Carbon capture for decarbonisation of energy-intensive industries: a comparative review of techno-economic feasibility of solid looping cycles

Mónica P. S. Santos , Dawid P. Hanak

Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (9) : 1291 -1317.

PDF (3634KB)
Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (9) : 1291 -1317. DOI: 10.1007/s11705-022-2151-5
REVIEW ARTICLE
REVIEW ARTICLE

Carbon capture for decarbonisation of energy-intensive industries: a comparative review of techno-economic feasibility of solid looping cycles

Author information +
History +
PDF (3634KB)

Abstract

Carbon capture and storage will play a crucial role in industrial decarbonisation. However, the current literature presents a large variability in the techno-economic feasibility of CO 2 capture technologies. Consequently, reliable pathways for carbon capture deployment in energy-intensive industries are still missing. This work provides a comprehensive review of the state-of-the-art CO 2 capture technologies for decarbonisation of the iron and steel, cement, petroleum refining, and pulp and paper industries. Amine scrubbing was shown to be the least feasible option, resulting in the average avoided CO 2 cost of between 62.7 €·t CO 2 1 for the pulp and paper and 104.6 €·t CO 2 1 for the iron and steel industry. Its average equivalent energy requirement varied between 2.7 (iron and steel) and 5.1 MJ th kg CO 2 1 (cement). Retrofits of emerging calcium looping were shown to improve the overall viability of CO 2 capture for industrial decarbonisation. Calcium looping was shown to result in the average avoided CO 2 cost of between 32.7 (iron and steel) and 42.9 €·t CO 2 1 (cement). Its average equivalent energy requirement varied between 2.0 (iron and steel) and 3.7 MJ th kg CO 2 1 (pulp and paper). Such performance demonstrated the superiority of calcium looping for industrial decarbonisation. Further work should focus on standardising the techno-economic assessment of technologies for industrial decarbonisation.

Graphical abstract

Keywords

industrial CO 2 emissions / CCS deployment / carbonate looping / net-zero industry / carbon capture benchmarks

Cite this article

Download citation ▾
Mónica P. S. Santos, Dawid P. Hanak. Carbon capture for decarbonisation of energy-intensive industries: a comparative review of techno-economic feasibility of solid looping cycles. Front. Chem. Sci. Eng., 2022, 16(9): 1291-1317 DOI:10.1007/s11705-022-2151-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GriffinP W, HammondG P. Industrial energy use and carbon emissions reduction in the iron and steel sector: a UK perspective. Applied Energy, 2019, 249 : 109– 125

[2]

RogeljJ, PoppA, CalvinK V, LudererG, EmmerlingJ, GernaatD, FujimoriS, StreflerJ, HasegawaT, MarangoniG. . Scenarios towards limiting global mean temperature increase below 1.5 °C. Nature Climate Change, 2018, 8( 4): 325– 332

[3]

McGrailB P, FreemanC J, BrownC F, SullivanE C, WhiteS K, ReddyS, GarberR D, TobinD, GilmartinJ J, SteffensenE J. Overcoming business model uncertainty in a carbon dioxide capture and sequestration project: case study at the Boise White Paper Mill. International Journal of Greenhouse Gas Control, 2012, 9 : 91– 102

[4]

IPCC. Summary for Policymakers. Climate Change 2014 Mitigation of Climate Change. Summary for Policymakers and Technical Summary, 2015

[5]

GerresT, ChavesÁvila J P, LlamasP L, SanRomán T G. A review of cross-sector decarbonisation potentials in the European energy intensive industry. Journal of Cleaner Production, 2019, 210 : 585– 601

[6]

IEA. Industry Direct CO2 Emissions in the Sustainable Development Scenario, 2000–2030 . Paris: IEA Publications, 2020

[7]

BatailleC. Low and Zero Emissions in the Steel and Cement Industries: Barriers, Technologies and Policies. Paris: Organisation for Economic Co-operation and Development, 2019, 2– 42

[8]

BatailleC, ÅhmanM, NeuhoffK, NilssonL J, FischedickM, LechtenböhmerS, Solano-RodriquezB, Denis-RyanA, StiebertS, WaismanH. . A review of technology and policy deep decarbonization pathway options for making energy-intensive industry production consistent with the Paris Agreement. Journal of Cleaner Production, 2018, 187 : 960– 973

[9]

YangF, MeermanJ C, FaaijA P C. Carbon capture and biomass in industry: a techno-economic analysis and comparison of negative emission options. Renewable & Sustainable Energy Reviews, 2021, 144 : 111028

[10]

FennellP S, FlorinN, NappT, HillsT. CCS from Industrial Sources. Sustainable Technologies, Systems and Policies, 2012, 2012 : 17

[11]

KoytsoumpaE I, BerginsC, KakarasE. The CO2 economy: review of CO2 capture and reuse technologies. Journal of Supercritical Fluids, 2018, 132 : 3– 16

[12]

KuramochiT, RamírezA, TurkenburgW, FaaijA. Comparative assessment of CO2 capture technologies for carbon-intensive industrial processes. Progress in Energy and Combustion Science, 2012, 38( 1): 87– 112

[13]

LeesonD, Mac DowellN, ShahN, PetitC, FennellP S. A techno-economic analysis and systematic review of carbon capture and storage (CCS) applied to the iron and steel, cement, oil refining and pulp and paper industries, as well as other high purity sources. International Journal of Greenhouse Gas Control, 2017, 61 : 71– 84

[14]

MarkewitzP, KuckshinrichsW, LeitnerW, LinssenJ, ZappP, BongartzR, SchreiberA, MüllerT E. Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy & Environmental Science, 2012, 5( 6): 7281– 7305

[15]

NappT A, GambhirA, HillsT P, FlorinN, FennellP. A review of the technologies, economics and policy instruments for decarbonising energy-intensive manufacturing industries. Renewable & Sustainable Energy Reviews, 2014, 30 : 616– 640

[16]

RissmanJ, BatailleC, MasanetE, AdenN, MorrowW R III, ZhouN, ElliottN, DellR, HeerenN, HuckesteinB. . Technologies and policies to decarbonize global industry: review and assessment of mitigation drivers through 2070. Applied Energy, 2020, 266 : 114848

[17]

NurdiawatiA, UrbanF. Towards deep decarbonisation of energy-intensive industries: a review of current status, technologies and policies. Energies, 2021, 14( 9): 2408

[18]

HanakD P, AnthonyE J, ManovicV. A review of developments in pilot-plant testing and modelling of calcium looping process for CO2 capture from power generation systems. Energy & Environmental Science, 2015, 8( 8): 2199– 2249

[19]

TianS, JiangJ, ZhangZ, ManovicV. Inherent potential of steelmaking to contribute to decarbonisation targets via industrial carbon capture and storage. Nature Communications, 2018, 9( 1): 1– 8

[20]

De LenaE, SpinelliM, GattiM, ScaccabarozziR, CampanariS, ConsonniS, CintiG, RomanoM C. Techno-economic analysis of calcium looping processes for low CO2 emission cement plants. International Journal of Greenhouse Gas Control, 2019, 82 : 244– 260

[21]

SantosM P S, ManovicV, HanakD P. Unlocking the potential of pulp and paper industry to achieve carbon-negative emissions via calcium looping retrofit. Journal of Cleaner Production, 2021, 280 : 124431

[22]

YunS, Jang M G, KimJ K. Techno-economic assessment and comparison of absorption and membrane CO2 capture processes for iron and steel industry. Energy, 2021, 229 : 120778

[23]

Ramírez-SantosÁ A, BozorgM, AddisB, PiccialliV, CastelC, FavreE. Optimization of multistage membrane gas separation processes. Example of application to CO2 capture from blast furnace gas. Journal of Membrane Science , 2018, 566 : 346– 366

[24]

BakerR W, FreemanB, KniepJ, HuangY I, MerkelT C. CO2 capture from cement plants and steel mills using membranes. Industrial & Engineering Chemistry Research, 2018, 57( 47): 15963– 15970

[25]

VoldsundM, GardarsdottirS O, DeLena E, Pérez-CalvoJ F, JamaliA, BerstadD, FuC, Romano M, RoussanalyS, AnantharamanR. . Comparison of technologies for CO2 capture from cement production—Part 1: Technical evaluation. Energies, 2019, 12( 3): 559

[26]

GardarsdottirS, DeLena E, RomanoM, RoussanalyS, VoldsundM, Pérez-CalvoJ F, BerstadD, FuC, Anantharaman R, SutterD. . Comparison of technologies for CO2 capture from cement production—Part 2: Cost analysis. Energies, 2019, 12( 3): 542

[27]

FerrariM C, AmelioA, NardelliG M, CostiR. Assessment on the application of facilitated transport membranes in cement plants for CO2 capture. Energies, 2021, 14( 16): 1– 15

[28]

IRENA. Renewable Energy in Manufacturing—a Technology Roadmap for REmap 2030. Technical Report, 2014

[29]

DeanC C, BlameyJ, FlorinN H, Al-JebooriM J, FennellP S. The calcium looping cycle for CO2 capture from power generation, cement manufacture and hydrogen production. Chemical Engineering Research & Design, 2011, 89( 6): 836– 855

[30]

HillsT, FlorinN, FennellP S. Decarbonising the cement sector: a bottom-up model for optimising carbon capture application in the UK. Journal of Cleaner Production, 2016, 139 : 1351– 1361

[31]

DamenK, TroostM V, FaaijA, TurkenburgW. A comparison of electricity and hydrogen production systems with CO2 capture and storage. Part A: review and selection of promising conversion and capture technologies. Progress in Energy and Combustion Science, 2006, 32( 2): 215– 246

[32]

van StraelenJ, GeuzebroekF, GoodchildN, ProtopapasG, MahonyL. CO2 capture for refineries, a practical approach. Energy Procedia, 2009, 1( 1): 179– 185

[33]

FeronP H M, HendriksC A. CO2 capture process principles and costs. Oil & Gas Science and Technology, 2005, 60( 3): 451– 459

[34]

BottomsR. Process for separating acidic gases. US Patent, 1783901, 1930-12-02

[35]

RaoA B, RubinE S. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environmental Science & Technology, 2002, 36( 20): 4467– 4475

[36]

ShaoR StangelandA. Amines Used in CO2 Capture—Health and Environmental Impacts . Bellona Report, 2009

[37]

XuG, Jin H, YangY, XuY, Lin H, DuanL. A comprehensive techno-economic analysis method for power generation systems with CO2 capture. International Journal of Energy Research, 2010, 34( 4): 321– 332

[38]

NurrokhmahL, MezherT, Abu-ZahraM R M. Evaluation of handling and reuse approaches for the waste generated from MEA-based CO2 capture with the consideration of regulations in the UAE. Environmental Science & Technology, 2013, 47( 23): 13644– 13651

[39]

FarlaJ C M, HendriksC A, BlokK. Carbon dioxide recovery from industrial processes. Climatic Change, 1995, 29( 4): 439– 461

[40]

WileyD E, HoM T, BustamanteA. Assessment of opportunities for CO2 capture at iron and steel mills: an Australian perspective. Energy Procedia, 2011, 4 : 2654– 2661

[41]

ArastoA, TsupariE, KärkiJ, PisiläE, SorsamäkiL. Post-combustion capture of CO2 at an integrated steel mill—Part I: technical concept analysis. International Journal of Greenhouse Gas Control, 2013, 16 : 271– 277

[42]

TsupariE, KärkiJ, ArastoA, PisiläE. Post-combustion capture of CO2 at an integrated steel mill—Part II: economic feasibility. International Journal of Greenhouse Gas Control, 2013, 16 : 278– 286

[43]

OnarheimK, SantosS, KangasP, HankalinV. Performance and cost of CCS in the pulp and paper industry part 2: economic feasibility of amine-based post-combustion CO2 capture. International Journal of Greenhouse Gas Control, 2017, 66 : 60– 75

[44]

NwaohaC, TontiwachwuthikulP. Carbon dioxide capture from pulp mill using 2-amino-2-methyl-1-propanol and monoethanolamine blend: techno-economic assessment of advanced process configuration. Applied Energy, 2019, 250 : 1202– 1216

[45]

HanK, Ahn C K, LeeM S, RheeC H, KimJ Y, ChunH D. Current status and challenges of the ammonia-based CO2 capture technologies toward commercialization. International Journal of Greenhouse Gas Control, 2013, 14 : 270– 281

[46]

RodríguezN, MurilloR, AbanadesJ C. CO2 capture from cement plants using oxyfired precalcination and/or calcium looping. Environmental Science & Technology, 2012, 46( 4): 2460– 2466

[47]

BlameyJ, AnthonyE J, WangJ, FennellP S. The calcium looping cycle for large-scale CO2 capture. Progress in Energy and Combustion Science, 2010, 36( 2): 260– 279

[48]

AnthonyE J. Solid looping cycles: a new technology for coal conversion. Industrial & Engineering Chemistry Research, 2008, 47( 6): 1747– 1754

[49]

Morin J X, Béal C. Chapter 37: chemical looping combustion of refinery fuel gas with CO2 Capture. In: Carbon Dioxide Capture for Storage in Deep Geologic Formations, Volume 1. Amsterdam: Elsevier, 2005, 647–654

[50]

AdánezJ, AbadA, MendiaraT, GayánP, deDiego L F, García-LabianoF. Chemical looping combustion of solid fuels. Progress in Energy and Combustion Science, 2018, 65 : 6– 66

[51]

VilchesT B, LindF, RydénM, ThunmanH. Experience of more than 1000 h of operation with oxygen carriers and solid biomass at large scale. Applied Energy, 2017, 190 : 1174– 1183

[52]

FernándezJ R, SpallinaV, AbanadesJ C. Advanced packed-bed Ca−Cu looping process for the CO2 capture from steel mill off-gases. Frontiers in Energy Research, 2020, 8( 146): 1– 13

[53]

deDiego L F, García-LabianoF, GayánP, CelayaJ, PalaciosJ M, AdánezJ. Operation of a 10 kWth chemical-looping combustor during 200 h with a CuO-Al2O3 oxygen carrier. Fuel, 2007, 86( 7-8): 1036– 1045

[54]

ZafarQ, MattissonT, GevertB. Integrated hydrogen and power production with CO2 capture using chemical-looping reforming redox reactivity of particles of CuO, Mn2O3, NiO, and Fe2O3 using SiO2 as a support. Industrial & Engineering Chemistry Research, 2005, 44( 10): 3485– 3496

[55]

ZhaoX, ZhouH, SikarwarV S, ZhaoM, ParkA H A, FennellP S, ShenL, FanL S. Biomass-based chemical looping technologies: the good, the bad and the future. Energy & Environmental Science, 2017, 10( 9): 1885– 1910

[56]

WangP, MeansN, ShekhawatD, BerryD, MassoudiM. Chemical-looping combustion and gasification of coals and oxygen carrier development: a brief review. Energies, 2015, 8( 10): 10605– 10635

[57]

DarmawanA, AjiwibowoM W, YoshikawaK, AzizM, TokimatsuK. Energy-efficient recovery of black liquor through gasification and syngas chemical looping. Applied Energy, 2018, 219 : 290– 298

[58]

DarmawanA, AjiwibowoM W, BiddinikaM K, TokimatsuK, AzizM. Black liquor-based hydrogen and power co-production: combination of supercritical water gasification and syngas chemical looping. Applied Energy, 2019, 252 : 113446

[59]

MattissonT, JärdnäsA, LyngfeltA. Reactivity of some metal oxides supported on alumina with alternating methane and oxygen-application for chemical-looping combustion. Energy & Fuels, 2003, 17( 3): 643– 651

[60]

HossainM M, de LasaH I. Chemical-looping combustion (CLC) for inherent CO2 separations—a review. Chemical Engineering Science, 2008, 63 : 4433– 4451

[61]

ShimizuT, HiramaT, HosodaH, KitanoK, InagakiM, TejimaK. A twin fluid-bed reactor for removal of CO2 from combustion processes. Chemical Engineering Research & Design, 1999, 77( 1): 62– 68

[62]

HilzJ, HelbigM, HaafM, DaikelerA, StröhleJ, EppleB. Long-term pilot testing of the carbonate looping process in 1 MWth scale. Fuel, 2017, 210 : 892– 899

[63]

RolfeA, HuangY, HaafM, PitaA, RezvaniS, DaveA, HewittN J. Technical and environmental study of calcium carbonate looping versus oxy-fuel options for low CO2 emission cement plants. International Journal of Greenhouse Gas Control, 2018, 75 : 85– 97

[64]

OzcanD C, MacchiA, LuD, Kierzkowska A, AhnH, MüllerC, BrandaniS. Ca−Cu looping process for CO2 capture from a power plant and its comparison with Ca-looping, oxy-combustion and amine-based CO2 capture processes. International Journal of Greenhouse Gas Control, 2015, 43 : 198– 212

[65]

CuencaM A AnthonyE J. Pressurized Fluidized Bed Combustion of Coal. 1st ed. Dordrecht: Springer, 1995

[66]

AriasB, DiegoM E, AbanadesJ C, LorenzoM, DiazL, MartínezD, AlvarezJ, Sánchez-BiezmaA. Demonstration of steady state CO2 capture in a 1.7 MWth calcium looping pilot. International Journal of Greenhouse Gas Control, 2013, 18 : 237– 245

[67]

EransM, BeisheimT, ManovicV, JeremiasM, PatchigollaK, DieterH, DuanL, AnthonyE J. Effect of SO2 and steam on CO2 capture performance of biomass-templated calcium aluminate pellets. Faraday Discussions, 2016, 192 : 97– 111

[68]

GrasaG S, AbanadesJ C. CO2 capture capacity of CaO in long series of carbonation/calcination cycles. Industrial & Engineering Chemistry Research, 2006, 45( 26): 8846– 8851

[69]

BorgwardtR H. Sintering of nascent calcium oxide. Chemical Engineering Science, 1989, 44 : 53– 60

[70]

SunP, Grace J R, LimC J, AnthonyE J. The effect of CaO sintering on cyclic CO2 capture in energy systems. AIChE Journal. American Institute of Chemical Engineers, 2007, 53( 9): 2432– 2442

[71]

PerejónA, RomeoL M, LaraY, LisbonaP, MartínezA, ValverdeJ M. The calcium-looping technology for CO2 capture: on the important roles of energy integration and sorbent behavior. Applied Energy, 2016, 162 : 787– 807

[72]

BakerE H. 87. The calcium oxide-carbon dioxide system in the pressure range 1–300 atmospheres. Journal of the Chemical Society, 1962, 0( 0): 464– 470

[73]

LyonR K. Method and apparatus for unmixed combustion as an alternative to fire. US Patent, 5509362, 1996-04-23

[74]

AbanadesJ C, MurilloR, FernandezJ R, GrasaG, MartínezI. New CO2 capture process for hydrogen production combining Ca and Cu chemical loops. Environmental Science & Technology, 2010, 44( 17): 6901– 6904

[75]

DieterH, BidweA R, Varela-DuelliG, CharitosA, HawthorneC, ScheffknechtG. Development of the calcium looping CO2 capture technology from lab to pilot scale at IFK, University of Stuttgart. Fuel, 2014, 127 : 23– 37

[76]

StröhleJ, JunkM, KremerJ, GalloyA, EppleB. Carbonate looping experiments in a 1 MWth pilot plant and model validation. Fuel, 2014, 127 : 13– 22

[77]

ChangM H, ChenW C, HuangC M, LiuW H, ChouY C, ChangW C, ChenW, ChengJ Y, HuangK E, HsuH W. Design and experimental testing of a 1.9 MWth calcium looping pilot plant. Energy Procedia, 2014, 63 : 2100– 2108

[78]

MayerK, SchanzE, PröllT, HofbauerH. Performance of an iron based oxygen carrier in a 120 kWth chemical looping combustion pilot plant. Fuel, 2018, 217 : 561– 569

[79]

LyngfeltA, LinderholmC. Chemical-looping combustion of solid fuels—status and recent progress. Energy Procedia, 2017, 114 : 371– 386

[80]

AbdulallyI, BealC, AndrusH E, EppleB, LyngfeltA, WhiteB. Alstom’s chemical looping technology, program update. In 11th Annual Conference on Carbon Capture Utilization & Sequestration Pittsburgh. Pittsburgh, Pennsylvania, 2014,

[81]

YazdanpanahM, GuillouF, BertholinS, ZhangA. Demonstration of chemical looping combustion (CLC) with petcoke feed for refining industry in a 3 MWth pilot plant. SSRN Electronic Journal, 2019, 33 : 1– 8

[82]

CroezenH KortelandM. Technological Developments in Europe. A Long-Term View of CO2 Efficient Manufacturing in the European Region . Technical Report, 2010

[83]

IEA. Iron and Steel Technology Roadmap. Paris: IEA Publications, 2020

[84]

HoM T, AllinsonG W, WileyD E. Comparison of MEA capture cost for low CO2 emissions sources in Australia. International Journal of Greenhouse Gas Control, 2011, 5( 1): 49– 60

[85]

WorldSteelAssociation. About steel. WorldSteel Website, 2021

[86]

BenderM, RoussiereT, SchellingH, SchusterS, SchwabE. Coupled production of steel and chemicals. Chemieingenieurtechnik (Weinheim), 2018, 90( 11): 1782– 1805

[87]

EUROFER:the European steel association. A Steel Roadmap for a Low Carbon Europe 2050. Technical Report, 2013

[88]

van der StelJ, LouwerseG, SertD, HirschA, EklundN, PetterssonM. Top gas recycling blast furnace developments for ‘green’ and sustainable ironmaking. Ironmaking & Steelmaking, 2013, 40( 7): 483– 489

[89]

HoM T, BustamanteA, WileyD E. Comparison of CO2 capture economics for iron and steel mills. International Journal of Greenhouse Gas Control, 2013, 19 : 145– 159

[90]

DreillardM, BroutinP, BriotP, HuardT, LettatA. Application of the DMXTM CO2 capture process in steel industry. Energy Procedia, 2017, 114 : 2573– 2589

[91]

GarðarsdóttirS Ó, NormannF, SkagestadR, JohnssonF. Investment costs and CO2 reduction potential of carbon capture from industrial plants—a Swedish case study. International Journal of Greenhouse Gas Control, 2018, 76 : 111– 124

[92]

CormosA M, DraganS, PetrescuL, SanduV, CormosC C. Techno-economic and environmental evaluations of decarbonized fossil-intensive industrial processes by reactive absorption & adsorption CO 2 capture systems. Energies, 2020, 13( 5): 1268

[93]

TianS, JiangJ, YanF, Li K, ChenX, ManovicV. Highly efficient CO2 capture with simultaneous iron and CaO recycling for the iron and steel industry. Green Chemistry, 2016, 18( 14): 4022– 4031

[94]

TianS, LiK, Jiang J, ChenX, YanF. CO2 abatement from the iron and steel industry using a combined Ca-Fe chemical loop. Applied Energy, 2016, 170 : 345– 352

[95]

FernándezJ R, MartínezI, AbanadesJ C, RomanoM C. Conceptual design of a Ca−Cu chemical looping process for hydrogen production in integrated steelworks. International Journal of Hydrogen Energy, 2017, 42( 16): 11023– 11037

[96]

MartínezI, FernándezJ R, AbanadesJ C, RomanoM C. Integration of a fluidised bed Ca−Cu chemical looping process in a steel mill. Energy, 2018, 163 : 570– 584

[97]

GazzaniM, RomanoM C, ManzoliniG. CO2 capture in integrated steelworks by commercial-ready technologies and SEWGS process. International Journal of Greenhouse Gas Control, 2015, 41 : 249– 267

[98]

ManzoliniG, GiuffridaA, CobdenP D, van DijkH A J, RuggeriF, ConsonniF. Techno-economic assessment of SEWGS technology when applied to integrated steel-plant for CO2 emission mitigation. International Journal of Greenhouse Gas Control, 2020, 94 : 102935

[99]

BarkerD J, TurnerS A, Napier-MooreP A, ClarkM, DavisonJ E. CO2 capture in the cement industry. Energy Procedia, 2009, 1( 1): 87– 94

[100]

FavierA, ScrivenerK, HabertG. Decarbonizing the cement and concrete sector: integration of the full value chain to reach net zero emissions in Europe. IOP Conference Series. Earth and Environmental Science, 2019, 225( 1): 012009

[101]

IEA. Cement. Paris: IEA Publications, 2020

[102]

AtsoniosK, GrammelisP, AntiohosS K, NikolopoulosN, KakarasE. Integration of calcium looping technology in existing cement plant for CO2 capture: process modeling and technical considerations. Fuel, 2015, 153 : 210– 223

[103]

GomezA, BriotP, RaynalL, BroutinP, GimenezM, SoazicM, CessatP, SayssetS. ACACIA project—development of a post-combustion CO2 capture process. Case of the DMXTM process. Oil & Gas Science and Technology—Revue d’IFP Energies nouvelles, 2014, 69( 6): 1121– 1129

[104]

ZhouW, JiangD, ChenD, Griffy-BrownC, JinY, Zhu B. Capturing CO2 from cement plants: a priority for reducing CO2 emissions in China. Energy, 2016, 106 : 464– 474

[105]

MarkewitzP, ZhaoL, RysselM, MouminG, WangY. Carbon capture for CO2 emission reduction in the cement industry in Germany. Energies, 2019, 12( 12): 2432

[106]

ECRA. ECRA CCS Project—Report on Phase III. Technical Report TR- ECRA119/2012, 2012

[107]

Carrasco-MaldonadoF, SpörlR, FleigerK, HoenigV, MaierJ, ScheffknechtG. Oxy-fuel combustion technology for cement production—state of the art research and technology development. International Journal of Greenhouse Gas Control, 2016, 45 : 189– 199

[108]

RomeoL M, CatalinaD, LisbonaP, LaraY, MartinezA. Ca looping technology: current status, developments and future directions. Greenhouse Gases. Science And Technology, 2011, 1 : 72– 82

[109]

DiegoM E, AriasB, AbanadesJ C. Analysis of a double calcium loop process configuration for CO2 capture in cement plants. Journal of Cleaner Production, 2016, 117 : 110– 121

[110]

JohanssonD, RootzénJ, BerntssonT, JohnssonF. Assessment of strategies for CO2 abatement in the European petroleum refining industry. Energy, 2012, 42( 1): 375– 386

[111]

van StraelenJ, GeuzebroekF, GoodchildN, ProtopapasG, MahonyL. CO2 capture for refineries, a practical approach. International Journal of Greenhouse Gas Control, 2010, 4( 2): 316– 320

[112]

BainsP, PsarrasP, WilcoxJ. CO2 capture from the industry sector. Progress in Energy and Combustion Science, 2017, 63 : 146– 172

[113]

IEA. Chemicals. Paris: IEA Publications, 2020

[114]

BerghoutN, van den BroekM, FaaijA. Techno-economic performance and challenges of applying CO2 capture in the industry: a case study of five industrial plants. International Journal of Greenhouse Gas Control, 2013, 17 : 259– 279

[115]

Fernández-DacostaC, vander Spek M, HungC R, OregionniG D, SkagestadR, PariharP, GokakD T, StrømmanA H, RamirezA. Prospective techno-economic and environmental assessment of carbon capture at a refinery and CO2 utilisation in polyol synthesis. Journal of CO2 Utilization , 2017, 21 : 405– 422

[116]

MöllerstenK, YanJ, Westermark M. Potential and cost-effectiveness of CO2 reductions through energy measures in Swedish pulp and paper mills. Energy, 2003, 28( 7): 691– 710

[117]

OnarheimK, SantosS, KangasP, HankalinV. Performance and costs of CCS in the pulp and paper industry part 1: performance of amine-based post-combustion CO2 capture. International Journal of Greenhouse Gas Control, 2017, 59 : 58– 73

[118]

IEA. Pulp and Paper. Paris: IEA Publications, 2020

[119]

HektorE, BerntssonT. Reduction of greenhouse gases in integrated pulp and paper mills: possibilities for CO2 capture and storage. Clean Technologies and Environmental Policy, 2009, 11( 1): 59– 65

[120]

GarciaM, BerghoutN. Toward a common method of cost-review for carbon capture technologies in the industrial sector: cement and iron and steel plants. International Journal of Greenhouse Gas Control, 2019, 87 : 142– 158

[121]

RoussanalyS, BerghoutN, FoutT, GarciaM, GardarsdottirS, NazirS M, RamirezA, RubinE S. Towards improved cost evaluation of carbon capture and storage from industry. International Journal of Greenhouse Gas Control, 2021, 106 : 103263

AI Summary AI Mindmap
PDF (3634KB)

Supplementary files

FCE-21085-of-SM_suppl_1

3891

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/