Carbon capture for decarbonisation of energy-intensive industries: a comparative review of techno-economic feasibility of solid looping cycles
Mónica P. S. Santos, Dawid P. Hanak
Carbon capture for decarbonisation of energy-intensive industries: a comparative review of techno-economic feasibility of solid looping cycles
Carbon capture and storage will play a crucial role in industrial decarbonisation. However, the current literature presents a large variability in the techno-economic feasibility of CO2 capture technologies. Consequently, reliable pathways for carbon capture deployment in energy-intensive industries are still missing. This work provides a comprehensive review of the state-of-the-art CO2 capture technologies for decarbonisation of the iron and steel, cement, petroleum refining, and pulp and paper industries. Amine scrubbing was shown to be the least feasible option, resulting in the average avoided CO2 cost of between 62.7 for the pulp and paper and 104.6 for the iron and steel industry. Its average equivalent energy requirement varied between 2.7 (iron and steel) and 5.1 (cement). Retrofits of emerging calcium looping were shown to improve the overall viability of CO2 capture for industrial decarbonisation. Calcium looping was shown to result in the average avoided CO2 cost of between 32.7 (iron and steel) and 42.9 (cement). Its average equivalent energy requirement varied between 2.0 (iron and steel) and 3.7 (pulp and paper). Such performance demonstrated the superiority of calcium looping for industrial decarbonisation. Further work should focus on standardising the techno-economic assessment of technologies for industrial decarbonisation.
industrial CO2 emissions / CCS deployment / carbonate looping / net-zero industry / carbon capture benchmarks
[1] |
GriffinP W, HammondG P. Industrial energy use and carbon emissions reduction in the iron and steel sector: a UK perspective. Applied Energy, 2019, 249 : 109– 125
CrossRef
Google scholar
|
[2] |
RogeljJ, PoppA, CalvinK V, LudererG, EmmerlingJ, GernaatD, FujimoriS, StreflerJ, HasegawaT, MarangoniG.
CrossRef
Google scholar
|
[3] |
McGrailB P, FreemanC J, BrownC F, SullivanE C, WhiteS K, ReddyS, GarberR D, TobinD, GilmartinJ J, SteffensenE J. Overcoming business model uncertainty in a carbon dioxide capture and sequestration project: case study at the Boise White Paper Mill. International Journal of Greenhouse Gas Control, 2012, 9 : 91– 102
CrossRef
Google scholar
|
[4] |
IPCC
|
[5] |
GerresT, ChavesÁvila J P, LlamasP L, SanRomán T G. A review of cross-sector decarbonisation potentials in the European energy intensive industry. Journal of Cleaner Production, 2019, 210 : 585– 601
CrossRef
Google scholar
|
[6] |
IEA
|
[7] |
BatailleC. Low and Zero Emissions in the Steel and Cement Industries: Barriers, Technologies and Policies. Paris: Organisation for Economic Co-operation and Development, 2019,
|
[8] |
BatailleC, ÅhmanM, NeuhoffK, NilssonL J, FischedickM, LechtenböhmerS, Solano-RodriquezB, Denis-RyanA, StiebertS, WaismanH.
CrossRef
Google scholar
|
[9] |
YangF, MeermanJ C, FaaijA P C. Carbon capture and biomass in industry: a techno-economic analysis and comparison of negative emission options. Renewable & Sustainable Energy Reviews, 2021, 144 : 111028
CrossRef
Google scholar
|
[10] |
FennellP S, FlorinN, NappT, HillsT. CCS from Industrial Sources. Sustainable Technologies, Systems and Policies, 2012, 2012 : 17
|
[11] |
KoytsoumpaE I, BerginsC, KakarasE. The CO2 economy: review of CO2 capture and reuse technologies. Journal of Supercritical Fluids, 2018, 132 : 3– 16
CrossRef
Google scholar
|
[12] |
KuramochiT, RamírezA, TurkenburgW, FaaijA. Comparative assessment of CO2 capture technologies for carbon-intensive industrial processes. Progress in Energy and Combustion Science, 2012, 38( 1): 87– 112
CrossRef
Google scholar
|
[13] |
LeesonD, Mac DowellN, ShahN, PetitC, FennellP S. A techno-economic analysis and systematic review of carbon capture and storage (CCS) applied to the iron and steel, cement, oil refining and pulp and paper industries, as well as other high purity sources. International Journal of Greenhouse Gas Control, 2017, 61 : 71– 84
CrossRef
Google scholar
|
[14] |
MarkewitzP, KuckshinrichsW, LeitnerW, LinssenJ, ZappP, BongartzR, SchreiberA, MüllerT E. Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy & Environmental Science, 2012, 5( 6): 7281– 7305
CrossRef
Google scholar
|
[15] |
NappT A, GambhirA, HillsT P, FlorinN, FennellP. A review of the technologies, economics and policy instruments for decarbonising energy-intensive manufacturing industries. Renewable & Sustainable Energy Reviews, 2014, 30 : 616– 640
CrossRef
Google scholar
|
[16] |
RissmanJ, BatailleC, MasanetE, AdenN, MorrowW R III, ZhouN, ElliottN, DellR, HeerenN, HuckesteinB.
CrossRef
Google scholar
|
[17] |
NurdiawatiA, UrbanF. Towards deep decarbonisation of energy-intensive industries: a review of current status, technologies and policies. Energies, 2021, 14( 9): 2408
CrossRef
Google scholar
|
[18] |
HanakD P, AnthonyE J, ManovicV. A review of developments in pilot-plant testing and modelling of calcium looping process for CO2 capture from power generation systems. Energy & Environmental Science, 2015, 8( 8): 2199– 2249
CrossRef
Google scholar
|
[19] |
TianS, JiangJ, ZhangZ, ManovicV. Inherent potential of steelmaking to contribute to decarbonisation targets via industrial carbon capture and storage. Nature Communications, 2018, 9( 1): 1– 8
CrossRef
Google scholar
|
[20] |
De LenaE, SpinelliM, GattiM, ScaccabarozziR, CampanariS, ConsonniS, CintiG, RomanoM C. Techno-economic analysis of calcium looping processes for low CO2 emission cement plants. International Journal of Greenhouse Gas Control, 2019, 82 : 244– 260
CrossRef
Google scholar
|
[21] |
SantosM P S, ManovicV, HanakD P. Unlocking the potential of pulp and paper industry to achieve carbon-negative emissions via calcium looping retrofit. Journal of Cleaner Production, 2021, 280 : 124431
CrossRef
Google scholar
|
[22] |
YunS, Jang M G, KimJ K. Techno-economic assessment and comparison of absorption and membrane CO2 capture processes for iron and steel industry. Energy, 2021, 229 : 120778
CrossRef
Google scholar
|
[23] |
Ramírez-SantosÁ A, BozorgM, AddisB, PiccialliV, CastelC, FavreE. Optimization of multistage membrane gas separation processes. Example of application to CO2 capture from blast furnace gas. Journal of Membrane Science , 2018, 566 : 346– 366
CrossRef
Google scholar
|
[24] |
BakerR W, FreemanB, KniepJ, HuangY I, MerkelT C. CO2 capture from cement plants and steel mills using membranes. Industrial & Engineering Chemistry Research, 2018, 57( 47): 15963– 15970
CrossRef
Google scholar
|
[25] |
VoldsundM, GardarsdottirS O, DeLena E, Pérez-CalvoJ F, JamaliA, BerstadD, FuC, Romano M, RoussanalyS, AnantharamanR.
CrossRef
Google scholar
|
[26] |
GardarsdottirS, DeLena E, RomanoM, RoussanalyS, VoldsundM, Pérez-CalvoJ F, BerstadD, FuC, Anantharaman R, SutterD.
CrossRef
Google scholar
|
[27] |
FerrariM C, AmelioA, NardelliG M, CostiR. Assessment on the application of facilitated transport membranes in cement plants for CO2 capture. Energies, 2021, 14( 16): 1– 15
CrossRef
Google scholar
|
[28] |
IRENA
|
[29] |
DeanC C, BlameyJ, FlorinN H, Al-JebooriM J, FennellP S. The calcium looping cycle for CO2 capture from power generation, cement manufacture and hydrogen production. Chemical Engineering Research & Design, 2011, 89( 6): 836– 855
CrossRef
Google scholar
|
[30] |
HillsT, FlorinN, FennellP S. Decarbonising the cement sector: a bottom-up model for optimising carbon capture application in the UK. Journal of Cleaner Production, 2016, 139 : 1351– 1361
CrossRef
Google scholar
|
[31] |
DamenK, TroostM V, FaaijA, TurkenburgW. A comparison of electricity and hydrogen production systems with CO2 capture and storage. Part A: review and selection of promising conversion and capture technologies. Progress in Energy and Combustion Science, 2006, 32( 2): 215– 246
CrossRef
Google scholar
|
[32] |
van StraelenJ, GeuzebroekF, GoodchildN, ProtopapasG, MahonyL. CO2 capture for refineries, a practical approach. Energy Procedia, 2009, 1( 1): 179– 185
CrossRef
Google scholar
|
[33] |
FeronP H M, HendriksC A. CO2 capture process principles and costs. Oil & Gas Science and Technology, 2005, 60( 3): 451– 459
CrossRef
Google scholar
|
[34] |
BottomsR. Process for separating acidic gases. US Patent, 1783901, 1930-12-02
|
[35] |
RaoA B, RubinE S. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environmental Science & Technology, 2002, 36( 20): 4467– 4475
CrossRef
Google scholar
|
[36] |
ShaoR StangelandA. Amines Used in CO2 Capture—Health and Environmental Impacts . Bellona Report, 2009
|
[37] |
XuG, Jin H, YangY, XuY, Lin H, DuanL. A comprehensive techno-economic analysis method for power generation systems with CO2 capture. International Journal of Energy Research, 2010, 34( 4): 321– 332
CrossRef
Google scholar
|
[38] |
NurrokhmahL, MezherT, Abu-ZahraM R M. Evaluation of handling and reuse approaches for the waste generated from MEA-based CO2 capture with the consideration of regulations in the UAE. Environmental Science & Technology, 2013, 47( 23): 13644– 13651
CrossRef
Google scholar
|
[39] |
FarlaJ C M, HendriksC A, BlokK. Carbon dioxide recovery from industrial processes. Climatic Change, 1995, 29( 4): 439– 461
CrossRef
Google scholar
|
[40] |
WileyD E, HoM T, BustamanteA. Assessment of opportunities for CO2 capture at iron and steel mills: an Australian perspective. Energy Procedia, 2011, 4 : 2654– 2661
CrossRef
Google scholar
|
[41] |
ArastoA, TsupariE, KärkiJ, PisiläE, SorsamäkiL. Post-combustion capture of CO2 at an integrated steel mill—Part I: technical concept analysis. International Journal of Greenhouse Gas Control, 2013, 16 : 271– 277
CrossRef
Google scholar
|
[42] |
TsupariE, KärkiJ, ArastoA, PisiläE. Post-combustion capture of CO2 at an integrated steel mill—Part II: economic feasibility. International Journal of Greenhouse Gas Control, 2013, 16 : 278– 286
CrossRef
Google scholar
|
[43] |
OnarheimK, SantosS, KangasP, HankalinV. Performance and cost of CCS in the pulp and paper industry part 2: economic feasibility of amine-based post-combustion CO2 capture. International Journal of Greenhouse Gas Control, 2017, 66 : 60– 75
CrossRef
Google scholar
|
[44] |
NwaohaC, TontiwachwuthikulP. Carbon dioxide capture from pulp mill using 2-amino-2-methyl-1-propanol and monoethanolamine blend: techno-economic assessment of advanced process configuration. Applied Energy, 2019, 250 : 1202– 1216
CrossRef
Google scholar
|
[45] |
HanK, Ahn C K, LeeM S, RheeC H, KimJ Y, ChunH D. Current status and challenges of the ammonia-based CO2 capture technologies toward commercialization. International Journal of Greenhouse Gas Control, 2013, 14 : 270– 281
CrossRef
Google scholar
|
[46] |
RodríguezN, MurilloR, AbanadesJ C. CO2 capture from cement plants using oxyfired precalcination and/or calcium looping. Environmental Science & Technology, 2012, 46( 4): 2460– 2466
CrossRef
Google scholar
|
[47] |
BlameyJ, AnthonyE J, WangJ, FennellP S. The calcium looping cycle for large-scale CO2 capture. Progress in Energy and Combustion Science, 2010, 36( 2): 260– 279
CrossRef
Google scholar
|
[48] |
AnthonyE J. Solid looping cycles: a new technology for coal conversion. Industrial & Engineering Chemistry Research, 2008, 47( 6): 1747– 1754
CrossRef
Google scholar
|
[49] |
Morin J X, Béal C. Chapter 37: chemical looping combustion of refinery fuel gas with CO2 Capture. In: Carbon Dioxide Capture for Storage in Deep Geologic Formations, Volume 1. Amsterdam: Elsevier, 2005, 647–654
|
[50] |
AdánezJ, AbadA, MendiaraT, GayánP, deDiego L F, García-LabianoF. Chemical looping combustion of solid fuels. Progress in Energy and Combustion Science, 2018, 65 : 6– 66
CrossRef
Google scholar
|
[51] |
VilchesT B, LindF, RydénM, ThunmanH. Experience of more than 1000 h of operation with oxygen carriers and solid biomass at large scale. Applied Energy, 2017, 190 : 1174– 1183
CrossRef
Google scholar
|
[52] |
FernándezJ R, SpallinaV, AbanadesJ C. Advanced packed-bed Ca−Cu looping process for the CO2 capture from steel mill off-gases. Frontiers in Energy Research, 2020, 8( 146): 1– 13
CrossRef
Google scholar
|
[53] |
deDiego L F, García-LabianoF, GayánP, CelayaJ, PalaciosJ M, AdánezJ. Operation of a 10 kWth chemical-looping combustor during 200 h with a CuO-Al2O3 oxygen carrier. Fuel, 2007, 86( 7-8): 1036– 1045
CrossRef
Google scholar
|
[54] |
ZafarQ, MattissonT, GevertB. Integrated hydrogen and power production with CO2 capture using chemical-looping reforming redox reactivity of particles of CuO, Mn2O3, NiO, and Fe2O3 using SiO2 as a support. Industrial & Engineering Chemistry Research, 2005, 44( 10): 3485– 3496
CrossRef
Google scholar
|
[55] |
ZhaoX, ZhouH, SikarwarV S, ZhaoM, ParkA H A, FennellP S, ShenL, FanL S. Biomass-based chemical looping technologies: the good, the bad and the future. Energy & Environmental Science, 2017, 10( 9): 1885– 1910
CrossRef
Google scholar
|
[56] |
WangP, MeansN, ShekhawatD, BerryD, MassoudiM. Chemical-looping combustion and gasification of coals and oxygen carrier development: a brief review. Energies, 2015, 8( 10): 10605– 10635
CrossRef
Google scholar
|
[57] |
DarmawanA, AjiwibowoM W, YoshikawaK, AzizM, TokimatsuK. Energy-efficient recovery of black liquor through gasification and syngas chemical looping. Applied Energy, 2018, 219 : 290– 298
CrossRef
Google scholar
|
[58] |
DarmawanA, AjiwibowoM W, BiddinikaM K, TokimatsuK, AzizM. Black liquor-based hydrogen and power co-production: combination of supercritical water gasification and syngas chemical looping. Applied Energy, 2019, 252 : 113446
CrossRef
Google scholar
|
[59] |
MattissonT, JärdnäsA, LyngfeltA. Reactivity of some metal oxides supported on alumina with alternating methane and oxygen-application for chemical-looping combustion. Energy & Fuels, 2003, 17( 3): 643– 651
CrossRef
Google scholar
|
[60] |
HossainM M, de LasaH I. Chemical-looping combustion (CLC) for inherent CO2 separations—a review. Chemical Engineering Science, 2008, 63 : 4433– 4451
CrossRef
Google scholar
|
[61] |
ShimizuT, HiramaT, HosodaH, KitanoK, InagakiM, TejimaK. A twin fluid-bed reactor for removal of CO2 from combustion processes. Chemical Engineering Research & Design, 1999, 77( 1): 62– 68
CrossRef
Google scholar
|
[62] |
HilzJ, HelbigM, HaafM, DaikelerA, StröhleJ, EppleB. Long-term pilot testing of the carbonate looping process in 1 MWth scale. Fuel, 2017, 210 : 892– 899
CrossRef
Google scholar
|
[63] |
RolfeA, HuangY, HaafM, PitaA, RezvaniS, DaveA, HewittN J. Technical and environmental study of calcium carbonate looping versus oxy-fuel options for low CO2 emission cement plants. International Journal of Greenhouse Gas Control, 2018, 75 : 85– 97
CrossRef
Google scholar
|
[64] |
OzcanD C, MacchiA, LuD, Kierzkowska A, AhnH, MüllerC, BrandaniS. Ca−Cu looping process for CO2 capture from a power plant and its comparison with Ca-looping, oxy-combustion and amine-based CO2 capture processes. International Journal of Greenhouse Gas Control, 2015, 43 : 198– 212
CrossRef
Google scholar
|
[65] |
CuencaM A AnthonyE J. Pressurized Fluidized Bed Combustion of Coal. 1st ed. Dordrecht: Springer, 1995
|
[66] |
AriasB, DiegoM E, AbanadesJ C, LorenzoM, DiazL, MartínezD, AlvarezJ, Sánchez-BiezmaA. Demonstration of steady state CO2 capture in a 1.7 MWth calcium looping pilot. International Journal of Greenhouse Gas Control, 2013, 18 : 237– 245
CrossRef
Google scholar
|
[67] |
EransM, BeisheimT, ManovicV, JeremiasM, PatchigollaK, DieterH, DuanL, AnthonyE J. Effect of SO2 and steam on CO2 capture performance of biomass-templated calcium aluminate pellets. Faraday Discussions, 2016, 192 : 97– 111
CrossRef
Google scholar
|
[68] |
GrasaG S, AbanadesJ C. CO2 capture capacity of CaO in long series of carbonation/calcination cycles. Industrial & Engineering Chemistry Research, 2006, 45( 26): 8846– 8851
CrossRef
Google scholar
|
[69] |
BorgwardtR H. Sintering of nascent calcium oxide. Chemical Engineering Science, 1989, 44 : 53– 60
CrossRef
Google scholar
|
[70] |
SunP, Grace J R, LimC J, AnthonyE J. The effect of CaO sintering on cyclic CO2 capture in energy systems. AIChE Journal. American Institute of Chemical Engineers, 2007, 53( 9): 2432– 2442
CrossRef
Google scholar
|
[71] |
PerejónA, RomeoL M, LaraY, LisbonaP, MartínezA, ValverdeJ M. The calcium-looping technology for CO2 capture: on the important roles of energy integration and sorbent behavior. Applied Energy, 2016, 162 : 787– 807
CrossRef
Google scholar
|
[72] |
BakerE H. 87. The calcium oxide-carbon dioxide system in the pressure range 1–300 atmospheres. Journal of the Chemical Society, 1962, 0( 0): 464– 470
CrossRef
Google scholar
|
[73] |
LyonR K. Method and apparatus for unmixed combustion as an alternative to fire. US Patent, 5509362, 1996-04-23
|
[74] |
AbanadesJ C, MurilloR, FernandezJ R, GrasaG, MartínezI. New CO2 capture process for hydrogen production combining Ca and Cu chemical loops. Environmental Science & Technology, 2010, 44( 17): 6901– 6904
CrossRef
Google scholar
|
[75] |
DieterH, BidweA R, Varela-DuelliG, CharitosA, HawthorneC, ScheffknechtG. Development of the calcium looping CO2 capture technology from lab to pilot scale at IFK, University of Stuttgart. Fuel, 2014, 127 : 23– 37
CrossRef
Google scholar
|
[76] |
StröhleJ, JunkM, KremerJ, GalloyA, EppleB. Carbonate looping experiments in a 1 MWth pilot plant and model validation. Fuel, 2014, 127 : 13– 22
CrossRef
Google scholar
|
[77] |
ChangM H, ChenW C, HuangC M, LiuW H, ChouY C, ChangW C, ChenW, ChengJ Y, HuangK E, HsuH W. Design and experimental testing of a 1.9 MWth calcium looping pilot plant. Energy Procedia, 2014, 63 : 2100– 2108
CrossRef
Google scholar
|
[78] |
MayerK, SchanzE, PröllT, HofbauerH. Performance of an iron based oxygen carrier in a 120 kWth chemical looping combustion pilot plant. Fuel, 2018, 217 : 561– 569
CrossRef
Google scholar
|
[79] |
LyngfeltA, LinderholmC. Chemical-looping combustion of solid fuels—status and recent progress. Energy Procedia, 2017, 114 : 371– 386
CrossRef
Google scholar
|
[80] |
AbdulallyI, BealC, AndrusH E, EppleB, LyngfeltA, WhiteB. Alstom’s chemical looping technology, program update. In 11th Annual Conference on Carbon Capture Utilization & Sequestration Pittsburgh. Pittsburgh, Pennsylvania, 2014,
|
[81] |
YazdanpanahM, GuillouF, BertholinS, ZhangA. Demonstration of chemical looping combustion (CLC) with petcoke feed for refining industry in a 3 MWth pilot plant. SSRN Electronic Journal, 2019, 33 : 1– 8
CrossRef
Google scholar
|
[82] |
CroezenH KortelandM. Technological Developments in Europe. A Long-Term View of CO2 Efficient Manufacturing in the European Region . Technical Report, 2010
|
[83] |
IEA
|
[84] |
HoM T, AllinsonG W, WileyD E. Comparison of MEA capture cost for low CO2 emissions sources in Australia. International Journal of Greenhouse Gas Control, 2011, 5( 1): 49– 60
CrossRef
Google scholar
|
[85] |
WorldSteelAssociation. About steel. WorldSteel Website, 2021
|
[86] |
BenderM, RoussiereT, SchellingH, SchusterS, SchwabE. Coupled production of steel and chemicals. Chemieingenieurtechnik (Weinheim), 2018, 90( 11): 1782– 1805
CrossRef
Google scholar
|
[87] |
EUROFER:the European steel association. A Steel Roadmap for a Low Carbon Europe 2050. Technical Report, 2013
|
[88] |
van der StelJ, LouwerseG, SertD, HirschA, EklundN, PetterssonM. Top gas recycling blast furnace developments for ‘green’ and sustainable ironmaking. Ironmaking & Steelmaking, 2013, 40( 7): 483– 489
CrossRef
Google scholar
|
[89] |
HoM T, BustamanteA, WileyD E. Comparison of CO2 capture economics for iron and steel mills. International Journal of Greenhouse Gas Control, 2013, 19 : 145– 159
CrossRef
Google scholar
|
[90] |
DreillardM, BroutinP, BriotP, HuardT, LettatA. Application of the DMXTM CO2 capture process in steel industry. Energy Procedia, 2017, 114 : 2573– 2589
CrossRef
Google scholar
|
[91] |
GarðarsdóttirS Ó, NormannF, SkagestadR, JohnssonF. Investment costs and CO2 reduction potential of carbon capture from industrial plants—a Swedish case study. International Journal of Greenhouse Gas Control, 2018, 76 : 111– 124
CrossRef
Google scholar
|
[92] |
CormosA M, DraganS, PetrescuL, SanduV, CormosC C. Techno-economic and environmental evaluations of decarbonized fossil-intensive industrial processes by reactive absorption & adsorption CO 2 capture systems. Energies, 2020, 13( 5): 1268
CrossRef
Google scholar
|
[93] |
TianS, JiangJ, YanF, Li K, ChenX, ManovicV. Highly efficient CO2 capture with simultaneous iron and CaO recycling for the iron and steel industry. Green Chemistry, 2016, 18( 14): 4022– 4031
CrossRef
Google scholar
|
[94] |
TianS, LiK, Jiang J, ChenX, YanF. CO2 abatement from the iron and steel industry using a combined Ca-Fe chemical loop. Applied Energy, 2016, 170 : 345– 352
CrossRef
Google scholar
|
[95] |
FernándezJ R, MartínezI, AbanadesJ C, RomanoM C. Conceptual design of a Ca−Cu chemical looping process for hydrogen production in integrated steelworks. International Journal of Hydrogen Energy, 2017, 42( 16): 11023– 11037
CrossRef
Google scholar
|
[96] |
MartínezI, FernándezJ R, AbanadesJ C, RomanoM C. Integration of a fluidised bed Ca−Cu chemical looping process in a steel mill. Energy, 2018, 163 : 570– 584
CrossRef
Google scholar
|
[97] |
GazzaniM, RomanoM C, ManzoliniG. CO2 capture in integrated steelworks by commercial-ready technologies and SEWGS process. International Journal of Greenhouse Gas Control, 2015, 41 : 249– 267
CrossRef
Google scholar
|
[98] |
ManzoliniG, GiuffridaA, CobdenP D, van DijkH A J, RuggeriF, ConsonniF. Techno-economic assessment of SEWGS technology when applied to integrated steel-plant for CO2 emission mitigation. International Journal of Greenhouse Gas Control, 2020, 94 : 102935
CrossRef
Google scholar
|
[99] |
BarkerD J, TurnerS A, Napier-MooreP A, ClarkM, DavisonJ E. CO2 capture in the cement industry. Energy Procedia, 2009, 1( 1): 87– 94
CrossRef
Google scholar
|
[100] |
FavierA, ScrivenerK, HabertG. Decarbonizing the cement and concrete sector: integration of the full value chain to reach net zero emissions in Europe. IOP Conference Series. Earth and Environmental Science, 2019, 225( 1): 012009
CrossRef
Google scholar
|
[101] |
IEA
|
[102] |
AtsoniosK, GrammelisP, AntiohosS K, NikolopoulosN, KakarasE. Integration of calcium looping technology in existing cement plant for CO2 capture: process modeling and technical considerations. Fuel, 2015, 153 : 210– 223
CrossRef
Google scholar
|
[103] |
GomezA, BriotP, RaynalL, BroutinP, GimenezM, SoazicM, CessatP, SayssetS. ACACIA project—development of a post-combustion CO2 capture process. Case of the DMXTM process. Oil & Gas Science and Technology—Revue d’IFP Energies nouvelles, 2014, 69( 6): 1121– 1129
|
[104] |
ZhouW, JiangD, ChenD, Griffy-BrownC, JinY, Zhu B. Capturing CO2 from cement plants: a priority for reducing CO2 emissions in China. Energy, 2016, 106 : 464– 474
CrossRef
Google scholar
|
[105] |
MarkewitzP, ZhaoL, RysselM, MouminG, WangY. Carbon capture for CO2 emission reduction in the cement industry in Germany. Energies, 2019, 12( 12): 2432
CrossRef
Google scholar
|
[106] |
ECRA
|
[107] |
Carrasco-MaldonadoF, SpörlR, FleigerK, HoenigV, MaierJ, ScheffknechtG. Oxy-fuel combustion technology for cement production—state of the art research and technology development. International Journal of Greenhouse Gas Control, 2016, 45 : 189– 199
CrossRef
Google scholar
|
[108] |
RomeoL M, CatalinaD, LisbonaP, LaraY, MartinezA. Ca looping technology: current status, developments and future directions. Greenhouse Gases. Science And Technology, 2011, 1 : 72– 82
|
[109] |
DiegoM E, AriasB, AbanadesJ C. Analysis of a double calcium loop process configuration for CO2 capture in cement plants. Journal of Cleaner Production, 2016, 117 : 110– 121
CrossRef
Google scholar
|
[110] |
JohanssonD, RootzénJ, BerntssonT, JohnssonF. Assessment of strategies for CO2 abatement in the European petroleum refining industry. Energy, 2012, 42( 1): 375– 386
CrossRef
Google scholar
|
[111] |
van StraelenJ, GeuzebroekF, GoodchildN, ProtopapasG, MahonyL. CO2 capture for refineries, a practical approach. International Journal of Greenhouse Gas Control, 2010, 4( 2): 316– 320
CrossRef
Google scholar
|
[112] |
BainsP, PsarrasP, WilcoxJ. CO2 capture from the industry sector. Progress in Energy and Combustion Science, 2017, 63 : 146– 172
CrossRef
Google scholar
|
[113] |
IEA
|
[114] |
BerghoutN, van den BroekM, FaaijA. Techno-economic performance and challenges of applying CO2 capture in the industry: a case study of five industrial plants. International Journal of Greenhouse Gas Control, 2013, 17 : 259– 279
CrossRef
Google scholar
|
[115] |
Fernández-DacostaC, vander Spek M, HungC R, OregionniG D, SkagestadR, PariharP, GokakD T, StrømmanA H, RamirezA. Prospective techno-economic and environmental assessment of carbon capture at a refinery and CO2 utilisation in polyol synthesis. Journal of CO2 Utilization , 2017, 21 : 405– 422
|
[116] |
MöllerstenK, YanJ, Westermark M. Potential and cost-effectiveness of CO2 reductions through energy measures in Swedish pulp and paper mills. Energy, 2003, 28( 7): 691– 710
CrossRef
Google scholar
|
[117] |
OnarheimK, SantosS, KangasP, HankalinV. Performance and costs of CCS in the pulp and paper industry part 1: performance of amine-based post-combustion CO2 capture. International Journal of Greenhouse Gas Control, 2017, 59 : 58– 73
CrossRef
Google scholar
|
[118] |
IEA
|
[119] |
HektorE, BerntssonT. Reduction of greenhouse gases in integrated pulp and paper mills: possibilities for CO2 capture and storage. Clean Technologies and Environmental Policy, 2009, 11( 1): 59– 65
CrossRef
Google scholar
|
[120] |
GarciaM, BerghoutN. Toward a common method of cost-review for carbon capture technologies in the industrial sector: cement and iron and steel plants. International Journal of Greenhouse Gas Control, 2019, 87 : 142– 158
CrossRef
Google scholar
|
[121] |
RoussanalyS, BerghoutN, FoutT, GarciaM, GardarsdottirS, NazirS M, RamirezA, RubinE S. Towards improved cost evaluation of carbon capture and storage from industry. International Journal of Greenhouse Gas Control, 2021, 106 : 103263
CrossRef
Google scholar
|
/
〈 | 〉 |