRef
Google scholar
|
[23] |
Anton N, Benoit J P, Saulnier P. Design and production of nanoparticles formulated from nano-emulsion templates—a review. Journal of Controlled Release, 2008, 128( 3): 185– 199
CrossRef
Google scholar
|
[24] |
McClements D J. Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter, 2012, 8( 6): 1719– 1729
CrossRef
Google scholar
|
[25] |
Davis S, Round H, Purewal T. Ostwald ripening and the stability of emulsion systems: an explanation for the effect of an added third component. Journal of Colloid and Interface Science, 1981, 80( 2): 508– 511
CrossRef
Google scholar
|
[26] |
Anton N, Vandamme T F. Nano-emulsions and micro-emulsions: clarifications of the critical differences. Pharmaceutical Research, 2011, 28( 5): 978– 985
CrossRef
Google scholar
|
[27] |
Thomson W. 4. On the equilibrium of vapour at a curved surface of liquid. Proceedings of the Royal Society of Edinburgh, 1872, 7 : 63– 68
CrossRef
Google scholar
|
[28] |
Yotsuyanagi T, Higuchi W I, Ghanem A H. Theoretical treatment of diffusional transport into and through an oil−water emulsion with an interfacial barrier at the oil−water interface. Journal of Pharmaceutical Sciences, 1973, 62( 1): 40– 43
CrossRef
Google scholar
|
[29] |
Davies J. Drop sizes of emulsions related to turbulent energy dissipation rates. Chemical Engineering Science, 1985, 40( 5): 839– 842
CrossRef
Google scholar
|
[30] |
Forgiarini A, Esquena J, Gonzalez C, Solans C. Formation of nano-emulsions by low-energy emulsification methods at constant temperature. Langmuir, 2001, 17( 7): 2076– 2083
CrossRef
Google scholar
|
[31] |
Davies J. A physical interpretation of drop sizes in homogenizers and agitated tanks, including the dispersion of viscous oils. Chemical Engineering Science, 1987, 42( 7): 1671– 1676
CrossRef
Google scholar
|
[32] |
Taylor G I. The formation of emulsions in definable fields of flow. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1934, 146( 858): 501– 523
|
[33] |
Hinze J O. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE Journal. American Institute of Chemical Engineers, 1955, 1( 3): 289– 295
CrossRef
Google scholar
|
[34] |
Gupta A, Eral H B, Hatton T A, Doyle P S. Controlling and predicting droplet size of nanoemulsions: scaling relations with experimental validation. Soft Matter, 2016, 12( 5): 1452– 1458
CrossRef
Google scholar
|
[35] |
Calabrese R V, Chang T, Dang P. Drop breakup in turbulent stirred-tank contactors. Part I: Effect of dispersed-phase viscosity. AIChE Journal, 1986, 32( 4): 657– 666
CrossRef
Google scholar
|
[36] |
Abismaïl B, Canselier J, Wilhelm A, Delmas H, Gourdon C. Emulsification processes: on-line study by multiple light scattering measurements. Ultrasonics Sonochemistry, 2000, 7( 4): 187– 192
CrossRef
Google scholar
|
[37] |
Rivas D F, Cintas P, Gardeniers H J. Merging microfluidics and sonochemistry: towards greener and more efficient micro-sono-reactors. Chemical Communications (Cambridge), 2012, 48( 89): 10935– 10947
CrossRef
Google scholar
|
[38] |
Ashokkumar M, Lee J, Kentish S, Grieser F. Bubbles in an acoustic field: an overview. Ultrasonics Sonochemistry, 2007, 14( 4): 470– 475
CrossRef
Google scholar
|
[39] |
Yasui K. Influence of ultrasonic frequency on multibubble sonoluminescence. Journal of the Acoustical Society of America, 2002, 112( 4): 1405– 1413
CrossRef
Google scholar
|
[40] |
Thompson L H, Doraiswamy L. Sonochemistry: science and engineering. Industrial & Engineering Chemistry Research, 1999, 38( 4): 1215– 1249
CrossRef
Google scholar
|
[41] |
Mettin R. From a single bubble to bubble structures in acoustic cavitation. In: Oscillations, Waves and Interactions. Göttingen: University of Göttingen, 2007
|
[42] |
Tho P, Manasseh R, Ooi A. Cavitation microstreaming patterns in single and multiple bubble systems. Journal of Fluid Mechanics, 2007, 576 : 191– 233
CrossRef
Google scholar
|
[43] |
Zhao S, Yao C, Zhang Q, Chen G, Yuan Q. Acoustic cavitation and ultrasound-assisted nitration process in ultrasonic microreactors: the effects of channel dimension, solvent properties and temperature. Chemical Engineering Journal, 2019, 374 : 68– 78
CrossRef
Google scholar
|
[44] |
Zhao S, Yao C, Dong Z, Chen G, Yuan Q. Role of ultrasonic oscillation in chemical processes in microreactors: a mesoscale issue. Particuology, 2020, 48 : 88– 99
CrossRef
Google scholar
|
[45] |
Leighton T. The Acoustic Bubble. Cambridge, Massachusetts: Academic Press INC, 1997,
|
[46] |
Faber T E. Fluid Dynamics for Physicists. London: Cambridge University Press, 1995,
|
[47] |
Offin D G, Birkin P R, Leighton T G. An electrochemical and high-speed imaging study of micropore decontamination by acoustic bubble entrapment. Physical Chemistry Chemical Physics, 2014, 16( 10): 4982– 4989
CrossRef
Google scholar
|
[48] |
Zhao S, Yao C, Dong Z, Liu Y, Chen G, Yuan Q. Intensification of liquid−liquid two-phase mass transfer by oscillating bubbles in ultrasonic microreactor. Chemical Engineering Science, 2018, 186 : 122– 134
CrossRef
Google scholar
|
[49] |
Longuet-Higgins M S. Resonance in nonlinear bubble oscillations. Journal of Fluid Mechanics, 1991, 224 : 531– 549
CrossRef
Google scholar
|
[50] |
Zholkovskij E K, Kovalchuk V I, Fainerman V B, Loglio G, Krägel J, Miller R, Zholob S A, Dukhin S S. Resonance behavior of oscillating bubbles. Journal of Colloid and Interface Science, 2000, 224( 1): 47– 55
CrossRef
Google scholar
|
[51] |
Minnaert M. XVI. On musical air-bubbles and the sounds of running water. London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 1933, 16( 104): 235– 248
CrossRef
Google scholar
|
[52] |
Wang C, Jalikop S V, Hilgenfeldt S. Efficient manipulation of microparticles in bubble streaming flows. Biomicrofluidics, 2012, 6( 1): 12801– 1280111
CrossRef
Google scholar
|
[53] |
Dong Z, Zhao S, Zhang Y, Yao C, Yuan Q, Chen G. Mixing and residence time distribution in ultrasonic microreactors. AIChE Journal, 2017, 63( 4): 1404– 1418
CrossRef
Google scholar
|
[54] |
Wang C, Rallabandi B, Hilgenfeldt S. Frequency dependence and frequency control of microbubble streaming flows. Physics of Fluids, 2013, 25( 2): 022002
CrossRef
Google scholar
|
[55] |
Colmenares J C, Chatel G. Sonochemistry. Berlin: Springer, 2016, 225 : 254
|
[56] |
Dong Z, Fernandez Rivas D, Kuhn S. Acoustophoretic focusing effects on particle synthesis and clogging in microreactors. Lab on a Chip, 2019, 19( 2): 316– 327
CrossRef
Google scholar
|
[57] |
Zhao S N Yao C Q Liu Z K Zhang Q Chen G W Yuan Q. Process intensification of high viscosity extraction system in microreactor via ultrasound-driven microbubbles. CIESC Journal, 2020, 71(9): 4152– 4160 (in Chinese)
|
[58] |
Ahmed D, Mao X, Juluri B K, Huang T J. A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles. Microfluidics and Nanofluidics, 2009, 7( 5): 727– 731
CrossRef
Google scholar
|
[59] |
Ahmed D, Mao X, Shi J, Juluri B K, Huang T J. A millisecond micromixer via single-bubble-based acoustic streaming. Lab on a Chip, 2009, 9( 18): 2738– 2741
CrossRef
Google scholar
|
[60] |
Huang P H, Zhao S, Bachman H, Nama N, Li Z, Chen C, Yang S, Wu M, Zhang S P, Huang T J. Acoustofluidic Synthesis of Particulate Nanomaterials. Advancement of Science, 2019, 6( 19): 1900913
|
[61] |
Dong Z, Yao C, Zhang X, Xu J, Chen G, Zhao Y, Yuan Q. A high-power ultrasonic microreactor and its application in gas−liquid mass transfer intensification. Lab on a Chip, 2015, 15( 4): 1145– 1152
CrossRef
Google scholar
|
[62] |
Iida Y, Yasui K, Tuziuti T, Sivakumar M, Endo Y. Ultrasonic cavitation in microspace. Chemical Communications (Cambridge), 2004, 20 : 2280– 2281
CrossRef
Google scholar
|
[63] |
Iida Y, Tuziuti T, Yasui K, Towata A, Kozuka T. Bubble motions confined in a microspace observed with stroboscopic technique. Ultrasonics Sonochemistry, 2007, 14( 5): 621– 626
CrossRef
Google scholar
|
[64] |
Dong Z, Yao C, Zhang Y, Chen G, Yuan Q, Xu J. Hydrodynamics and mass transfer of oscillating gas-liquid flow in ultrasonic microreactors. AIChE Journal. American Institute of Chemical Engineers, 2016, 62( 4): 1294– 1307
CrossRef
Google scholar
|
[65] |
Xu F, Yang L, Liu Z, Chen G. Numerical investigation on the hydrodynamics of Taylor flow in ultrasonically oscillating microreactors. Chemical Engineering Science, 2021, 235 : 116477
CrossRef
Google scholar
|
[66] |
Mc Carogher K, Dong Z, Stephens D S, Leblebici M E, Mettin R, Kuhn S. Acoustic resonance and atomization for gas−liquid systems in microreactors. Ultrasonics Sonochemistry, 2021, 75 : 105611
CrossRef
Google scholar
|
[67] |
Yang L, Xu F, Zhang Q, Liu Z, Chen G. Gas−liquid hydrodynamics and mass transfer in microreactors under ultrasonic oscillation. Chemical Engineering Journal, 2020, 397 : 125411
CrossRef
Google scholar
|
[68] |
Li M, Fogler H. Acoustic emulsification. Part 1. The instability of the oil−water interface to form the initial droplets. Journal of Fluid Mechanics, 1978, 88( 3): 499– 511
CrossRef
Google scholar
|
[69] |
Li M, Fogler H. Acoustic emulsification. Part 2. Breakup of the large primary oil droplets in a water medium. Journal of Fluid Mechanics, 1978, 88( 3): 513– 528
CrossRef
Google scholar
|
[70] |
Cucheval A, Chow R. A study on the emulsification of oil by power ultrasound. Ultrasonics Sonochemistry, 2008, 15( 5): 916– 920
CrossRef
Google scholar
|
[71] |
Perdih T S, Zupanc M, Dular M. Revision of the mechanisms behind oil−water (O/W) emulsion preparation by ultrasound and cavitation. Ultrasonics Sonochemistry, 2019, 51 : 298– 304
CrossRef
Google scholar
|
[72] |
Yamamoto T, Komarov S V. Liquid jet directionality and droplet behavior during emulsification of two liquids due to acoustic cavitation. Ultrasonics Sonochemistry, 2020, 62 : 104874
CrossRef
Google scholar
|
[73] |
Lauterborn W, Kurz T. Physics of bubble oscillations. Reports on Progress in Physics, 2010, 73( 10): 106501
CrossRef
Google scholar
|
[74] |
Philipp A, Lauterborn W. Cavitation erosion by single laser-produced bubbles. Journal of Fluid Mechanics, 1998, 361 : 75– 116
CrossRef
Google scholar
|
[75] |
Yamamoto T, Matsutaka R, Komarov S V. High-speed imaging of ultrasonic emulsification using a water–gallium system. Ultrasonics Sonochemistry, 2021, 71 : 105387
CrossRef
Google scholar
|
[76] |
Orthaber U, Zevnik J, Dular M. Cavitation bubble collapse in a vicinity of a liquid−liquid interface—basic research into emulsification process. Ultrasonics Sonochemistry, 2020, 68 : 105224
CrossRef
Google scholar
|
[77] |
Zhao S, Dong Z, Yao C, Wen Z, Chen G, Yuan Q. Liquid−liquid two-phase flow in ultrasonic microreactors: cavitation, emulsification, and mass transfer enhancement. AIChE Journal. American Institute of Chemical Engineers, 2018, 64( 4): 1412– 1423
CrossRef
Google scholar
|
[78] |
Nieves E, Vite G, Kozina A, Olguin L F. Ultrasound-assisted production and optimization of mini-emulsions in a microfluidic chip in continuous-flow. Ultrasonics Sonochemistry, 2021, 74 : 105556
CrossRef
Google scholar
|
[79] |
van Zwieten R, Verhaagen B, Schroën K, Rivas D F. Emulsification in novel ultrasonic cavitation intensifying bag reactors. Ultrasonics Sonochemistry, 2017, 36 : 446– 453
CrossRef
Google scholar
|
[80] |
Behrend O, Ax K, Schubert H. Influence of continuous phase viscosity on emulsification by ultrasound. Ultrasonics Sonochemistry, 2000, 7( 2): 77– 85
CrossRef
Google scholar
|
[81] |
Kanda T Kiyama Y Suzumori K. A nano emulsion generator using a microchannel and a bolt blamped type transducer. In: 2013 IEEE International Ultrasonics Symposium (IUS). New York: IEEE, 2013
|
[82] |
Kaci M, Meziani S, Arab-Tehrany E, Gillet G, Desjardins-Lavisse I, Desobry S. Emulsification by high frequency ultrasound using piezoelectric transducer: formation and stability of emulsifier free emulsion. Ultrasonics Sonochemistry, 2014, 21( 3): 1010– 1017
CrossRef
Google scholar
|
[83] |
Hübner S, Kressirer S, Kralisch D, Bludszuweit-Philipp C, Lukow K, Jänich I, Schilling A, Hieronymus H, Liebner C, Jähnisch K. Ultrasound and microstructures—a promising combination?. ChemSusChem, 2012, 5( 2): 279– 288
CrossRef
Google scholar
|
[84] |
Freitas S, Hielscher G, Merkle H P, Gander B. Continuous contact-and contamination-free ultrasonic emulsification—a useful tool for pharmaceutical development and production. Ultrasonics Sonochemistry, 2006, 13( 1): 76– 85
CrossRef
Google scholar
|
[85] |
Aljbour S, Yamada H, Tagawa T. Ultrasound-assisted phase transfer catalysis in a capillary microreactor. Chemical Engineering and Processing, 2009, 48( 6): 1167– 1172
CrossRef
Google scholar
|
[86] |
Dong Z, Udepurkar A P, Kuhn S. Synergistic effects of the alternating application of low and high frequency ultrasound for particle synthesis in microreactors. Ultrasonics Sonochemistry, 2020, 60 : 104800
CrossRef
Google scholar
|
[87] |
John J J Van Gerven T. Effect of ultrasound on parallel flow in a microchannel. Chemical Engineering and Processing, 2021, 171: 108465
|
[88] |
Dong Z, Zondag S D, Schmid M, Wen Z, Noël T. A meso-scale ultrasonic milli-reactor enables gas−liquid−solid photocatalytic reactions in flow. Chemical Engineering Journal, 2022, 428 : 130968
CrossRef
Google scholar
|
[89] |
Lenshof A, Evander M, Laurell T, Nilsson J. Acoustofluidics 5: building microfluidic acoustic resonators. Lab on a Chip, 2012, 12( 4): 684– 695
CrossRef
Google scholar
|
[90] |
Peshkovsky S L, Peshkovsky A S. Shock-wave model of acoustic cavitation. Ultrasonics Sonochemistry, 2008, 15( 4): 618– 628
CrossRef
Google scholar
|
[91] |
Peshkovsky A S, Peshkovsky S L, Bystryak S. Scalable high-power ultrasonic technology for the production of translucent nanoemulsions. Chemical Engineering and Processing, 2013, 69 : 77– 82
CrossRef
Google scholar
|
[92] |
Ezeanowi N Koiranen T. Effect of process parameters on a novel modular continuous crystallizer. In: Proceedings of the 2nd International Process Intensification Conference (IPIC2). Leuven: European Federation of Chemical Engineering, 2019
|
[93] |
Delacour C, Stephens D S, Lutz C, Mettin R, Kuhn S. Design and characterization of a scaled-up ultrasonic flow reactor. Organic Process Research & Development, 2020, 24( 10): 2085– 2093
CrossRef
Google scholar
|
[94] |
Tadros T, Izquierdo P, Esquena J, Solans C. Formation and stability of nano-emulsions. Advances in Colloid and Interface Science, 2004, 108 : 303– 318
CrossRef
Google scholar
|
[95] |
Gharibzahedi S M Jafari S M. Fabrication of nanoemulsions by ultrasonication. In: Nanoemulsions. Amsterdam: Elsevier, 2018
|
[96] |
Canselier J, Delmas H, Wilhelm A, Abismail B. Ultrasound emulsification—an overview. Journal of Dispersion Science and Technology, 2002, 23( 1-3): 333– 349
CrossRef
Google scholar
|
[97] |
Zhang Q, Dong Z, Zhao S, Liu Z, Chen G. Ultrasound-assisted gas-liquid mass transfer process in microreactors: the influence of surfactant, channel size and ultrasound frequency. Chemical Engineering Journal, 2021, 405 : 126720
CrossRef
Google scholar
|
[98] |
Merouani S, Hamdaoui O, Rezgui Y, Guemini M. Effects of ultrasound frequency and acoustic amplitude on the size of sonochemically active bubbles—theoretical study. Ultrasonics Sonochemistry, 2013, 20( 3): 815– 819
CrossRef
Google scholar
|
[99] |
Brotchie A, Grieser F, Ashokkumar M. Effect of power and frequency on bubble-size distributions in acoustic cavitation. Physical Review Letters, 2009, 102( 8): 084302
CrossRef
Google scholar
|
[100] |
Pokhrel N, Vabbina P K, Pala N. Sonochemistry: science and engineering. Ultrasonics Sonochemistry, 2016, 29 : 104– 128
CrossRef
Google scholar
|
[101] |
Jafari S M, He Y, Bhandari B. Production of sub-micron emulsions by ultrasound and microfluidization techniques. Journal of Food Engineering, 2007, 82( 4): 478– 488
CrossRef
Google scholar
|
[102] |
Higgins D M, Skauen D M. Influence of power on quality of emulsions prepared by ultrasound. Journal of Pharmaceutical Sciences, 1972, 61( 10): 1567– 1570
CrossRef
Google scholar
|
[103] |
Tang S Y, Manickam S, Wei T K, Nashiru B. Formulation development and optimization of a novel Cremophore EL-based nanoemulsion using ultrasound cavitation. Ultrasonics Sonochemistry, 2012, 19( 2): 330– 345
CrossRef
Google scholar
|
[104] |
Raso J, Manas P, Pagan R, Sala F J. Influence of different factors on the output power transferred into medium by ultrasound. Ultrasonics Sonochemistry, 1999, 5( 4): 157– 162
CrossRef
Google scholar
|
[105] |
Salvia-Trujillo L, Rojas-Graü A, Soliva-Fortuny R, Martín-Belloso O. Physicochemical characterization of lemongrass essential oil−alginate nanoemulsions: effect of ultrasound processing parameters. Food and Bioprocess Technology, 2013, 6( 9): 2439– 2446
CrossRef
Google scholar
|
[106] |
Salvia-Trujillo L, Rojas-Graü M A, Soliva-Fortuny R, Martín-Belloso O. Impact of microfluidization or ultrasound processing on the antimicrobial activity against Escherichia coli of lemongrass oil-loaded nanoemulsions. Food Control, 2014, 37 : 292– 297
CrossRef
Google scholar
|
[107] |
Tang S Y, Shridharan P, Sivakumar M. Impact of process parameters in the generation of novel aspirin nanoemulsions—comparative studies between ultrasound cavitation and microfluidizer. Ultrasonics Sonochemistry, 2013, 20( 1): 485– 497
CrossRef
Google scholar
|
[108] |
Tal-Figiel B. The formation of stable w/o, o/w, w/o/w cosmetic emulsions in an ultrasonic field. Chemical Engineering Research & Design, 2007, 85( 5): 730– 734
CrossRef
Google scholar
|
[109] |
Reddy S, Fogler H. Emulsion stability of acoustically formed emulsions. Journal of Physical Chemistry, 1980, 84( 12): 1570– 1575
CrossRef
Google scholar
|
[110] |
Nakabayashi K, Amemiya F, Fuchigami T, Machida K, Takeda S, Tamamitsu K, Atobe M. Highly clear and transparent nanoemulsion preparation under surfactant-free conditions using tandem acoustic emulsification. Chemical Communications (Cambridge), 2011, 47( 20): 5765– 5767
CrossRef
Google scholar
|
[111] |
Kamogawa K, Okudaira G, Matsumoto M, Sakai T, Sakai H, Abe M. Preparation of oleic acid/water emulsions in surfactant-free condition by sequential processing using midsonic— megasonic waves. Langmuir, 2004, 20( 6): 2043– 2047
CrossRef
Google scholar
|
[112] |
Nakabayashi K, Fuchigami T, Atobe M. Tandem acoustic emulsion, an effective tool for the electrosynthesis of highly transparent and conductive polymer films. Electrochimica Acta, 2013, 110 : 593– 598
CrossRef
Google scholar
|
[113] |
Jafari S M, Assadpoor E, He Y, Bhandari B. Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocolloids, 2008, 22( 7): 1191– 1202
CrossRef
Google scholar
|
[114] |
Vankova N, Tcholakova S, Denkov N D, Ivanov I B, Vulchev V D, Danner T. Emulsification in turbulent flow: 1. Mean and maximum drop diameters in inertial and viscous regimes. Journal of Colloid and Interface Science, 2007, 312( 2): 363– 380
CrossRef
Google scholar
|
[115] |
Walstra P. Principles of emulsion formation. Chemical Engineering Science, 1993, 48( 2): 333– 349
CrossRef
Google scholar
|
[116] |
Li W, Leong T S, Ashokkumar M, Martin G J. A study of the effectiveness and energy efficiency of ultrasonic emulsification. Physical Chemistry Chemical Physics, 2018, 20( 1): 86– 96
CrossRef
Google scholar
|
[117] |
Yap B H, Dumsday G J, Scales P J, Martin G J. Energy evaluation of algal cell disruption by high pressure homogenisation. Bioresource Technology, 2015, 184 : 280– 285
CrossRef
Google scholar
|
[118] |
Behrend O, Schubert H. Influence of hydrostatic pressure and gas content on continuous ultrasound emulsification. Ultrasonics Sonochemistry, 2001, 8( 3): 271– 276
CrossRef
Google scholar
|
[119] |
John J J, Kuhn S, Braeken L, Van Gerven T. Ultrasound assisted liquid-liquid extraction with a novel interval-contact reactor. Chemical Engineering and Processing, 2017, 113 : 35– 41
CrossRef
Google scholar
|
[120] |
Dasgupta N, Ranjan S, Gandhi M. Nanoemulsions in food: market demand. Environmental Chemistry Letters, 2019, 17( 2): 1003– 1009
CrossRef
Google scholar
|
[121] |
McClements D J, Bai L, Chung C. Recent advances in the utilization of natural emulsifiers to form and stabilize emulsions. Annual Review of Food Science and Technology, 2017, 8( 1): 205– 236
CrossRef
Google scholar
|
[122] |
Sui X, Bi S, Qi B, Wang Z, Zhang M, Li Y, Jiang L. Impact of ultrasonic treatment on an emulsion system stabilized with soybean protein isolate and lecithin: its emulsifying property and emulsion stability. Food Hydrocolloids, 2017, 63 : 727– 734
CrossRef
Google scholar
|
[123] |
Shanmugam A, Ashokkumar M. Ultrasonic preparation of stable flax seed oil emulsions in dairy systems—physicochemical characterization. Food Hydrocolloids, 2014, 39 : 151– 162
CrossRef
Google scholar
|
[124] |
Taha A, Ahmed E, Hu T, Xu X, Pan S, Hu H. Effects of different ionic strengths on the physicochemical properties of plant and animal proteins-stabilized emulsions fabricated using ultrasound emulsification. Ultrasonics Sonochemistry, 2019, 58 : 104627
CrossRef
Google scholar
|
[125] |
Jambrak A R, Herceg Z, Šubarić D, Babić J, Brnčić M, Brnčić S R, Bosiljkov T, Čvek D, Tripalo B, Gelo J. Ultrasound effect on physical properties of corn starch. Carbohydrate Polymers, 2010, 79( 1): 91– 100
CrossRef
Google scholar
|
[126] |
Zhang L, Ye X, Ding T, Sun X, Xu Y, Liu D. Ultrasound effects on the degradation kinetics, structure and rheological properties of apple pectin. Ultrasonics Sonochemistry, 2013, 20( 1): 222– 231
CrossRef
Google scholar
|
[127] |
Sutradhar K B, Amin M L. Nanoemulsions: increasing possibilities in drug delivery. European Journal of Nanomedicine, 2013, 5( 2): 97– 110
CrossRef
Google scholar
|
[128] |
Jiang W, Kim B Y, Rutka J T, Chan W C. Nanoparticle-mediated cellular response is size-dependent. Nature Nanotechnology, 2008, 3( 3): 145– 150
CrossRef
Google scholar
|
[129] |
Foroozandeh P, Aziz A A. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Research Letters, 2018, 13( 1): 1– 12
CrossRef
Google scholar
|
[130] |
Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S, Mozafari M. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 2018, 10( 2): 57
CrossRef
Google scholar
|
[131] |
Diril M, Karasulu Y, Toskas M, Nikolakakis I. Development and permeability testing of self-emulsifying atorvastatin calcium pellets and tablets of compressed pellets. Processes, 2019, 7( 6): 365
CrossRef
Google scholar
|
[132] |
de Araújo S C, de Mattos A C A, Teixeira H F, Coelho P M Z, Nelson D L, de Oliveira M C. Improvement of in vitroefficacy of a novel schistosomicidal drug by incorporation into nanoemulsions. International Journal of Pharmaceutics, 2007, 337( 1-2): 307– 315
CrossRef
Google scholar
|
[133] |
Li F, Wang T, He H B, Tang X. The properties of bufadienolides-loaded nano-emulsion and submicro-emulsion during lyophilization. International Journal of Pharmaceutics, 2008, 349( 1-2): 291– 299
CrossRef
Google scholar
|
[134] |
Doh H J, Jung Y, Balakrishnan P, Cho H J, Kim D D. A novel lipid nanoemulsion system for improved permeation of granisetron. Colloids and Surfaces B: Biointerfaces, 2013, 101 : 475– 480
CrossRef
Google scholar
|
[135] |
Verma P, Meher J G, Asthana S, Pawar V K, Chaurasia M, Chourasia M K. Perspectives of nanoemulsion assisted oral delivery of docetaxel for improved chemotherapy of cancer. Drug Delivery, 2016, 23( 2): 479– 488
CrossRef
Google scholar
|
[136] |
Suslick K S, Price G J. Applications of ultrasound to materials chemistry. Annual Review of Materials Science, 1999, 29( 1): 295– 326
CrossRef
Google scholar
|
[137] |
Teo B M, Prescott S W, Ashokkumar M, Grieser F. Ultrasound initiated miniemulsion polymerization of methacrylate monomers. Ultrasonics Sonochemistry, 2008, 15( 1): 89– 94
CrossRef
Google scholar
|
[138] |
John J J, Kuhn S, Braeken L, Van Gerven T. Ultrasound assisted liquid-liquid extraction in microchannels—a direct contact method. Chemical Engineering and Processing, 2016, 102 : 37– 46
CrossRef
Google scholar
|
[139] |
Sonawane S H, Teo B M, Brotchie A, Grieser F, Ashokkumar M. Sonochemical synthesis of ZnO encapsulated functional nanolatex and its anticorrosive performance. Industrial & Engineering Chemistry Research, 2010, 49( 5): 2200– 2205
CrossRef
Google scholar
|
[140] |
Price G J. Ultrasonically enhanced polymer synthesis. Ultrasonics Sonochemistry, 1996, 3( 3): S229– S238
CrossRef
Google scholar
|
[141] |
Liu H, Begley T. Comprehensive Natural Products. 3rd ed. Asmterdan: Elsevier, 2020, 263 : 236
|
[142] |
Agarwal C, Máthé K, Hofmann T, Csóka L. Ultrasound-assisted extraction of cannabinoids from Cannabis sativa L. optimized by response surface methodology. Journal of Food Science, 2018, 83( 3): 700– 710
CrossRef
Google scholar
|
[143] |
McClements D J, Rao J. Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Critical Reviews in Food Science and Nutrition, 2011, 51( 4): 285– 330
CrossRef
Google scholar
|
/
〈 | 〉 |