Rational design on photoelectrodes and devices to boost photoelectrochemical performance of solar-driven water splitting: a mini review
Siliu Lyu, Muhammad Adnan Younis, Zhibin Liu, Libin Zeng, Xianyun Peng, Bin Yang, Zhongjian Li, Lecheng Lei, Yang Hou
Rational design on photoelectrodes and devices to boost photoelectrochemical performance of solar-driven water splitting: a mini review
As an eco-friendly, efficient, and low-cost technique, photoelectrochemical water splitting has attracted growing interest in the production of clean and sustainable hydrogen by the conversion of abundant solar energy. In the photoelectrochemical system, the photoelectrode plays a vital role in absorbing the energy of sunlight to trigger the water splitting process and the overall efficiency depends largely on the integration and design of photoelectrochemical devices. In recent years, the optimization of photoelectrodes and photoelectrochemical devices to achieve highly efficient hydrogen production has been extensively investigated. In this paper, a concise review of recent advances in the modification of nanostructured photoelectrodes and the design of photoelectrochemical devices is presented. Meanwhile, the general principles of structural and morphological factors in altering the photoelectrochemical performance of photoelectrodes are discussed. Furthermore, the performance indicators and first principles to describe the behaviors of charge carriers are analyzed, which will be of profound guiding significance to increasing the overall efficiency of the photoelectrochemical water splitting system. Finally, current challenges and prospects for an in-depth understanding of reaction mechanisms using advanced characterization technologies and potential strategies for developing novel photoelectrodes and advanced photoelectrochemical water splitting devices are demonstrated.
photoelectrochemical water splitting / photoelectrodes / hydrogen production / charge separation / catalytic mechanism
[1] |
ShiP, ChengX, LyuS. Efficient electrocatalytic oxygen evolution at ultra-high current densities over 3D Fe, N doped Ni(OH)2 nanosheets. Chinese Chemical Letters, 2021, 32( 3): 1210– 1214
CrossRef
Google scholar
|
[2] |
WangK, WangX, LiZ, YangB, LingM, GaoX, LuJ, ShiQ, LeiL, WuG, HouY. Designing 3d dual transition metal electrocatalysts for oxygen evolution reaction in alkaline electrolyte: beyond oxides. Nano Energy, 2020, 77 : 105162
CrossRef
Google scholar
|
[3] |
KannanN, VakeesanD. Solar energy for future world: a review. Renewable & Sustainable Energy Reviews, 2016, 62 : 1092– 1105
CrossRef
Google scholar
|
[4] |
JiangC, MonizS J A, WangA, ZhangT, TangJ. Photoelectrochemical devices for solar water splitting—materials and challenges. Chemical Society Reviews, 2017, 46( 15): 4645– 4660
CrossRef
Google scholar
|
[5] |
ZhaoY, DingC, ZhuJ, QinW, TaoX, FanF, LiR, LiC. A hydrogen farm strategy for scalable solar hydrogen production with particulate photocatalysts. Angewandte Chemie International Edition, 2020, 59( 24): 9653– 9658
CrossRef
Google scholar
|
[6] |
KudoA, MisekiY. Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009, 38( 1): 253– 278
CrossRef
Google scholar
|
[7] |
ChangX, WangT, GongJ. CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy & Environmental Science, 2016, 9( 7): 2177– 2196
CrossRef
Google scholar
|
[8] |
KojimaA, TeshimaK, ShiraiY, MiyasakaT. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131( 17): 6050– 6051
CrossRef
Google scholar
|
[9] |
GrätzelM. Photoelectrochemical cells. Nature, 2001, 414( 6861): 338– 344
CrossRef
Google scholar
|
[10] |
ChoudhuryC, AndersenS L, RekstadJ. A solar air heater for low temperature applications. Solar Energy, 1988, 40( 4): 335– 343
CrossRef
Google scholar
|
[11] |
ChengF, WangL, WangH, LeiC, YangB, LiZ, ZhangQ, LeiL, WangS, HouY. Boosting alkaline hydrogen evolution and Zn-H2O cell induced by interfacial electron transfer. Nano Energy, 2020, 71 : 104621
CrossRef
Google scholar
|
[12] |
LeiC, ChenH, CaoJ, YangJ, QiuM, XiaY, YuanC, YangB, LiZ, ZhangX.
CrossRef
Google scholar
|
[13] |
LeiC, WangY, HouY, LiuP, YangJ, ZhangT, ZhuangX, ChenM, YangB, LeiL.
CrossRef
Google scholar
|
[14] |
WangL, LiZ, WangK, DaiQ, LeiC, YangB, ZhangQ, LeiL, LeungM K H, HouY. Tuning d-band center of tungsten carbide via Mo doping for efficient hydrogen evolution and Zn-H2O cell over a wide pH range. Nano Energy, 2020, 74 : 104850
CrossRef
Google scholar
|
[15] |
HouY, QiuM, KimM G, LiuP, NamG, ZhangT, ZhuangX, YangB, ChoJ, ChenM.
CrossRef
Google scholar
|
[16] |
HouY, QiuM, NamG, KimM G, ZhangT, LiuK, ZhuangX, ChoJ, YuanC, FengX. Integrated hierarchical cobalt sulfide/nickel selenide hybrid nanosheets as an efficient three-dimensional electrode for electrochemical and photoelectrochemical water splitting. Nano Letters, 2017, 17( 7): 4202– 4209
CrossRef
Google scholar
|
[17] |
HouY, QiuM, ZhangT, MaJ, LiuS, ZhuangX, YuanC, FengX. Efficient electrochemical and photoelectrochemical water splitting by a 3D nanostructured carbon supported on flexible exfoliated graphene foil. Advanced Materials, 2017, 29( 3): 1604480
CrossRef
Google scholar
|
[18] |
WhiteJ L, BaruchM F, PanderJ E III, HuY, FortmeyerI C, ParkJ E, ZhangT, LiaoK, GuJ, YanY.
CrossRef
Google scholar
|
[19] |
NiuF, WangD, LiF, LiuY, ShenS, MeyerT J. Hybrid photoelectrochemical water splitting systems: from interface design to system assembly. Advanced Energy Materials, 2019, 10( 11): 1900399
CrossRef
Google scholar
|
[20] |
Siavash MoakharR, Hosseini-HosseinabadS M, Masudy-PanahS, SezaA, JalaliM, Fallah-AraniH, DabirF, GholipourS, AbdiY, Bagheri-HaririM.
CrossRef
Google scholar
|
[21] |
FujishimaA, HondaK. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238( 5358): 37– 38
CrossRef
Google scholar
|
[22] |
HellmanA, WangB. First-principles view on photoelectrochemistry: water-splitting as case study. Inorganics, 2017, 5( 2): 37
CrossRef
Google scholar
|
[23] |
ZhangH, WangH Z, XuanJ. Rational design of photoelectrochemical cells towards bias-free water splitting: thermodynamic and kinetic insights. Journal of Power Sources, 2020, 462 : 228113
CrossRef
Google scholar
|
[24] |
ZhangX Q, Bieberle-HutterA. Modeling and simulations in photoelectrochemical water oxidation: from single level to multiscale modeling. ChemSusChem, 2016, 9( 11): 1223– 1242
CrossRef
Google scholar
|
[25] |
BoumeriameH, Da SilvaE S, CherevanA S, ChafikT, FariaJ L, EderD. Layered double hydroxide (LDH)-based materials: a mini-review on strategies to improve the performance for photocatalytic water splitting. Journal of Energy Chemistry, 2022, 64 : 406– 431
CrossRef
Google scholar
|
[26] |
ReddyC V, ReddyI N, HarishV V N, ReddyK R, ShettiN P, ShimJ, AminabhaviT M. Efficient removal of toxic organic dyes and photoelectrochemical properties of iron-doped zirconia nanoparticles. Chemosphere, 2020, 239 : 124766
CrossRef
Google scholar
|
[27] |
YeK H, LiH B, HuangD, XiaoS, QiuW T, LiM Y, HuY W, MaiW J, JiH B, YangS H. Enhancing photoelectrochemical water splitting by combining work function tuning and heterojunction engineering. Nature Communications, 2019, 10( 1): 3687
CrossRef
Google scholar
|
[28] |
ChandrasekaranS, YaoL, DengL B, BowenC, ZhangY, ChenS M, LinZ Q, PengF, ZhangP X. Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chemical Society Reviews, 2019, 48( 15): 4178– 4280
CrossRef
Google scholar
|
[29] |
ChenY B, ZhengW Y, Murcia-LopezS, LvF, MoranteJ R, VayssieresL, BurdaC. Light management in photoelectrochemical water splitting—from materials to device engineering. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2021, 9( 11): 3726– 3748
CrossRef
Google scholar
|
[30] |
KimJ H, HansoraD, SharmaP, JangJ W, LeeJ S. Toward practical solar hydrogen production—an artificial photosynthetic leaf-to-farm challenge. Chemical Society Reviews, 2019, 48( 7): 1908– 1971
CrossRef
Google scholar
|
[31] |
LiL Z, LiuC H, QiuY Y, MitsuzakN, ChenZ D. Convex-nanorods of alpha-Fe2O3/CQDs heterojunction photoanode synthesized by a facile hydrothermal method for highly efficient water oxidation. International Journal of Hydrogen Energy, 2017, 42( 31): 19654– 19663
CrossRef
Google scholar
|
[32] |
WangC Z, ChenZ, JinH B, CaoC B, LiJ B, MiZ T. Enhancing visible-light photoelectrochemical water splitting through transition-metal doped TiO2 nanorod arrays. Journal of Materials Chemistry A, 2014, 2( 42): 17820– 17827
CrossRef
Google scholar
|
[33] |
VaradhanP, FuH C, PrianteD, RetamalJ R D, ZhaoC, EbaidM, NgT K, AjiaI, MitraS, RoqanI S.
CrossRef
Google scholar
|
[34] |
NieQ, YangL, CaoC, ZengY M, WangG Z, WangC Z, LinS W. Interface optimization of ZnO nanorod/CdS quantum dots heterostructure by a facile two-step low-temperature thermal treatment for improved photoelectrochemical water splitting. Chemical Engineering Journal, 2017, 325 : 151– 159
CrossRef
Google scholar
|
[35] |
HisatomiT, KubotaJ, DomenK. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chemical Society Reviews, 2014, 43( 22): 7520– 7535
CrossRef
Google scholar
|
[36] |
HamdaniI R, BhaskarwarA N. Recent progress in material selection and device designs for photoelectrochemical water-splitting. Renewable & Sustainable Energy Reviews, 2021, 138 : 110503
CrossRef
Google scholar
|
[37] |
LiJ K, ChengK W. Surface modification of the p-type Cu2ZnSnS4 photocathode with n-type zinc oxide nanorods for photo-driven salt water splitting. International Journal of Hydrogen Energy, 2021, 46( 53): 26961– 26975
CrossRef
Google scholar
|
[38] |
LiZ S, LuoW J, ZhangM L, FengJ Y, ZouZ G. Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy & Environmental Science, 2013, 6( 2): 347– 370
CrossRef
Google scholar
|
[39] |
WuN Q. Plasmonic metal-semiconductor photocatalysts and photoelectrochemical cells: a review. Nanoscale, 2018, 10( 6): 2679– 2696
CrossRef
Google scholar
|
[40] |
KimJ H, LeeJ S. Elaborately modified BiVO4 photoanodes for solar water splitting. Advanced Materials, 2019, 31( 20): 1806938
CrossRef
Google scholar
|
[41] |
SaraswatS K, RodeneD D, GuptaR B. Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light. Renewable & Sustainable Energy Reviews, 2018, 89 : 228– 248
CrossRef
Google scholar
|
[42] |
ChenF, MaT Y, ZhangT R, ZhangY H, HuangH W. Atomic-level charge separation strategies in semiconductor-based photocatalysts. Advanced Materials, 2021, 33( 10): 2005256
CrossRef
Google scholar
|
[43] |
QianW Q, XuS W, ZhangX M, LiC B, YangW Y, BowenC R, YangY. Differences and similarities of photocatalysis and electrocatalysis in two-dimensional nanomaterials: strategies, traps, applications and challenges. Nano-Micro Letters, 2021, 13( 1): 156
CrossRef
Google scholar
|
[44] |
ZhangS, YeH, HuaJ, TianH. Recent advances in dye-sensitized photoelectrochemical cells for water splitting. EnergyChem, 2019, 1( 3): 100015
CrossRef
Google scholar
|
[45] |
JoyJ, MathewJ, GeorgeS C. Nanomaterials for photoelectrochemical water splitting—review. International Journal of Hydrogen Energy, 2018, 43( 10): 4804– 4817
CrossRef
Google scholar
|
[46] |
XuP T, McCoolN S, MalloukT E. Water splitting dye-sensitized solar cells. Nano Today, 2017, 14 : 42– 58
CrossRef
Google scholar
|
[47] |
HuangY T, KavanaghS R, ScanlonD O, WalshA, HoyeR L Z. Perovskite-inspired materials for photovoltaics and beyond-from design to devices. Nanotechnology, 2021, 32( 13): 132004
CrossRef
Google scholar
|
[48] |
WangQ, DomenK. Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chemical Reviews, 2020, 120( 2): 919– 985
CrossRef
Google scholar
|
[49] |
LaskowskiF A L, NellistM R, QuJ J, BoettcherS W. Metal oxide/(oxy)hydroxide overlayers as hole collectors and oxygen-evolution catalysts on water-splitting photoanodes. Journal of the American Chemical Society, 2019, 141( 4): 1394– 1405
CrossRef
Google scholar
|
[50] |
MazzeoA, SantallaS, GaviglioC, DoctorovichF, PellegrinoJ. Recent progress in homogeneous light-driven hydrogen evolution using first-row transition metal catalysts. Inorganica Chimica Acta, 2021, 517 : 119950
CrossRef
Google scholar
|
[51] |
XuY, SchoonenM A A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist, 2000, 85( 3-4): 543– 556
CrossRef
Google scholar
|
[52] |
BoltonJ R, StricklerS J, ConnollyJ S. Limiting and realizable efficiencies of solar photolysis of water. Nature, 1985, 316( 6028): 495– 500
CrossRef
Google scholar
|
[53] |
SwathiS, YuvakkumarR, RaviG, BabuE S, VelauthapillaiD, AlharbiS A. Morphological exploration of chemical vapor-deposited P-doped ZnO nanorods for efficient photoelectrochemical water splitting. Ceramics International, 2021, 47( 5): 6521– 6527
CrossRef
Google scholar
|
[54] |
EidsvagH, BentoubaS, VajeestonP, YohiS, VelauthapillaiD. TiO2 as a photocatalyst for water splitting—an experimental and theoretical review. Molecules (Basel, Switzerland), 2021, 26( 6): 1687
CrossRef
Google scholar
|
[55] |
BrilletJ, CornuzM, FormalF L, YumJ H, GrätzelM, SivulaK. Examining architectures of photoanode-photovoltaic tandem cells for solar water splitting. Journal of Materials Research, 2010, 25( 1): 17– 24
CrossRef
Google scholar
|
[56] |
ChenY B, FengX Y, LiuY, GuanX J, BurdaC, GuoL J. Metal oxide-based tandem cells for self-biased photoelectrochemical water splitting. ACS Energy Letters, 2020, 5( 3): 844– 866
CrossRef
Google scholar
|
[57] |
SolarskaR, AlexanderB D, AugustynskiJ. Electrochromic and structural characteristics of mesoporous WO3 films prepared by a sol-gel method. Journal of Solid State Electrochemistry, 2004, 8( 10): 748– 756
CrossRef
Google scholar
|
[58] |
PeterL M, Upul WijayanthaK G. Photoelectrochemical water splitting at semiconductor electrodes: fundamental problems and new perspectives. ChemPhysChem, 2014, 15( 10): 1983– 1995
CrossRef
Google scholar
|
[59] |
WuH, TanH L, ToeC Y, ScottJ, WangL Z, AmalR, NgY H. Photocatalytic and photoelectrochemical systems: similarities and differences. Advanced Materials, 2020, 32( 18): 1904717
CrossRef
Google scholar
|
[60] |
ZhengZ X, LoI M C. Multifunctional photoelectrochemical systems for coupled water treatment and high-value product generation: current status, mechanisms, remaining challenges, and future opportunities. Current Opinion in Chemical Engineering, 2021, 34 : 100711
CrossRef
Google scholar
|
[61] |
ZhouS Q, ChenK Y, HuangJ W, WangL, ZhangM Y, BaiB, LiuH, WangQ Z. Preparation of heterometallic CoNi-MOFs-modified BiVO4: a steady photoanode for improved performance in photoelectrochemical water splitting. Applied Catalysis B, 2020, 266 : 118513
CrossRef
Google scholar
|
[62] |
AhmedM, DincerI. A review on photoelectrochemical hydrogen production systems: challenges and future directions. International Journal of Hydrogen Energy, 2019, 44( 5): 2474– 2507
CrossRef
Google scholar
|
[63] |
BakT, NowotnyJ, RekasM, SorrellC C. Photo-electrochemical hydrogen generation from water using solar energy, materials-related aspects. International Journal of Hydrogen Energy, 2002, 27( 10): 991– 1022
CrossRef
Google scholar
|
[64] |
VanpouckeD E P, BultinckP, CottenierS, Van SpeybroeckV, Van DriesscheI. Aliovalent doping of CeO2: DFT study of oxidation state and vacancy effects. Journal of Materials Chemistry A, 2014, 2( 33): 13723– 13737
CrossRef
Google scholar
|
[65] |
LiuG, ZhaoY N, SunC H, LiF, LuG Q, ChengH M. Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2. Angewandte Chemie International Edition, 2008, 47( 24): 4516– 4520
CrossRef
Google scholar
|
[66] |
LongR, EnglishN J. First-principles calculation of synergistic (N, P)-codoping effects on the visible-light photocatalytic activity of anatase TiO2. Journal of Physical Chemistry C, 2010, 114( 27): 11984– 11990
CrossRef
Google scholar
|
[67] |
NiuM, ChengD J, CaoD P. Enhanced photoelectrochemical performance of anatase TiO2 by metal-assisted S–O coupling for water splitting. International Journal of Hydrogen Energy, 2013, 38( 3): 1251– 1257
CrossRef
Google scholar
|
[68] |
HuY F, HuangH T, FengJ Y, WangW, GuanH M, LiZ S, ZouZ G. Material design and surface/interface engineering of photoelectrodes for solar water splitting. Solar RRL, 2021, 5( 4): 2100100
CrossRef
Google scholar
|
[69] |
JiaoY, HellmanA, FangY R, GaoS W, KallM. Schottky barrier formation and band bending revealed by first-principles calculations. Scientific Reports, 2015, 5( 1): 11374
CrossRef
Google scholar
|
[70] |
KwonS, LeeS J, KimS M, LeeY, SongH, ParkJ Y. Probing the nanoscale Schottky barrier of metal/semiconductor interfaces of Pt/CdSe/Pt nanodumbbells by conductive-probe atomic force microscopy. Nanoscale, 2015, 7( 29): 12297– 12301
CrossRef
Google scholar
|
[71] |
TungR T. The physics and chemistry of the Schottky barrier height. Applied Physics Reviews, 2014, 1( 1): 011304
CrossRef
Google scholar
|
[72] |
ZawadzkiP, LaursenA B, JacobsenK W, DahlS, RossmeislJ. Oxidative trends of TiO2-hole trapping at anatase and rutile surfaces. Energy & Environmental Science, 2012, 5( 12): 9866– 9869
CrossRef
Google scholar
|
[73] |
AlexandrovV, NeumannA, SchererM M, RossoK M. Electron exchange and conduction in nontronite from first-principles. Journal of Physical Chemistry C, 2013, 117( 5): 2032– 2040
CrossRef
Google scholar
|
[74] |
JafariT, MoharreriE, AminA S, MiaoR, SongW, SuibS L. Photocatalytic water splitting-the untamed dream: a review of recent advances. Molecules (Basel, Switzerland), 2016, 21( 7): 900
CrossRef
Google scholar
|
[75] |
ZouZ, YeJ, SayamaK, ArakawaH. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 2001, 414( 6864): 625– 627
CrossRef
Google scholar
|
[76] |
RissA, ElserM J, BernardiJ, DiwaldO. Stability and photoelectronic properties of layered titanate nanostructures. Journal of the American Chemical Society, 2009, 131( 17): 6198– 6206
CrossRef
Google scholar
|
[77] |
WickmanB, Bastos FantaA, BurrowsA, HellmanA, WagnerJ B, IandoloB. Iron oxide films prepared by rapid thermal processing for solar energy conversion. Scientific Reports, 2017, 7( 1): 40500
CrossRef
Google scholar
|
[78] |
XiaY, YangP, SunY, WuY, MayersB, GatesB, YinY, KimF, YanH. One-dimensional nanostructures: synthesis, characterization, and applications. Advanced Materials, 2003, 15( 5): 353– 389
CrossRef
Google scholar
|
[79] |
MahalingamS, AbdullahH. Electron transport study of indium oxide as photoanode in DSSCs: a review. Renewable & Sustainable Energy Reviews, 2016, 63 : 245– 255
CrossRef
Google scholar
|
[80] |
XuJ, WangZ, LiW, ZhangX, HeD, XiaoX. Ag nanoparticles located on three-dimensional pine tree-like hierarchical TiO2 nanotube array films as high-efficiency plasmonic photocatalysts. Nanoscale Research Letters, 2017, 12( 1): 54
CrossRef
Google scholar
|
[81] |
BedinK C, MucheD N F, MeloM A Jr, FreitasA L M, GonçalvesR V, SouzaF L. Role of cocatalysts on hematite photoanodes in photoelectrocatalytic water splitting: challenges and future perspectives. ChemCatChem, 2020, 12( 12): 3156– 3169
CrossRef
Google scholar
|
[82] |
RajaambalS, SivaranjaniK, GopinathC S. Recent developments in solar H2 generation from water splitting. Journal of Chemical Sciences, 2015, 127( 1): 33– 47
CrossRef
Google scholar
|
[83] |
ZafarZ YiS S LiJ P LiC Q ZhuY F ZadaA YaoW J LiuZ Y YueX Z. Recent development in defects engineered photocatalysts: an overview of the experimental and theoretical strategies. Energy & Environmental Materials, 2021. doi: 10.1002/eem1002.12171
|
[84] |
ZhangP, LouX W. Design of heterostructured hollow photocatalysts for solar-to-chemical energy conversion. Advanced Materials, 2019, 31( 29): 1900281
CrossRef
Google scholar
|
[85] |
ChenS R, LiC L, HouZ Y. The novel behavior of photoelectrochemical property of annealing TiO2 nanorod arrays. Journal of Materials Science, 2020, 55( 14): 5969– 5981
CrossRef
Google scholar
|
[86] |
JooJ B, ZhangQ, DahlM, LeeI, GoeblJ, ZaeraF, YinY D. Control of the nanoscale crystallinity in mesoporous TiO2 shells for enhanced photocatalytic activity. Energy & Environmental Science, 2012, 5( 4): 6321– 6327
CrossRef
Google scholar
|
[87] |
TanH L, AmalR, NgY H. Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO4: a review. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5( 32): 16498– 16521
CrossRef
Google scholar
|
[88] |
YanZ Y, HuangW X, JiangX R, GaoJ Z, HuY W, ZhangH Z, ShiQ W. Hollow structured black TiO2 with thickness-controllable microporous shells for enhanced visible-light-driven photocatalysis. Microporous and Mesoporous Materials, 2021, 323 : 111228
CrossRef
Google scholar
|
[89] |
ZhangW, TianY, HeH L, XuL, LiW, ZhaoD Y. Recent advances in the synthesis of hierarchically mesoporous TiO2 materials for energy and environmental applications. National Science Review, 2020, 7( 11): 1702– 1725
CrossRef
Google scholar
|
[90] |
PihoshY, MinegishiT, NandalV, HigashiT, KatayamaM, YamadaT, SasakiY, SekiK, SuzukiY, NakabayashiM.
CrossRef
Google scholar
|
[91] |
CaoM Q, LiH M, LiuK, HuJ H, PanH, FuJ W, LiuM. Vertical SrNbO2N nanorod arrays for solar-driven photoelectrochemical water splitting. Solar RRL, 2021, 5( 6): 2000448
CrossRef
Google scholar
|
[92] |
ChenX B, LiuL, YuP Y, MaoS S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 2011, 331( 6018): 746– 750
CrossRef
Google scholar
|
[93] |
TakagiF, KageshimaY, TeshimaK, DomenK, NishikioriH. Enhanced photoelectrochemical performance from particulate ZnSe:Cu(In,Ga)Se-2 photocathodes during solar hydrogen production via particle size control. Sustainable Energy & Fuels, 2021, 5( 2): 412– 423
CrossRef
Google scholar
|
[94] |
MishraA K, PradhanD. Morphology controlled solution-based synthesis of Cu2O crystals for the facets-dependent catalytic reduction of highly toxic aqueous Cr(VI). Crystal Growth & Design, 2016, 16( 7): 3688– 3698
CrossRef
Google scholar
|
[95] |
TanH L, AmalR, NgY H. Exploring the different roles of particle size in photoelectrochemical and photocatalytic water oxidation on BiVO4. ACS Applied Materials & Interfaces, 2016, 8( 42): 28607– 28614
CrossRef
Google scholar
|
[96] |
XiaoM, WangZ L, LyuM Q, LuoB, WangS C, LiuG, ChengH M, WangL Z. Hollow nanostructures for photocatalysis: advantages and challenges. Advanced Materials, 2019, 31( 38): 1801369
CrossRef
Google scholar
|
[97] |
KimK, MoonJ H. Three-dimensional bicontinuous BiVO4/ZnO photoanodes for high solar water-splitting performance at low bias potential. ACS Applied Materials & Interfaces, 2018, 10( 40): 34238– 34244
CrossRef
Google scholar
|
[98] |
OsterlohF E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chemical Society Reviews, 2013, 42( 6): 2294– 2320
CrossRef
Google scholar
|
[99] |
ReddyN L, EminS, ValantM, ShankarM V. Nanostructured Bi2O3@TiO2 photocatalyst for enhanced hydrogen production. International Journal of Hydrogen Energy, 2017, 42( 10): 6627– 6636
CrossRef
Google scholar
|
[100] |
YinJ, LiaoG Z, ZhouJ L, HuangC M, LingY, LuP, LiL S. High performance of magnetic BiFeO3 nanoparticle-mediated photocatalytic ozonation for wastewater decontamination. Separation and Purification Technology, 2016, 168 : 134– 140
CrossRef
Google scholar
|
[101] |
EftekhariA, BabuV J, RamakrishnaS. Photoelectrode nanomaterials for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2017, 42( 16): 11078– 11109
CrossRef
Google scholar
|
[102] |
VishwakarmaA K, TripathiP, SrivastavaA, SinhaA S K, SrivastavaO N. Band gap engineering of Gd and Co doped BiFeO3 and their application in hydrogen production through photoelectrochemical route. International Journal of Hydrogen Energy, 2017, 42( 36): 22677– 22686
CrossRef
Google scholar
|
[103] |
WangJ J, SunH F, HuangJ, LiQ X, YangJ L. Band structure tuning of TiO2 for enhanced photoelectrochemical water splitting. Journal of Physical Chemistry C, 2014, 118( 14): 7451– 7457
CrossRef
Google scholar
|
[104] |
MomeniM M, AkbarniaM, GhayebY. Preparation of S-W-codoped TiO2 nanotubes and effect of various hole scavengers on their photoelectrochemical activity: alcohol series. International Journal of Hydrogen Energy, 2020, 45( 58): 33552– 33562
CrossRef
Google scholar
|
[105] |
GhoshD, RoyK, SarkarK, DeviP, KumarP. Surface plasmon-enhanced carbon dot-embellished multifaceted Si(111) nanoheterostructure for photoelectrochemical water splitting. ACS Applied Materials & Interfaces, 2020, 12( 25): 28792– 28800
CrossRef
Google scholar
|
[106] |
KumarD, SharmaS, KhareN. Enhanced photoelectrochemical performance of plasmonic Ag nanoparticles grafted ternary Ag/PaNi/NaNbO3 nanocomposite photoanode for photoelectrochemical water splitting. Renewable Energy, 2020, 156 : 173– 182
CrossRef
Google scholar
|
[107] |
LiH X, LiX, DongW, XiJ H, DuG, JiZ G. Cu nanoparticles hybridized with ZnO thin film for enhanced photoelectrochemical oxygen evolution. Journal of Alloys and Compounds, 2018, 768 : 830– 837
CrossRef
Google scholar
|
[108] |
LiZ, ShiL, FranklinD, KoulS, KushimaA, YangY. Drastic enhancement of photoelectrochemical water splitting performance over plasmonic Al@TiO2 heterostructured nanocavity arrays. Nano Energy, 2018, 51 : 400– 407
CrossRef
Google scholar
|
[109] |
ZhengZ K, XieW, HuangB B, DaiY. Plasmon-enhanced solar water splitting on metal-semiconductor photocatalysts. Chemistry (Weinheim an der Bergstrasse, Germany), 2018, 24( 69): 18322– 18333
CrossRef
Google scholar
|
[110] |
WarrenS C, ThimsenE. Plasmonic solar water splitting. Energy & Environmental Science, 2012, 5( 1): 5133– 5146
CrossRef
Google scholar
|
[111] |
LeeJ, MubeenS, JiX, StuckyG D, MoskovitsM. Plasmonic photoanodes for solar water splitting with visible light. Nano Letters, 2012, 12( 9): 5014– 5019
CrossRef
Google scholar
|
[112] |
OnishiT, TeranishiM, NayaS, FujishimaM, TadaH. Electrocatalytic effect on the photon-to-current conversion efficiency of gold-nanoparticle-loaded titanium(IV) oxide plasmonic electrodes for water oxidation. Journal of Physical Chemistry C, 2020, 124( 11): 6103– 6109
CrossRef
Google scholar
|
[113] |
PatraB K, KhilariS, PradhanD, PradhanN. Hybrid dot-disk Au-CuInS2 nanostructures as active photocathode for efficient evolution of hydrogen from water. Chemistry of Materials, 2016, 28( 12): 4358– 4366
CrossRef
Google scholar
|
[114] |
LickledererM, MohammadiR, NguyenN T, ParkH, HejaziS, HalikM, VogelN, AltomareM, SchmukiP. Dewetted Au nanoparticles on TiO2 surfaces: evidence of a size-independent plasmonic photoelectrochemical response. Journal of Physical Chemistry C, 2019, 123( 27): 16934– 16942
CrossRef
Google scholar
|
[115] |
DuttaA, PihuleacB, ChenY, ZongC, Dal NegroL, YangC. Au@SiO2@Au core-shell-shell nanoparticles for enhancing photocatalytic activity of hematite. Materials Today Energy, 2021, 19 : 100576
CrossRef
Google scholar
|
[116] |
HaiderR S, WangS, GaoY, MalikA S, TaN, LiH, ZengB, DupuisM, FanF, LiC. Boosting photocatalytic water oxidation by surface plasmon resonance of AgxAu1−x alloy nanoparticles. Nano Energy, 2021, 87 : 106189
CrossRef
Google scholar
|
[117] |
HaydousF, LuoS J, WuK T, LawleyC, DobeliM, IshiharaT, LippertT. Surface analysis of perovskite oxynitride thin films as photoelectrodes for solar water splitting. ACS Applied Materials & Interfaces, 2021, 13( 31): 37785– 37796
CrossRef
Google scholar
|
[118] |
HigashiM, DomenK, AbeR. Fabrication of efficient TaON and Ta3N5 photoanodes for water splitting under visible light irradiation. Energy & Environmental Science, 2011, 4( 10): 4138– 4147
CrossRef
Google scholar
|
[119] |
BaeD, SegerB, VesborgP C K, HansenO, ChorkendorffI. Strategies for stable water splitting via protected photoelectrodes. Chemical Society Reviews, 2017, 46( 7): 1933– 1954
CrossRef
Google scholar
|
[120] |
RosC, CarreteroN M, DavidJ, ArbiolJ, AndreuT, MoranteJ R. Insight into the degradation mechanisms of atomic layer deposited TiO2 as photoanode protective layer. ACS Applied Materials & Interfaces, 2019, 11( 33): 29725– 29735
CrossRef
Google scholar
|
[121] |
WangR, WangL, ZhouY, ZouZ. Al-ZnO/CdS photoanode modified with a triple functions conformal TiO2 film for enhanced photoelectrochemical efficiency and stability. Applied Catalysis B, 2019, 255 : 117738
CrossRef
Google scholar
|
[122] |
HuS, LewisN S, AgerJ W, YangJ, McKoneJ R, StrandwitzN C. Thin-film materials for the protection of semiconducting photoelectrodes in solar-fuel generators. Journal of Physical Chemistry C, 2015, 119( 43): 24201– 24228
CrossRef
Google scholar
|
[123] |
KenneyM J, GongM, LiY G, WuJ Z, FengJ, LanzaM, DaiH J. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science, 2013, 342( 6160): 836– 840
CrossRef
Google scholar
|
[124] |
RosC, AndreuT, DavidJ, ArbiolJ, MoranteJ R. Degradation and regeneration mechanisms of NiO protective layers deposited by ALD on photoanodes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7( 38): 21892– 21902
CrossRef
Google scholar
|
[125] |
McDowellM T, LichtermanM F, SpurgeonJ M, HuS, SharpI D, BrunschwigB S, LewisN S. Improved stability of polycrystalline bismuth vanadate photoanodes by use of dual-layer thin TiO2/Ni coatings. Journal of Physical Chemistry C, 2014, 118( 34): 19618– 19624
CrossRef
Google scholar
|
[126] |
FanR L, DongW, FangL, ZhengF G, SuX D, ZouS, HuangJ, WangX S, ShenM R. Stable and efficient multi-crystalline n + p silicon photocathode for H2 production with pyramid-like surface nanostructure and thin Al2O3 protective layer. Applied Physics Letters, 2015, 106( 1): 013902
CrossRef
Google scholar
|
[127] |
PavlenkoM, SiuzdakK, CoyE, ZałęskiK, JancelewiczM, IatsunskyiI. Enhanced solar-driven water splitting of 1D core-shell Si/TiO2/ZnO nanopillars. International Journal of Hydrogen Energy, 2020, 45( 50): 26426– 26433
CrossRef
Google scholar
|
[128] |
AshcheulovP, TaylorA, MortetV, PorubaA, LeFormal F, KrýsováH, KlementováM, HubíkP, KopečekJ, LorinčíkJ.
CrossRef
Google scholar
|
[129] |
CoyE, SiuzdakK, Grądzka-KurzajI, SayeghS, WeberM, ZiółekM, BechelanyM, IatsunskyiI. Exploring the effect of BN and B-N bridges on the photocatalytic performance of semiconductor heterojunctions: enhancing carrier transfer mechanism. Applied Materials Today, 2021, 24 : 101095
CrossRef
Google scholar
|
[130] |
YangW, PrabhakarR R, TanJ, TilleyS D, MoonJ. Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting. Chemical Society Reviews, 2019, 48( 19): 4979– 5015
CrossRef
Google scholar
|
[131] |
ZhaoX, LuoW J, FengJ Y, LiM X, LiZ S, YuT, ZouZ G. Quantitative analysis and visualized evidence for high charge separation efficiency in a solid-liquid bulk heterojunction. Advanced Energy Materials, 2014, 4( 9): 1301785
CrossRef
Google scholar
|
[132] |
SafaS, KhajehM, OveisiA R, AzimiradR, SalehzadehH. Photocatalytic performance of graphene quantum dot incorporated UiO-66-NH2 composite assembled on plasma-treated membrane. Advanced Powder Technology, 2021, 32( 4): 1081– 1087
CrossRef
Google scholar
|
[133] |
SangL X, LinJ, ZhaoY B. Preparation of carbon dots/TiO2 electrodes and their photoelectrochemical activities for water splitting. International Journal of Hydrogen Energy, 2017, 42( 17): 12122– 12132
CrossRef
Google scholar
|
[134] |
WangP, ZhouX B, ShaoY, LiD Z, ZuoZ F, LiuX Z. CdS quantum dots-decorated InOOH: facile synthesis and excellent photocatalytic activity under visible light. Journal of Colloid and Interface Science, 2021, 601 : 186– 195
CrossRef
Google scholar
|
[135] |
WenP, LiH, MaX, LeiR B, WangX W, GeyerS M, QiuY J. A colloidal ZnTe quantum dot-based photocathode with a metal-insulator-semiconductor structure towards solar-driven CO2 reduction to tunable syngas. Journal of Materials Chemistry A, 2021, 9( 6): 3589– 3596
CrossRef
Google scholar
|
[136] |
ZhuC, LiuC G, ZhouY J, FuY J, GuoS J, LiH, ZhaoS Q, HuangH, LiuY, KangZ H. Carbon dots enhance the stability of CdS for visible-light-driven overall water splitting. Applied Catalysis B, 2017, 216 : 114– 121
CrossRef
Google scholar
|
[137] |
DeshmukhP R, SohnY, ShinW G. Chemical synthesis of ZnO nanorods: investigations of electrochemical performance and photo-electrochemical water splitting applications. Journal of Alloys and Compounds, 2017, 711 : 573– 580
CrossRef
Google scholar
|
[138] |
MohajerniaS, HejaziS, MazareA, NguyenN T, SchmukiP. Photoelectrochemical H2 generation from suboxide TiO2 nanotubes: visible-light absorption versus conductivity. Chemistry (Weinheim an der Bergstrasse, Germany), 2017, 23( 50): 12406– 12411
CrossRef
Google scholar
|
[139] |
TiwariJ N, SinghA N, SultanS, KimK S. Recent advancement of p- and d-block elements, single atoms, and graphene-based photoelectrochemical electrodes for water splitting. Advanced Energy Materials, 2020, 10( 24): 2000280
CrossRef
Google scholar
|
[140] |
CoshamS D, CelorrioV, KulakA N, HyettG. Observation of visible light activated photocatalytic degradation of stearic acid on thin films of tantalum oxynitride synthesized by aerosol assisted chemical vapour deposition. Dalton Transactions (Cambridge, England), 2019, 48( 28): 10619– 10627
CrossRef
Google scholar
|
[141] |
Iborra-TorresA, KulakA N, PalgraveR G, HyettG. Demonstration of visible light-activated photocatalytic self-cleaning by thin films of perovskite tantalum and niobium oxynitrides. ACS Applied Materials & Interfaces, 2020, 12( 30): 33603– 33612
CrossRef
Google scholar
|
[142] |
MamiA, SaafiI, LarbiT, Ben MessaoudK, YacoubiN, AmloukM. Unraveling the effect of thickness on the structural, morphological, opto-thermal and DFT calculation of hematite Fe2O3 thin films for photo-catalytic application. Journal of Materials Science Materials in Electronics, 2021, 32( 13): 17974– 17989
CrossRef
Google scholar
|
[143] |
HouY, ZuoF, DaggA, FengP Y. A three-dimensional branched cobalt-doped alpha-Fe2O3 nanorod/MgFe2O4 heterojunction array as a flexible photoanode for efficient photoelectrochemical water oxidation. Angewandte Chemie International Edition, 2013, 52( 4): 1248– 1252
CrossRef
Google scholar
|
[144] |
HouY, ZuoF, DaggA P, LiuJ K, FengP Y. Branched WO3 nanosheet array with layered C3N4 heterojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation. Advanced Materials, 2014, 26( 29): 5043– 5049
CrossRef
Google scholar
|
[145] |
ZhangX, LiuY, KangZ H. 3D branched ZnO nanowire arrays decorated with plasmonic Au manoparticles for high-performance photoelectrochemical water splitting. ACS Applied Materials & Interfaces, 2014, 6( 6): 4480– 4489
CrossRef
Google scholar
|
[146] |
ZhangC X, ZhaoP Y, LiuS X, YuK. Three-dimensionally ordered macroporous perovskite materials for environmental applications. Chinese Journal of Catalysis, 2019, 40( 9): 1324– 1338
CrossRef
Google scholar
|
[147] |
ChoI S, ChenZ B, FormanA J, KimD R, RaoP M, JaramilloT F, ZhengX L. Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Letters, 2011, 11( 11): 4978– 4984
CrossRef
Google scholar
|
[148] |
WarrenS C, VoitchovskyK, DotanH, LeroyC M, CornuzM, StellacciF, HebertC, RothschildA, GratzelM. Identifying champion nanostructures for solar water-splitting. Nature Materials, 2013, 12( 9): 842– 849
CrossRef
Google scholar
|
[149] |
ChenS, HuangD L, XuP A, XueW J, LeiL, ChengM, WangR Z, LiuX G, DengR. Semiconductor-based photocatalysts for photocatalytic and photoelectrochemical water splitting: will we stop with photocorrosion?. Journal of Materials Chemistry A, 2020, 8( 5): 2286– 2322
CrossRef
Google scholar
|
[150] |
WolcottA, SmithW A, KuykendallT R, ZhaoY P, ZhangJ Z. Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. Small, 2009, 5( 1): 104– 111
CrossRef
Google scholar
|
[151] |
ViterR, IatsunskyiI, FedorenkoV, TumenasS, BaleviciusZ, RamanaviciusA, BalmeS, KempińskiM, NowaczykG, JurgaS.
CrossRef
Google scholar
|
[152] |
IatsunskyiI, CoyE, ViterR, NowaczykG, JancelewiczM, BaleviciuteI, ZaleskiK, JurgaS. Study on structural, mechanical, and optical properties of Al2O3-TiO2 nanolaminates prepared by atomic layer deposition. Journal of Physical Chemistry C, 2015, 119( 35): 20591– 20599
CrossRef
Google scholar
|
[153] |
WenP, SunY H, LiH, LiangZ Q, WuH H, ZhangJ C, ZengH J, GeyerS M, JiangL. A highly active three-dimensional Z-scheme ZnO/Au/g-C3N4 photocathode for efficient photoelectrochemical water splitting. Applied Catalysis B, 2020, 263 : 118180
CrossRef
Google scholar
|
[154] |
MaedaK, HigashiM, LuD L, AbeR, DomenK. Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. Journal of the American Chemical Society, 2010, 132( 16): 5858– 5868
CrossRef
Google scholar
|
[155] |
WangX W, LiuG, ChenZ G, LiF, WangL Z, LuG Q, ChengH M. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures. Chemical Communications, 2009( 23): 3452– 3454
CrossRef
Google scholar
|
[156] |
KatoH, SasakiY, IwaseA, KudoA. Role of iron ion electron mediator on photocatalytic overall water splitting under visible light irradiation using Z-scheme systems. Bulletin of the Chemical Society of Japan, 2007, 80( 12): 2457– 2464
CrossRef
Google scholar
|
[157] |
ChenS S, VequizoJ J M, PanZ H, HisatomiT, NakabayashiM, LinL H, WangZ, KatoK, YamakataA, ShibataN.
CrossRef
Google scholar
|
[158] |
NgB J, PutriL K, KongX Y, PasbakhshP, ChaiS P. Z-scheme photocatalyst sheets with P-doped twinned Zn0.5Cd0.5S1−x and Bi4NbO8Cl connected by carbon electron mediator for overall water splitting under ambient condition. Chemical Engineering Journal, 2021, 404 : 127030
CrossRef
Google scholar
|
[159] |
WangZ L, ChenZ, DanJ D, ChenW Q, ZhouC H, ShenZ X, SumZ C, WangX S. Improving photoelectrochemical activity of ZnO/TiO2 core-shell nanostructure through Ag nanoparticle integration. Catalysts, 2021, 11( 8): 911
CrossRef
Google scholar
|
[160] |
LyuS, FarreY, DucasseL, PellegrinY, ToupanceT, OlivierC, OdobelF. Push-pull ruthenium diacetylide complexes: new dyes for p-type dye-sensitized solar cells. RSC Advances, 2016, 6( 24): 19928– 19936
CrossRef
Google scholar
|
[161] |
LyuS, MassinJ, PavoneM, Munoz-GarciaA B, LabrugereC, ToupanceT, Chavarot-KerlidouM, ArteroV, OlivierC. H2-evolving dye-sensitized photocathode based on a ruthenium-diacetylide/cobaloxime supramolecular assembly. ACS Applied Energy Materials, 2019, 2( 7): 4971– 4980
CrossRef
Google scholar
|
[162] |
MassinJ, LyuS, PavoneM, Munoz-GarciaA B, KauffmannB, ToupanceT, Chavarot-KerlidouM, ArteroV, OlivierC. Design and synthesis of novel organometallic dyes for NiO sensitization and photo-electrochemical applications. Dalton Transactions (Cambridge, England), 2016, 45( 31): 12539– 12547
CrossRef
Google scholar
|
[163] |
BrilletJ, YumJ H, CornuzM, HisatomiT, SolarskaR, AugustynskiJ, GraetzelM, SivulaK. Highly efficient water splitting by a dual-absorber tandem cell. Nature Photonics, 2012, 6( 12): 823– 827
CrossRef
Google scholar
|
[164] |
KimJ K, ShinK, ChoS M, LeeT W, ParkJ H. Synthesis of transparent mesoporous tungsten trioxide films with enhanced photoelectrochemical response: application to unassisted solar water splitting. Energy & Environmental Science, 2011, 4( 4): 1465– 1470
CrossRef
Google scholar
|
[165] |
FuX C, ChangH, ShangZ C, LiuP L, LiuJ K, LuoH A. Three-dimensional Cu2O nanorods modified by hydrogen treated Ti3C2Tx MXene with enriched oxygen vacancies as a photocathode and a tandem cell for unassisted solar water splitting. Chemical Engineering Journal, 2020, 381 : 122001
CrossRef
Google scholar
|
[166] |
PeerakiatkhajohnP, YunJ H, WangS C, WangL Z. Review of recent progress in unassisted photoelectrochemical water splitting: from material modification to configuration design. Journal of Photonics for Energy, 2017, 7( 1): 012006
CrossRef
Google scholar
|
[167] |
KimJ H, JoY, KimJ H, JangJ W, KangH J, LeeY H, KimD S, JunY, LeeJ S. Wireless solar water splitting device with robust cobalt-catalyzed, dual-doped BiVO4 photoanode and perovskite solar cell in tandem: a dual absorber artificial leaf. ACS Nano, 2015, 9( 12): 11820– 11829
CrossRef
Google scholar
|
[168] |
LuoJ S, ImJ H, MayerM T, SchreierM, NazeeruddinM K, ParkN G, TilleyS D, FanH J, GratzelM. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science, 2014, 345( 6204): 1593– 1596
CrossRef
Google scholar
|
[169] |
WangS C, ChenP, BaiY, YunJ H, LiuG, WangL Z. New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting. Advanced Materials, 2018, 30( 20): 1800486
CrossRef
Google scholar
|
[170] |
BeraS, LeeS A, LeeW J, KimJ H, KimC, KimH G, KhanH, JanaS, JangH W, KwonS H. Hierarchical nanoporous BiVO4 photoanodes with high charge separation and transport efficiency for water oxidation. ACS Applied Materials & Interfaces, 2021, 13( 12): 14304– 14314
CrossRef
Google scholar
|
[171] |
MorG K, VargheseO K, WilkeR H T, SharmaS, ShankarK, LatempaT J, ChoiK S, GrimesC A. p-Type Cu–Ti–O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. Nano Letters, 2008, 8( 7): 1906– 1911
CrossRef
Google scholar
|
[172] |
OhS, SongH, OhJ. An optically and electrochemically decoupled monolithic photoelectrochemical cell for high-performance solar-driven water splitting. Nano Letters, 2017, 17( 9): 5416– 5422
CrossRef
Google scholar
|
[173] |
GaneshV, AlizadehM, ShuhaimiA, AdreenA, PandikumarA, JayakumarM, HuangN M, RameshR, BaskarK, RahmanS A. Correlation between indium content in monolithic InGaN/GaN multi quantum well structures on photoelectrochemical activity for water splitting. Journal of Alloys and Compounds, 2017, 706 : 629– 636
CrossRef
Google scholar
|
[174] |
ZhuJ J, GudmundsdottirJ B, StrandbakkeR, BothK G, AarholtT, CarvalhoP A, SorbyM H, JensenI J T, GuzikM N, NorbyT, HaugH, ChatzitakisA. Double perovskite cobaltites integrated in a monolithic and noble metal-free photoelectrochemical device for efficient water splitting. ACS Applied Materials & Interfaces, 2021, 13( 17): 20313– 20325
CrossRef
Google scholar
|
[175] |
AhmetI Y, BerglundS, ChemseddineA, BogdanoffP, PrägR F, AbdiF F, vande Krol R. Planar and nanostructured n-Si/metal-oxide/WO3/BiVO4 monolithic tandem devices for unassisted solar water splitting. Advanced Energy and Sustainability Research, 2020, 1( 2): 2000037
CrossRef
Google scholar
|
[176] |
VankaS, ZhouB W, AwniR A, SongZ N, ChowdhuryF A, LiuX D, HajibabaeiH, ShiW, XiaoY X, NavidI A.
CrossRef
Google scholar
|
/
〈 | 〉 |