Sustainable functionalization and modification of materials via multicomponent reactions in water

Siamak Javanbakht , Tahereh Nasiriani , Hassan Farhid , Mohammad Taghi Nazeri , Ahmad Shaabani

Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (9) : 1318 -1344.

PDF (11244KB)
Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (9) : 1318 -1344. DOI: 10.1007/s11705-022-2150-6
REVIEW ARTICLE
REVIEW ARTICLE

Sustainable functionalization and modification of materials via multicomponent reactions in water

Author information +
History +
PDF (11244KB)

Abstract

In materials chemistry, green chemistry has established firm ground providing essential design criteria to develop advanced tools for efficient functionalization and modification of materials. Particularly, the combination of multicomponent reactions in water and aqueous media with materials chemistry unlocks a new sustainable way for constructing multi-functionalized structures with unique features, playing significant roles in the plethora of applications. Multicomponent reactions have received significant consideration from the community of material chemistry because of their great efficiency, simple operations, intrinsic molecular diversity, and an atom and a pot economy. Also, by rational design of multicomponent reactions in water and aqueous media, the performance of some multicomponent reactions could be enhanced by the contributing “natural” form of water-soluble materials, the exclusive solvating features of water, and simple separating and recovering materials. To date, there is no exclusive review to report the sustainable functionalization and modification of materials in water. This critical review highlights the utility of various kinds of multicomponent reactions in water and aqueous media as green methods for functionalization and modification of siliceous, magnetic, and carbonaceous materials, oligosaccharides, polysaccharides, peptides, proteins, and synthetic polymers. The detailed discussion of synthetic procedures, properties, and related applicability of each functionalized/modified material is fully deliberated in this review.

Graphical abstract

Keywords

materials / multicomponent reactions / modification / functionalization / water

Cite this article

Download citation ▾
Siamak Javanbakht, Tahereh Nasiriani, Hassan Farhid, Mohammad Taghi Nazeri, Ahmad Shaabani. Sustainable functionalization and modification of materials via multicomponent reactions in water. Front. Chem. Sci. Eng., 2022, 16(9): 1318-1344 DOI:10.1007/s11705-022-2150-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

OstrengW. Science without Boundaries: Interdisciplinarity in Research, Society and Politics. Lanham, MD: University Press of America, 2009

[2]

SperlingR A, ParakW J. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1915, 2010( 368): 1333– 1383

[3]

MakvandiP, IftekharS, PizzettiF, ZarepourA, ZareE N, AshrafizadehM, AgarwalT, PadilV V T, MohammadinejadR, SillanpaaM. Functionalization of polymers and nanomaterials for water treatment, food packaging, textile and biomedical applications: a review. Environmental Chemistry Letters, 2021, 19 : 583– 611

[4]

FengY, ZhaoH, ZhangL, GuoJ. Surface modification of biomaterials by photochemical immobilization and photograft polymerization to improve hemocompatibility. Frontiers of Chemical Engineering in China, 2010, 4( 3): 372– 381

[5]

KnollW. Nanomaterials, Polymers and Devices: Materials Functionalization and Device Fabrication. New York: John Wiley & Sons, 2015

[6]

LiY, ShiJ. Hollow-structured mesoporous materials: chemical synthesis, functionalization and applications. Advanced Materials, 2014, 26( 20): 3176– 3205

[7]

KangoS, KaliaS, CelliA, NjugunaJ, HabibiY, KumarR. Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites—a review. Progress in Polymer Science, 2013, 38( 8): 1232– 1261

[8]

CohenS M. Postsynthetic methods for the functionalization of metal-organic frameworks. Chemical Reviews, 2011, 112( 2): 970– 1000

[9]

JavanbakhtS, ShaabaniA. Multicomponent reactions-based modified/functionalized materials in the biomedical platforms. ACS Applied Bio Materials, 2019, 3( 1): 156– 174

[10]

AfshariR, ShaabaniA. Materials functionalization with multicomponent reactions: state of the art. ACS Combinatorial Science, 2018, 20( 9): 499– 528

[11]

FarhidH, KhodkariV, NazeriM T, JavanbakhtS, ShaabaniA. Multicomponent reactions as a potent tool for the synthesis of benzodiazepines. Organic & Biomolecular Chemistry, 2021, 19( 15): 3318– 3358

[12]

ShaabaniA, MohammadianR, AfshariR, HooshmandS E, NazeriM T, JavanbakhtS. The status of isocyanide-based multi-component reactions in Iran (2010–2018). Molecular Diversity, 2021, 25 : 1145– 1210

[13]

TundoP, AnastasP, BlackD S, BreenJ, CollinsT, MemoliS, MiyamotoJ, PolyakoffM, TumasW. Synthetic pathways and processes in green chemistry. Introductory overview. Pure and Applied Chemistry, 2000, 72( 7): 1207– 1228

[14]

AlfonsiK, ColbergJ, DunnP J, FevigT, JenningsS, JohnsonT A, KleineH P, KnightC, NagyM A, PerryD A, StefaniakM. Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation. Green Chemistry, 2008, 10( 1): 31– 36

[15]

ConstableD J CurzonsA D CunninghamV L. Metrics to “green” chemistry—which are the best? Green Chemistry, 2002, 4(6): 521− 527

[16]

CurzonsA D, ConstableD J, MortimerD N, CunninghamV L. So you think your process is green, how do you know? —using principles of sustainability to determine what is green—a corporate perspective.. Green Chemistry, 2001, 3( 1): 1– 6

[17]

GuY. Multicomponent reactions in unconventional solvents: state of the art. Green Chemistry, 2012, 14( 8): 2091– 2128

[18]

ReinhardtD, IlgenF, KralischD, KönigB, KreiselG. Evaluating the greenness of alternative reaction media. Green Chemistry, 2008, 10( 11): 1170– 1181

[19]

VarmaR S. Solvent-free accelerated organic syntheses using microwaves. Pure and Applied Chemistry, 2001, 73( 1): 193– 198

[20]

WalshP J, LiH, de ParrodiC A. A green chemistry approach to asymmetric catalysis: solvent-free and highly concentrated reactions. Chemical Reviews, 2007, 107( 6): 2503– 2545

[21]

KumaravelK, VasukiG. Multi-component reactions in water. Current Organic Chemistry, 2009, 13( 18): 1820– 1841

[22]

SimonM O, LiC J. Green chemistry oriented organic synthesis in water. Chemical Society Reviews, 2012, 41( 4): 1415– 1427

[23]

CiocR C, RuijterE, OrruR V. Multicomponent reactions: advanced tools for sustainable organic synthesis. Green Chemistry, 2014, 16( 6): 2958– 2975

[24]

KakuchiR. Multicomponent reactions in polymer synthesis. Angewandte Chemie International Edition, 2014, 53( 1): 46– 48

[25]

RudickJ G. Innovative macromolecular syntheses via isocyanide multicomponent reactions. Journal of Polymer Science, Part A: Polymer Chemistry, 2013, 51( 19): 3985– 3991

[26]

KakuchiR. Metal-catalyzed multicomponent reactions for the synthesis of polymers. In: Multi-Component and Sequential Reactions in Polymer Synthesis. Berlin: Springer, 2014,

[27]

YangB, ZhaoY, WeiY, FuC, TaoL. The Ugi reaction in polymer chemistry: syntheses, applications and perspectives. Polymer Chemistry, 2015, 6( 48): 8233– 8239

[28]

LlevotA, BoukisA C, OelmannS, WetzelK, MeierM A. An update on isocyanide-based multicomponent reactions in polymer science. In: Tang B Z, Hu R, eds. Polymer Synthesis Based on Triple-Bond Building Blocks. Berlin: Springer, 2017,

[29]

LongZ, MaoL, LiuM, WanQ, WanY, ZhangX, WeiY. Marrying multicomponent reactions and aggregation-induced emission (AIE): new directions for fluorescent nanoprobes. Polymer Chemistry, 2017, 8( 37): 5644– 5654

[30]

RegueraL, MéndezY, HumpierreA R, ValdésO, RiveraD G. Multicomponent reactions in ligation and bioconjugation chemistry. Accounts of Chemical Research, 2018, 51( 6): 1475– 1486

[31]

OrruR V, de GreefM. Recent advances in solution-phase multicomponent methodology for the synthesis of heterocyclic compounds. Synthesis, 2003, 2003( 10): 1471– 1499

[32]

ShaabaniA, MalekiA, RezayanA H, SarvaryA. Recent progress of isocyanide-based multicomponent reactions in Iran. Molecular Diversity, 2011, 15( 1): 41– 68

[33]

DömlingA, AchatzS, BeckB. Novel anti-tuberculosis agents from MCR libraries. Bioorganic & Medicinal Chemistry Letters, 2007, 17( 19): 5483– 5486

[34]

SheldonR A. Fundamentals of green chemistry: efficiency in reaction design. Chemical Society Reviews, 2012, 41( 4): 1437– 1451

[35]

Akritopoulou-ZanzeI. Isocyanide-based multicomponent reactions in drug discovery. Current Opinion in Chemical Biology, 2008, 12( 3): 324– 331

[36]

HulmeC, DietrichJ. Emerging molecular diversity from the intra-molecular Ugi reaction: iterative efficiency in medicinal chemistry. Molecular Diversity, 2009, 13( 2): 195– 207

[37]

TietzeL F, ModiA. Multicomponent domino reactions for the synthesis of biologically active natural products and drugs. Medicinal Research Reviews, 2000, 20( 4): 304– 322

[38]

RidderB, MattesD, Nesterov-MuellerA, BreitlingF, MeierM. Peptide array functionalization via the Ugi four-component reaction. Chemical Communications, 2017, 53( 40): 5553– 5556

[39]

TheatoP. Multi-Component and Sequential Reactions in Polymer Synthesis. Berlin: Springer, 2015

[40]

SehlingerA, MeierM A R. Passerini and Ugi multicomponent reactions in polymer science. In: Theato P, ed. Multi-Component and Sequential Reactions in Polymer Synthesis. Berlin: Springer, 2014,

[41]

DömlingA. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chemical Reviews, 2006, 106( 1): 17– 89

[42]

MüllerT J J. Multicomponent reactions. Beilstein Journal of Organic Chemistry, 2011, 7 : 960– 961

[43]

PaprockiD, MadejA, KoszelewskiD, BrodzkaA, OstaszewskiR. Multicomponent reactions accelerated by aqueous micelles. Frontiers in Chemistry, 2018, 6 : 502

[44]

ShaabaniA, HooshmandS E. Isocyanide and Meldrum’s acid-based multicomponent reactions in diversity-oriented synthesis: from a serendipitous discovery towards valuable synthetic approaches. RSC Advances, 2016, 6( 63): 58142– 58159

[45]

WessjohannL A, KreyeO, RiveraD G. One-pot assembly of amino acid bridged hybrid macromulticyclic cages through multiple multicomponent macrocyclizations. Angewandte Chemie International Edition, 2017, 56( 13): 3501– 3505

[46]

ShaabaniA, HooshmandS E. Diversity-oriented catalyst-free synthesis of pseudopeptides containing rhodanine scaffolds via a one-pot sequential isocyanide-based six-component reactions in water using ultrasound irradiation. Ultrasonics Sonochemistry, 2018, 40 : 84– 90

[47]

ToureB B, HallD G. Natural product synthesis using multicomponent reaction strategies. Chemical Reviews, 2009, 109( 9): 4439– 4486

[48]

StreckerA. About a new body arising from aldehyde-ammonia and hydrocyanic acid. Justus Liebigs Annalen der Chemie, 1854, 91(3): 349− 351 (in German)

[49]

GrögerH. Catalytic enantioselective Strecker reactions and analogous syntheses. Chemical Reviews, 2003, 103( 8): 2795– 2828

[50]

deFátima Â, BragaT C, NetoL S, TerraB S, OliveiraB G F, daSilva D L, ModoloL V. A mini-review on Biginelli adducts with notable pharmacological properties. Journal of Advanced Research, 2015, 6( 3): 363– 373

[51]

BiginelliP. On aldehyde amide of acetoacetic ether. Berichte der Deutschen Chemischen Gesellschaft, 1891, 24(1): 1317− 1319 (in German)

[52]

ListB. The direct catalytic asymmetric three-component Mannich reaction. Journal of the American Chemical Society, 2000, 122( 38): 9336– 9337

[53]

ArrayásR G, CarreteroJ C. Catalytic asymmetric direct Mannich reaction: a powerful tool for the synthesis of α, β-diamino acids. Chemical Society Reviews, 2009, 38( 7): 1940– 1948

[54]

NobleA, AndersonJ C. Nitro-Mannich reaction. Chemical Reviews, 2013, 113( 5): 2887– 2939

[55]

PasseriniM SimoneL. Above isonitriles (I). Compound of p-isonitrile-azobenzene with acetone and acetic acid. Gazzetta Chimica Italiana, 1921, 51: 126– 129 (in Italian)

[56]

KreyeO, TóthT, MeierM A. Introducing multicomponent reactions to polymer science: Passerini reactions of renewable monomers. Journal of the American Chemical Society, 2011, 133( 6): 1790– 1792

[57]

UgiI, MeyrR, FetzerU, SteinbrücknerC. Experiments with isonitriles. Angewandte Chemie International Edition, 1959, 71 : 386

[58]

DömlingA, UgiI. Multicomponent reactions with isocyanides. Journal of the American Chemical Society, 2000, 39( 18): 3168– 3210

[59]

NenajdenkoV. Isocyanide Chemistry: Applications in Synthesis and Material Science. New York: John Wiley & Sons, 2012

[60]

KeglevichG, BálintE. The Kabachnik-Fields reaction: mechanism and synthetic use. Molecules, 2012, 17( 11): 12821– 12835

[61]

ChengX, GoddardR, ButhG, ListB. Direct catalytic asymmetric three-component Kabachnik-Fields reaction. Journal of the American Chemical Society, 2008, 47( 27): 5079– 5081

[62]

LoevB, SnaderK M. The Hantzsch reaction. I. Oxidative dealkylation of certain dihydropyridines. Journal of Organic Chemistry, 1965, 30( 6): 1914– 1916

[63]

HantzschA. Condensation products of aldehyde-ammonia and ketone-like compounds. Berichte der Deutschen Chemischen Gesellschaft, 1881, 14(2): 1637− 1638 (in German)

[64]

ZhuJ. Recent developments in the isonitrile-based multicomponent synthesis of heterocycles. European Journal of Organic Chemistry, 2003, 2003( 7): 1133– 1144

[65]

KeatingT A, ArmstrongR W. Postcondensation modifications of Ugi four-component condensation products: 1-isocyanocyclohexene as a convertible isocyanide. Mechanism of conversion, synthesis of diverse structures, and demonstration of resin capture. Journal of the American Chemical Society, 1996, 118( 11): 2574– 2583

[66]

MarcacciniS TorrobaT. Multicomponent Reactions. New York: John Wiley & Sons, 2005

[67]

KitanosonoT, KobayashiS. Reactions in water through “on-water” mechanism. Chemistry, 2020, 26( 43): 9408– 9429

[68]

ZhouF, LiC J. En route to metal-mediated and metal-catalysed reactions in water. Chemical Science, 2019, 10( 1): 34– 46

[69]

ButlerR N, CoyneA G. Organic synthesis reactions on-water at the organic-liquid water interface. Organic & Biomolecular Chemistry, 2016, 14( 42): 9945– 9960

[70]

ButlerR N CoyneA G. Understanding “on-water” catalysis of organic reactions. Effects of H+ and Li+ ions in the aqueous phase and nonreacting competitor h-bond acceptors in the organic phase: on H2O versus on D2O for huisgen cycloadditions. Journal of Organic Chemistry, 2015, 80(3): 1809− 1817

[71]

ButlerR N, CoyneA G. Water: nature’s reaction enforcer comparative effects for organic synthesis “in-water” and “on-water”. Chemical Reviews, 2010, 110( 10): 6302– 6337

[72]

ChandaA, FokinV V. Organic synthesis “on water”. Chemical Reviews, 2009, 109( 2): 725– 748

[73]

LiC J, ChenL. Organic chemistry in water. Chemical Society Reviews, 2006, 35( 1): 68– 82

[74]

ManabeK, KobayashiS. Catalytic asymmetric carbon−carbon bond-forming reactions in aqueous media. Chemistry, 2002, 8( 18): 4094– 4101

[75]

LiC J ChanT H. Comprehensive Organic Reactions in Aqueous Media. 2nd ed. New York: John Wiley & Sons, 2007

[76]

LiC J ChanT H. Organic Reactions in Aqueous Media. 2nd ed. New York: Wiley, 1997

[77]

BreslowR. The principles of and reasons for using water as a solvent for green chemistry. In: Handbook of Green Chemistry: Online. New York: Wiley, 2010

[78]

CiccoL, DilauroG, PernaF M, VitaleP, CapriatiV. Advances in deep eutectic solvents and water: applications in metal and biocatalyzed processes, in the synthesis of APIs, and other biologically active compounds. Organic & Biomolecular Chemistry, 2021, 19( 12): 2558– 2577

[79]

PirrungM C, SarmaK D. Multicomponent reactions are accelerated in water. Journal of the American Chemical Society, 2004, 126( 2): 444– 445

[80]

LubineauA. Water-promoted organic reactions: aldol reaction under neutral conditions. Journal of Organic Chemistry, 1986, 51( 11): 2142– 2144

[81]

LubineauA, AugéJ, QueneauY. Water-promoted organic reactions. Synthesis, 1994, 1994( 8): 741– 760

[82]

HayashiY. Pot economy and one-pot synthesis. Chemical Science, 2016, 7( 2): 866– 880

[83]

AnastasP, EghbaliN. Green chemistry: principles and practice. Chemical Society Reviews, 2010, 39( 1): 301– 312

[84]

ClarkeP A, SantosS, MartinW H. Combining pot, atom and step economy (PASE) in organic synthesis. Synthesis of tetrahydropyran-4-ones. Green Chemistry, 2007, 9( 5): 438– 440

[85]

VretbladP, AxenR, MjöbergJ, GronowitzS, KoskikallioJ, SwahnC G. The use of isocyanides for the immobilization of biological molecules. Acta Chemica Scandinavica, 1973, 27( 8): 2769– 2780 (in Italian)

[86]

AxenR, VretbladP, PorathJ, PilottiÅ, LindbergA A, EhrenbergL. The use of isocyanides for the attachment of biologically active substances to polymers. Acta Chemica Scandinavica, 1971, 25 : 1129– 1132 (in Italian)

[87]

GoldsteinL. Polymeric supports bearing isonitrile functional groups for covalent fixation of biologically active molecules (a review). Journal of Chromatography A, 1981, 215 : 31– 43

[88]

RezaeiA, AkhavanO, HashemiE, ShamsaraM. Ugi four-component assembly process: an efficient approach for one-pot multifunctionalization of nanographene oxide in water and its application in lipase immobilization. Chemistry of Materials, 2016, 28( 9): 3004– 3016

[89]

MohammadiM, AshjariM, GarmroodiM, YousefiM, KarkhaneA A. The use of isocyanide-based multicomponent reaction for covalent immobilization of Rhizomucor miehei lipase on multiwall carbon nanotubes and graphene nanosheets. RSC Advances, 2016, 6( 76): 72275– 72285

[90]

RezaeiA, AkhavanO, HashemiE, ShamsaraM. Toward chemical perfection of graphene-based gene carrier via Ugi multicomponent assembly process. Biomacromolecules, 2016, 17( 9): 2963– 2971

[91]

Adibi-MotlaghB, LotfiA S, RezaeiA, HashemiE. Cell attachment evaluation of the immobilized bioactive peptide on a nanographene oxide composite. Materials Science and Engineering C, 2018, 82 : 323– 329

[92]

KungK K Y, LiG L, ZouL, ChongH C, LeungY C, WongK H, LoV K Y, CheC M, WongM K. Gold-mediated bifunctional modification of oligosaccharides via a three-component coupling reaction. Organic & Biomolecular Chemistry, 2012, 10( 5): 925– 930

[93]

AbbiatiG, RossiE. Silver and gold-catalyzed multicomponent reactions. Beilstein Journal of Organic Chemistry, 2014, 10( 1): 481– 513

[94]

de NooyA E, CapitaniD, MasciG, CrescenziV. Ionic polysaccharide hydrogels via the Passerini and Ugi multicomponent condensations: synthesis, behavior and solid-state NMR characterization. Biomacromolecules, 2000, 1( 2): 259– 267

[95]

de NooyA E, RoriV, MasciG, DentiniM, CrescenziV. Synthesis and preliminary characterisation of charged derivatives and hydrogels from scleroglucan. Carbohydrate Research, 2000, 324( 2): 116– 126

[96]

de NooyA J, MasciG, CrescenziV. Versatile synthesis of polysaccharide hydrogels using the Passerini and Ugi multicomponent condensations. Macromolecules, 1999, 32( 4): 1318– 1320

[97]

GabrielL, HeinzeT. Diversity of polysaccharide structures designed by aqueous Ugi-multi-compound reaction. Cellulose, 2018, 25( 5): 2849– 2859

[98]

ShulepovI D, KozhikhovaK V, PanfilovaY S, IvantsovaM N, MironovM A. One-pot synthesis of cross-linked sub-micron microgels from pure cellulose via the Ugi reaction and their application as emulsifiers. Cellulose, 2016, 23( 4): 2549– 2559

[99]

PettignanoA, DaunayA, MoreauC, CathalaB, CharlotA, FleuryE. Sustainable modification of carboxymethyl cellulose by passerini three-component reaction and subsequent adsorption onto cellulosic substrates. ACS Sustainable Chemistry & Engineering, 2019, 7( 17): 14685– 14696

[100]

GarcíaA, HernándezK, ChicoB, GarcíaD, VillalongaM L, VillalongaR. Preparation of thermostable trypsin-polysaccharide neoglycoenzymes through Ugi multicomponent reaction. Journal of Molecular Catalysis B: Enzymatic, 2009, 59( 1-3): 126– 130

[101]

KhineY Y, GandaS, StenzelM H. Covalent tethering of temperature responsive pNIPAm onto TEMPO-oxidized cellulose nanofibrils via three-component Passerini reaction. ACS Macro Letters, 2018, 7( 4): 412– 418

[102]

EsenE, MeierM A. Sustainable functionalization of 2,3-dialdehyde cellulose via the Passerini three-component reaction. ACS Sustainable Chemistry & Engineering, 2020, 8( 41): 15755– 15760

[103]

WangR, SunS, WangB, MaoZ, XuH, FengX, SuiX. Robust fabrication of fluorescent cellulosic materials via Hantzsch reaction. Macromolecular Rapid Communications, 2021, 42( 6): 2000496

[104]

KönigS UgiI. Enzymen/crosslinking of aqueous alginic acid by four component condensation with inclusion immobilization of enzymes. Zeitschrift für Naturforschung B, 1991, 46(9): 1261− 1266 (in Italian)

[105]

BuH, KjøniksenA L, KnudsenK D, NyströmB. Rheological and structural properties of aqueous alginate during gelation via the Ugi multicomponent condensation reaction. Biomacromolecules, 2004, 5( 4): 1470– 1479

[106]

BuH, KjøniksenA L, KnudsenK D, NyströmB. Effects of surfactant and temperature on rheological and structural properties of semidilute aqueous solutions of unmodified and hydrophobically modified alginate. Langmuir, 2005, 21( 24): 10923– 10930

[107]

BuH, KjøniksenA L, NyströmB. Effects of pH on dynamics and rheology during association and gelation via the Ugi reaction of aqueous alginate. European Polymer Journal, 2005, 41( 8): 1708– 1717

[108]

BuH, KjøniksenA L, ElgsaeterA, NyströmB. Interaction of unmodified and hydrophobically modified alginate with sodium dodecyl sulfate in dilute aqueous solution: calorimetric, rheological, and turbidity studies. Physicochemical and Engineering Aspects, 2006, 278( 1–3): 166– 174

[109]

YanH, ChenX, LiJ, FengY, ShiZ, WangX, LinQ. Synthesis of alginate derivative via the Ugi reaction and its characterization. Carbohydrate Polymers, 2016, 136 : 757– 763

[110]

CamachoC, MatíasJ C, GarcíaD, SimpsonB K, VillalongaR. Amperometric enzyme biosensor for hydrogen peroxide via Ugi multicomponent reaction. Electrochemistry Communications, 2007, 9( 7): 1655– 1660

[111]

WernerB, BuH, KjøniksenA L, SandeS A, NyströmB. Characterization of gelation of aqueous pectin via the Ugi multicomponent condensation reaction. Polymer Bulletin, 2006, 56( 6): 579– 589

[112]

MironovM A, ShulepovI D, PonomarevV S, BakulevV A. Synthesis of polyampholyte microgels from colloidal salts of pectinic acid and their application as pH-responsive emulsifiers. Colloid & Polymer Science, 2013, 291( 7): 1683– 1691

[113]

CrescenziV, FrancescangeliA, SegreA L, CapitaniD, ManninaL, RenierD, BelliniD. NMR structural study of hydrogels based on partially deacetylated hyaluronan. Macromolecular Bioscience, 2002, 2( 6): 272– 279

[114]

CrescenziV, FrancescangeliA, CapitaniD, ManninaL, RenierD, BelliniD. Hyaluronan networking via Ugi’s condensation using lysine as cross-linker diamine. Carbohydrate Polymers, 2003, 53( 3): 311– 316

[115]

KhanA, BadshahS, AiroldiC. Dithiocarbamated chitosan as a potent biopolymer for toxic cation remediation. Colloids and Surfaces B: Biointerfaces, 2011, 87( 1): 88– 95

[116]

WanQ, LiuM, XuD, HuangH, MaoL, ZengG, DengF, ZhangX, WeiY. Facile fabrication of amphiphilic AIE active glucan via formation of dynamic bonds: self assembly, stimuli responsiveness and biological imaging. Journal of Materials Chemistry, 2016, 4( 22): 4033– 4039

[117]

MéndezY, ChangJ, HumpierreA R, ZanuyA, GarridoR, VascoA V, PedrosoJ, SantanaD, RodríguezL M, García-RiveraD, ValdésY, Vérez-BencomoV, RiveraD G. Multicomponent polysaccharide-protein bioconjugation in the development of antibacterial glycoconjugate vaccine candidates. Chemical Science, 2018, 9( 9): 2581– 2588

[118]

UhligN, LiC J. Site-specific modification of amino acids and peptides by aldehyde−alkyne−amine coupling under ambient aqueous conditions. Organic Letters, 2012, 14( 12): 3000– 3003

[119]

ZhangJ, MulumbaM, OngH, LubellW D. Diversity-oriented synthesis of cyclic azapeptides by A3-macrocyclization provides high-affinity CD36-modulating peptidomimetics. Angewandte Chemie International Edition, 2017, 56( 22): 6284– 6288

[120]

OhmR G, MulumbaM, ChingleR M, AhsanullahJ, ZhangS, ChemtobH, OngW D. Diversity-oriented A3-macrocyclization for studying influences of ring-size and shape of cyclic peptides: CD36 receptor modulators. Journal of Medicinal Chemistry, 2021, 64( 13): 9365– 9380

[121]

JoshiN S, WhitakerL R, FrancisM B. A three-component Mannich-type reaction for selective tyrosine bioconjugation. Journal of the American Chemical Society, 2004, 126( 49): 15942– 15943

[122]

ChilamariM, PurushottamL, RaiV. Site-selective labeling of native proteins by a multicomponent approach. Chemistry, 2017, 23( 16): 3819– 3823

[123]

NazeriM T, JavanbakhtS, ShaabaniA, GhorbaniM. 5-Aminopyrazole-conjugated gelatin hydrogel: a controlled 5-fluorouracil delivery system for rectal administration. Journal of Drug Delivery Science and Technology, 2020, 57 : 101669

[124]

ZhaZ, LiJ, GeZ. Endosomal-escape polymers based on multicomponent reaction-synthesized monomers integrating alkyl and imidazolyl moieties for efficient gene delivery. ACS Macro Letters, 2015, 4( 10): 1123– 1127

[125]

MarekM, JarýJ, ValentovaO, VodrážkaZ. Immobilization of glycoenzymes by means of their glycosidic components. Biotechnology Letters, 1983, 5( 10): 653– 658

[126]

ZieglerT, GerlingS, LangM. Preparation of bioconjugates through an Ugi reaction. Angewandte Chemie International Edition, 2000, 39( 12): 2109– 2112

[127]

BlassbergerD, FreemanA, GoldsteinL. Chemically modified polyesters as supports for enzyme immobilization: isocyanide, acylhydrazide, and aminoaryl derivatives of poly(ethylene terephthalate). Biotechnology and Bioengineering, 1978, 20( 2): 309– 316

[128]

JiaZ, BobrinV A, TruongN P, GillardM, MonteiroM J. Multifunctional nanoworms and nanorods through a one-step aqueous dispersion polymerization. Journal of the American Chemical Society, 2014, 136( 16): 5824– 5827

[129]

LiuG, ShegiwalA, ZengY, WeiY, BoyerC, HaddletonD, TaoL. Polymers for fluorescence imaging of formaldehyde in living systems via the Hantzsch reaction. ACS Macro Letters, 2018, 7( 11): 1346– 1352

[130]

YanH, ChenX, BaoC, WuS, HeS, LinQ. Alginate derivative-functionalized silica nanoparticles: surface modification and characterization. Polymer Bulletin, 2020, 77( 1): 73– 84

[131]

MohammadiM, AshjariM, DezvareiS, YousefiM, BabakiM, MohammadiJ. Rapid and high-density covalent immobilization of Rhizomucor miehei lipase using a multi component reaction: application in biodiesel production. RSC Advances, 2015, 5( 41): 32698– 32705

[132]

MohammadiM, HabibiZ, GandomkarS, YousefiM. A novel approach for bioconjugation of Rhizomucor miehei lipase (RML) onto amine-functionalized supports: application for enantioselective resolution of rac-ibuprofen. International Journal of Biological Macromolecules, 2018, 117 : 523– 531

[133]

SalamiF, HabibiZ, YousefiM, MohammadiM. Covalent immobilization of laccase by one pot three component reaction and its application in the decolorization of textile dyes. International Journal of Biological Macromolecules, 2018, 120 : 144– 151

[134]

JavanbakhtS, ShadiM, MohammadianR, ShaabaniA, GhorbaniM, RabieeG, AminiM M. Preparation of Fe3O4@SiO2@Tannic acid double core-shell magnetic nanoparticles via the Ugi multicomponent reaction strategy as a pH-responsive co-delivery of doxorubicin and methotrexate. Materials Chemistry and Physics, 2020, 247 : 122857

[135]

AshjariM, GarmroodiM, AslF A, EmampourM, YousefiM, LishM P, HabibiZ, MohammadiM. Application of multi-component reaction for covalent immobilization of two lipases on aldehyde-functionalized magnetic nanoparticles: production of biodiesel from waste cooking oil. Process Biochemistry, 2020, 90 : 156– 167

[136]

PerreaultF, De FariaA F, ElimelechM. Environmental applications of graphene-based nanomaterials. Chemical Society Reviews, 2015, 44( 16): 5861– 5896

[137]

LeaperS, Abdel-KarimA, GorgojoP. The use of carbon nanomaterials in membrane distillation membranes: a review. Frontiers of Chemical Science and Engineering, 2021, 15( 4): 1– 20

[138]

ShaabaniA, AfshariR. Synthesis of carboxamide-functionalized multiwall carbon nanotubes via Ugi multicomponent reaction: water-dispersible peptidomimetic nanohybrid as controlled drug delivery vehicle. ChemistrySelect, 2017, 2( 18): 5218– 5225

[139]

AfshariR, HooshmandS E, AtharnezhadM, ShaabaniA. An insight into the novel covalent functionalization of multi-wall carbon nanotubes with pseudopeptide backbones for palladium nanoparticles immobilization: a versatile catalyst towards diverse cross-coupling reactions in bio-based solvents. Polyhedron, 2020, 175 : 114238

[140]

FaberK. Biotransformations in Organic Chemistry, Vol 4. Berlin: Springer, 1992

[141]

JohnsonC R. Biotransformations in the synthesis of enantiopure bioactive molecules. Accounts of Chemical Research, 1998, 31( 6): 333– 341

[142]

HartmannM, KostrovX. Immobilization of enzymes on porous silicas—benefits and challenges. Chemical Society Reviews, 2013, 42( 15): 6277– 6289

[143]

LeeC K, Au-DuongA N. Enzyme immobilization on nanoparticles: recent applications. Emerging Areas in Bioengineering, 2018, 1 : 67– 80

[144]

HermansonG T. Bioconjugate Techniques. Washington: Academic Press, 2013

[145]

BoonsG, LeeY, SuzukiA, TaniguchiN, VoragenA. Comprehensive glycoscience from chemistry to systems biology. Biochemistry of Glycoconjugate Glycans Carbohydrate-Mediated Interactions, 2007, 3 : 902

[146]

DanishefskyS J, AllenJ R. From the laboratory to the clinic: a retrospective on fully synthetic carbohydrate-based anticancer vaccines. Angewandte Chemie International Edition, 2000, 39( 5): 836– 863

[147]

van KasterenS I, KramerH B, JensenH H, CampbellS J, KirkpatrickJ, OldhamN J, AnthonyD C, DavisB G. Expanding the diversity of chemical protein modification allows post-translational mimicry. Nature, 2007, 446( 7139): 1105– 1109

[148]

AbedA, DevalB, AssoulN, BatailleI, PortesP, LouedecL, HeninD, LetourneurD, Meddahi-PelleA. A biocompatible polysaccharide hydrogel-embedded polypropylene mesh for enhanced tissue integration in rats. Tissue Engineering Part A, 2008, 14( 4): 519– 527

[149]

ShaabaniA, ShadiM, MohammadianR, JavanbakhtS, NazeriM T, BahriF. Multi-component reaction-functionalized chitosan complexed with copper nanoparticles: an efficient catalyst toward A3 coupling and click reactions in water. Applied Organometallic Chemistry, 2019, 33( 9): e5074

[150]

BahriF, ShadiM, MohammadianR, JavanbakhtS, ShaabaniA. Cu-decorated cellulose through a three-component Betti reaction: an efficient catalytic system for the synthesis of 1,3,4-oxadiazoles via imine CH functionalization of N-acylhydrazones. Carbohydrate Polymers, 2021, 265 : 118067

[151]

JavanbakhtS, NazeriM T, ShaabaniA, GhorbaniM. Green one-pot synthesis of multicomponent-crosslinked carboxymethyl cellulose as a safe carrier for the gentamicin oral delivery. International Journal of Biological Macromolecules, 2020, 164 : 2873– 2880

[152]

JavanbakhtS, NabiM, ShaabaniA. Graphene quantum dots-crosslinked gelatin via the efficient Ugi four-component reaction: safe photoluminescent implantable carriers for the pH-responsive delivery of doxorubicin. Materialia, 2021, 20 : 101233

[153]

ZeebB, SaberiA H, WeissJ, McClementsD J. Retention and release of oil-in-water emulsions from filled hydrogel beads composed of calcium alginate: impact of emulsifier type and pH. Soft Matter, 2015, 11( 11): 2228– 2236

[154]

KorogiannakiM, ZhangJ, SheardownH. Surface modification of model hydrogel contact lenses with hyaluronic acid via thiol-ene “click” chemistry for enhancing surface characteristics. Journal of Biomaterials Applications, 2017, 32( 4): 446– 462

[155]

PettignanoA, LeguyJ, HeuxL, JeanB, CharlotA, FleuryE. Multifunctionalization of cellulose microfibrils through a cascade pathway entailing the sustainable Passerini multi-component reaction. Green Chemistry, 2020, 22( 20): 7059– 7069

[156]

HalimehjaniA Z, MohtashamR, ShockraviA, MartensJ. Multicomponent synthesis of dithiocarbamates starting from vinyl sulfones/sulfoxides and their use in polymerization reactions. RSC Advances, 2016, 6( 79): 75223– 75226

[157]

HalimehjaniA Z, HooshmandS E, ShamiriE V. Synthesis of α-phthalimido-α′-dithiocarbamato propan-2-ols via a one-pot, three-component epoxide ring-opening in water. Tetrahedron Letters, 2014, 55( 40): 5454– 5457

[158]

De FilippisV, QuarzagoD, VindigniA, Di CeraE, FontanaA. Synthesis and characterization of more potent analogues of hirudin fragment 1−47 containing non-natural amino acids. Biochemistry, 1998, 37( 39): 13507– 13515

[159]

JungheimL N, ShepherdT A, BaxterA J, BurgessJ, HatchS D, LubbehusenP, WiskerchenM, MuesingM A. Potent human immunodeficiency virus type 1 protease inhibitors that utilize noncoded D-amino acids as P2/P3 ligands. Journal of Medicinal Chemistry, 1996, 39( 1): 96– 108

[160]

NakataniS, HidakaK, AmiE, NakaharaK, SatoA, NguyenJ T, HamadaY, HoriY, OhnishiN, NagaiA, KimuraT, HayashiY, KisoY. Combination of non-natural D-amino acid derivatives and allophenylnorstatine-dimethylthioproline scaffold in HIV protease inhibitors have high efficacy in mutant HIV. Journal of Medicinal Chemistry, 2008, 51( 10): 2992– 3004

[161]

SharmaA, MejíaD, RegnaudA, UhligN, LiC J, MaysingerD, KakkarA. Combined A3 coupling and click chemistry approach for the synthesis of dendrimer-based biological tools. ACS Macro Letters, 2014, 3( 10): 1079– 1083

[162]

HuangJ L, GrayD G, LiC J. A3-coupling catalyzed by robust Au nanoparticles covalently bonded to HS-functionalized cellulose nanocrystalline films. Beilstein Journal of Organic Chemistry, 2013, 9( 1): 1388– 1396

[163]

TerraJ C, MooresA, MouraF C. Amine-functionalized mesoporous silica as a support for on-demand release of copper in the A3-coupling reaction: ultralow concentration catalysis and confinement effect. ACS Sustainable Chemistry & Engineering, 2019, 7( 9): 8696– 8705

[164]

RamazaniA, AhankarH, NafehZ T, JooS W. Modern catalysts in A3-coupling reactions. Current Organic Chemistry, 2019, 23( 25): 2783– 2801

[165]

YooW J, ZhaoL, LiC J. The A3-coupling (aldehyde-alkyne-amine) reaction: a versatile method for the preparation of propargyl amines. ChemInform, 2012, 43( 5): no

[166]

MarsaultE, PetersonM L. Macrocycles are great cycles: applications, opportunities, and challenges of synthetic macrocycles in drug discovery. Journal of Medicinal Chemistry, 2011, 54( 7): 1961– 2004

[167]

CraikD J, FairlieD P, LirasS, PriceD. The future of peptide-based drugs. Chemical Biology & Drug Design, 2013, 81( 1): 136– 147

[168]

HencheyL K, JochimA L, AroraP S. Contemporary strategies for the stabilization of peptides in the α-helical conformation. Current Opinion in Chemical Biology, 2008, 12( 6): 692– 697

[169]

de AraujoA D, HoangH N, KokW M, DinessF, GuptaP, HillT A, DriverR W, PriceD A, LirasS, FairlieD P. Comparative α-helicity of cyclic pentapeptides in water. Angewandte Chemie International Edition, 2014, 53( 27): 6965– 6969

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (11244KB)

1892

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/