Rational design on photoelectrodes and devices to boost photoelectrochemical performance of solar-driven water splitting: a mini review

Siliu Lyu, Muhammad Adnan Younis, Zhibin Liu, Libin Zeng, Xianyun Peng, Bin Yang, Zhongjian Li, Lecheng Lei, Yang Hou

PDF(6778 KB)
PDF(6778 KB)
Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (6) : 777-798. DOI: 10.1007/s11705-022-2148-0
REVIEW ARTICLE
REVIEW ARTICLE

Rational design on photoelectrodes and devices to boost photoelectrochemical performance of solar-driven water splitting: a mini review

Author information +
History +

Abstract

As an eco-friendly, efficient, and low-cost technique, photoelectrochemical water splitting has attracted growing interest in the production of clean and sustainable hydrogen by the conversion of abundant solar energy. In the photoelectrochemical system, the photoelectrode plays a vital role in absorbing the energy of sunlight to trigger the water splitting process and the overall efficiency depends largely on the integration and design of photoelectrochemical devices. In recent years, the optimization of photoelectrodes and photoelectrochemical devices to achieve highly efficient hydrogen production has been extensively investigated. In this paper, a concise review of recent advances in the modification of nanostructured photoelectrodes and the design of photoelectrochemical devices is presented. Meanwhile, the general principles of structural and morphological factors in altering the photoelectrochemical performance of photoelectrodes are discussed. Furthermore, the performance indicators and first principles to describe the behaviors of charge carriers are analyzed, which will be of profound guiding significance to increasing the overall efficiency of the photoelectrochemical water splitting system. Finally, current challenges and prospects for an in-depth understanding of reaction mechanisms using advanced characterization technologies and potential strategies for developing novel photoelectrodes and advanced photoelectrochemical water splitting devices are demonstrated.

Graphical abstract

Keywords

photoelectrochemical water splitting / photoelectrodes / hydrogen production / charge separation / catalytic mechanism

Cite this article

Download citation ▾
Siliu Lyu, Muhammad Adnan Younis, Zhibin Liu, Libin Zeng, Xianyun Peng, Bin Yang, Zhongjian Li, Lecheng Lei, Yang Hou. Rational design on photoelectrodes and devices to boost photoelectrochemical performance of solar-driven water splitting: a mini review. Front. Chem. Sci. Eng., 2022, 16(6): 777‒798 https://doi.org/10.1007/s11705-022-2148-0

References

[1]
ShiP, ChengX, LyuS. Efficient electrocatalytic oxygen evolution at ultra-high current densities over 3D Fe, N doped Ni(OH)2 nanosheets. Chinese Chemical Letters, 2021, 32( 3): 1210– 1214
CrossRef Google scholar
[2]
WangK, WangX, LiZ, YangB, LingM, GaoX, LuJ, ShiQ, LeiL, WuG, HouY. Designing 3d dual transition metal electrocatalysts for oxygen evolution reaction in alkaline electrolyte: beyond oxides. Nano Energy, 2020, 77 : 105162
CrossRef Google scholar
[3]
KannanN, VakeesanD. Solar energy for future world: a review. Renewable & Sustainable Energy Reviews, 2016, 62 : 1092– 1105
CrossRef Google scholar
[4]
JiangC, MonizS J A, WangA, ZhangT, TangJ. Photoelectrochemical devices for solar water splitting—materials and challenges. Chemical Society Reviews, 2017, 46( 15): 4645– 4660
CrossRef Google scholar
[5]
ZhaoY, DingC, ZhuJ, QinW, TaoX, FanF, LiR, LiC. A hydrogen farm strategy for scalable solar hydrogen production with particulate photocatalysts. Angewandte Chemie International Edition, 2020, 59( 24): 9653– 9658
CrossRef Google scholar
[6]
KudoA, MisekiY. Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009, 38( 1): 253– 278
CrossRef Google scholar
[7]
ChangX, WangT, GongJ. CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy & Environmental Science, 2016, 9( 7): 2177– 2196
CrossRef Google scholar
[8]
KojimaA, TeshimaK, ShiraiY, MiyasakaT. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131( 17): 6050– 6051
CrossRef Google scholar
[9]
GrätzelM. Photoelectrochemical cells. Nature, 2001, 414( 6861): 338– 344
CrossRef Google scholar
[10]
ChoudhuryC, AndersenS L, RekstadJ. A solar air heater for low temperature applications. Solar Energy, 1988, 40( 4): 335– 343
CrossRef Google scholar
[11]
ChengF, WangL, WangH, LeiC, YangB, LiZ, ZhangQ, LeiL, WangS, HouY. Boosting alkaline hydrogen evolution and Zn-H2O cell induced by interfacial electron transfer. Nano Energy, 2020, 71 : 104621
CrossRef Google scholar
[12]
LeiC, ChenH, CaoJ, YangJ, QiuM, XiaY, YuanC, YangB, LiZ, ZhangX. . Fe-N4 sites embedded into carbon nanofiber integrated with electrochemically exfoliated graphene for oxygen evolution in acidic medium. Advanced Energy Materials, 2018, 8( 26): 1801912
CrossRef Google scholar
[13]
LeiC, WangY, HouY, LiuP, YangJ, ZhangT, ZhuangX, ChenM, YangB, LeiL. . Efficient alkaline hydrogen evolution on atomically dispersed Ni-Nx species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics. Energy & Environmental Science, 2019, 12( 1): 149– 156
CrossRef Google scholar
[14]
WangL, LiZ, WangK, DaiQ, LeiC, YangB, ZhangQ, LeiL, LeungM K H, HouY. Tuning d-band center of tungsten carbide via Mo doping for efficient hydrogen evolution and Zn-H2O cell over a wide pH range. Nano Energy, 2020, 74 : 104850
CrossRef Google scholar
[15]
HouY, QiuM, KimM G, LiuP, NamG, ZhangT, ZhuangX, YangB, ChoJ, ChenM. . Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nature Communications, 2019, 10( 1): 1392
CrossRef Google scholar
[16]
HouY, QiuM, NamG, KimM G, ZhangT, LiuK, ZhuangX, ChoJ, YuanC, FengX. Integrated hierarchical cobalt sulfide/nickel selenide hybrid nanosheets as an efficient three-dimensional electrode for electrochemical and photoelectrochemical water splitting. Nano Letters, 2017, 17( 7): 4202– 4209
CrossRef Google scholar
[17]
HouY, QiuM, ZhangT, MaJ, LiuS, ZhuangX, YuanC, FengX. Efficient electrochemical and photoelectrochemical water splitting by a 3D nanostructured carbon supported on flexible exfoliated graphene foil. Advanced Materials, 2017, 29( 3): 1604480
CrossRef Google scholar
[18]
WhiteJ L, BaruchM F, PanderJ E III, HuY, FortmeyerI C, ParkJ E, ZhangT, LiaoK, GuJ, YanY. . Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chemical Reviews, 2015, 115( 23): 12888– 12935
CrossRef Google scholar
[19]
NiuF, WangD, LiF, LiuY, ShenS, MeyerT J. Hybrid photoelectrochemical water splitting systems: from interface design to system assembly. Advanced Energy Materials, 2019, 10( 11): 1900399
CrossRef Google scholar
[20]
Siavash MoakharR, Hosseini-HosseinabadS M, Masudy-PanahS, SezaA, JalaliM, Fallah-AraniH, DabirF, GholipourS, AbdiY, Bagheri-HaririM. . Photoelectrochemical water-splitting using CuO-based electrodes for hydrogen production: a review. Advanced Materials, 2021, 33( 33): 2007285
CrossRef Google scholar
[21]
FujishimaA, HondaK. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238( 5358): 37– 38
CrossRef Google scholar
[22]
HellmanA, WangB. First-principles view on photoelectrochemistry: water-splitting as case study. Inorganics, 2017, 5( 2): 37
CrossRef Google scholar
[23]
ZhangH, WangH Z, XuanJ. Rational design of photoelectrochemical cells towards bias-free water splitting: thermodynamic and kinetic insights. Journal of Power Sources, 2020, 462 : 228113
CrossRef Google scholar
[24]
ZhangX Q, Bieberle-HutterA. Modeling and simulations in photoelectrochemical water oxidation: from single level to multiscale modeling. ChemSusChem, 2016, 9( 11): 1223– 1242
CrossRef Google scholar
[25]
BoumeriameH, Da SilvaE S, CherevanA S, ChafikT, FariaJ L, EderD. Layered double hydroxide (LDH)-based materials: a mini-review on strategies to improve the performance for photocatalytic water splitting. Journal of Energy Chemistry, 2022, 64 : 406– 431
CrossRef Google scholar
[26]
ReddyC V, ReddyI N, HarishV V N, ReddyK R, ShettiN P, ShimJ, AminabhaviT M. Efficient removal of toxic organic dyes and photoelectrochemical properties of iron-doped zirconia nanoparticles. Chemosphere, 2020, 239 : 124766
CrossRef Google scholar
[27]
YeK H, LiH B, HuangD, XiaoS, QiuW T, LiM Y, HuY W, MaiW J, JiH B, YangS H. Enhancing photoelectrochemical water splitting by combining work function tuning and heterojunction engineering. Nature Communications, 2019, 10( 1): 3687
CrossRef Google scholar
[28]
ChandrasekaranS, YaoL, DengL B, BowenC, ZhangY, ChenS M, LinZ Q, PengF, ZhangP X. Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chemical Society Reviews, 2019, 48( 15): 4178– 4280
CrossRef Google scholar
[29]
ChenY B, ZhengW Y, Murcia-LopezS, LvF, MoranteJ R, VayssieresL, BurdaC. Light management in photoelectrochemical water splitting—from materials to device engineering. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2021, 9( 11): 3726– 3748
CrossRef Google scholar
[30]
KimJ H, HansoraD, SharmaP, JangJ W, LeeJ S. Toward practical solar hydrogen production—an artificial photosynthetic leaf-to-farm challenge. Chemical Society Reviews, 2019, 48( 7): 1908– 1971
CrossRef Google scholar
[31]
LiL Z, LiuC H, QiuY Y, MitsuzakN, ChenZ D. Convex-nanorods of alpha-Fe2O3/CQDs heterojunction photoanode synthesized by a facile hydrothermal method for highly efficient water oxidation. International Journal of Hydrogen Energy, 2017, 42( 31): 19654– 19663
CrossRef Google scholar
[32]
WangC Z, ChenZ, JinH B, CaoC B, LiJ B, MiZ T. Enhancing visible-light photoelectrochemical water splitting through transition-metal doped TiO2 nanorod arrays. Journal of Materials Chemistry A, 2014, 2( 42): 17820– 17827
CrossRef Google scholar
[33]
VaradhanP, FuH C, PrianteD, RetamalJ R D, ZhaoC, EbaidM, NgT K, AjiaI, MitraS, RoqanI S. . Surface passivation of GaN nanowires for enhanced photoelectrochemical water-splitting. Nano Letters, 2017, 17( 3): 1520– 1528
CrossRef Google scholar
[34]
NieQ, YangL, CaoC, ZengY M, WangG Z, WangC Z, LinS W. Interface optimization of ZnO nanorod/CdS quantum dots heterostructure by a facile two-step low-temperature thermal treatment for improved photoelectrochemical water splitting. Chemical Engineering Journal, 2017, 325 : 151– 159
CrossRef Google scholar
[35]
HisatomiT, KubotaJ, DomenK. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chemical Society Reviews, 2014, 43( 22): 7520– 7535
CrossRef Google scholar
[36]
HamdaniI R, BhaskarwarA N. Recent progress in material selection and device designs for photoelectrochemical water-splitting. Renewable & Sustainable Energy Reviews, 2021, 138 : 110503
CrossRef Google scholar
[37]
LiJ K, ChengK W. Surface modification of the p-type Cu2ZnSnS4 photocathode with n-type zinc oxide nanorods for photo-driven salt water splitting. International Journal of Hydrogen Energy, 2021, 46( 53): 26961– 26975
CrossRef Google scholar
[38]
LiZ S, LuoW J, ZhangM L, FengJ Y, ZouZ G. Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy & Environmental Science, 2013, 6( 2): 347– 370
CrossRef Google scholar
[39]
WuN Q. Plasmonic metal-semiconductor photocatalysts and photoelectrochemical cells: a review. Nanoscale, 2018, 10( 6): 2679– 2696
CrossRef Google scholar
[40]
KimJ H, LeeJ S. Elaborately modified BiVO4 photoanodes for solar water splitting. Advanced Materials, 2019, 31( 20): 1806938
CrossRef Google scholar
[41]
SaraswatS K, RodeneD D, GuptaR B. Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light. Renewable & Sustainable Energy Reviews, 2018, 89 : 228– 248
CrossRef Google scholar
[42]
ChenF, MaT Y, ZhangT R, ZhangY H, HuangH W. Atomic-level charge separation strategies in semiconductor-based photocatalysts. Advanced Materials, 2021, 33( 10): 2005256
CrossRef Google scholar
[43]
QianW Q, XuS W, ZhangX M, LiC B, YangW Y, BowenC R, YangY. Differences and similarities of photocatalysis and electrocatalysis in two-dimensional nanomaterials: strategies, traps, applications and challenges. Nano-Micro Letters, 2021, 13( 1): 156
CrossRef Google scholar
[44]
ZhangS, YeH, HuaJ, TianH. Recent advances in dye-sensitized photoelectrochemical cells for water splitting. EnergyChem, 2019, 1( 3): 100015
CrossRef Google scholar
[45]
JoyJ, MathewJ, GeorgeS C. Nanomaterials for photoelectrochemical water splitting—review. International Journal of Hydrogen Energy, 2018, 43( 10): 4804– 4817
CrossRef Google scholar
[46]
XuP T, McCoolN S, MalloukT E. Water splitting dye-sensitized solar cells. Nano Today, 2017, 14 : 42– 58
CrossRef Google scholar
[47]
HuangY T, KavanaghS R, ScanlonD O, WalshA, HoyeR L Z. Perovskite-inspired materials for photovoltaics and beyond-from design to devices. Nanotechnology, 2021, 32( 13): 132004
CrossRef Google scholar
[48]
WangQ, DomenK. Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chemical Reviews, 2020, 120( 2): 919– 985
CrossRef Google scholar
[49]
LaskowskiF A L, NellistM R, QuJ J, BoettcherS W. Metal oxide/(oxy)hydroxide overlayers as hole collectors and oxygen-evolution catalysts on water-splitting photoanodes. Journal of the American Chemical Society, 2019, 141( 4): 1394– 1405
CrossRef Google scholar
[50]
MazzeoA, SantallaS, GaviglioC, DoctorovichF, PellegrinoJ. Recent progress in homogeneous light-driven hydrogen evolution using first-row transition metal catalysts. Inorganica Chimica Acta, 2021, 517 : 119950
CrossRef Google scholar
[51]
XuY, SchoonenM A A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist, 2000, 85( 3-4): 543– 556
CrossRef Google scholar
[52]
BoltonJ R, StricklerS J, ConnollyJ S. Limiting and realizable efficiencies of solar photolysis of water. Nature, 1985, 316( 6028): 495– 500
CrossRef Google scholar
[53]
SwathiS, YuvakkumarR, RaviG, BabuE S, VelauthapillaiD, AlharbiS A. Morphological exploration of chemical vapor-deposited P-doped ZnO nanorods for efficient photoelectrochemical water splitting. Ceramics International, 2021, 47( 5): 6521– 6527
CrossRef Google scholar
[54]
EidsvagH, BentoubaS, VajeestonP, YohiS, VelauthapillaiD. TiO2 as a photocatalyst for water splitting—an experimental and theoretical review. Molecules (Basel, Switzerland), 2021, 26( 6): 1687
CrossRef Google scholar
[55]
BrilletJ, CornuzM, FormalF L, YumJ H, GrätzelM, SivulaK. Examining architectures of photoanode-photovoltaic tandem cells for solar water splitting. Journal of Materials Research, 2010, 25( 1): 17– 24
CrossRef Google scholar
[56]
ChenY B, FengX Y, LiuY, GuanX J, BurdaC, GuoL J. Metal oxide-based tandem cells for self-biased photoelectrochemical water splitting. ACS Energy Letters, 2020, 5( 3): 844– 866
CrossRef Google scholar
[57]
SolarskaR, AlexanderB D, AugustynskiJ. Electrochromic and structural characteristics of mesoporous WO3 films prepared by a sol-gel method. Journal of Solid State Electrochemistry, 2004, 8( 10): 748– 756
CrossRef Google scholar
[58]
PeterL M, Upul WijayanthaK G. Photoelectrochemical water splitting at semiconductor electrodes: fundamental problems and new perspectives. ChemPhysChem, 2014, 15( 10): 1983– 1995
CrossRef Google scholar
[59]
WuH, TanH L, ToeC Y, ScottJ, WangL Z, AmalR, NgY H. Photocatalytic and photoelectrochemical systems: similarities and differences. Advanced Materials, 2020, 32( 18): 1904717
CrossRef Google scholar
[60]
ZhengZ X, LoI M C. Multifunctional photoelectrochemical systems for coupled water treatment and high-value product generation: current status, mechanisms, remaining challenges, and future opportunities. Current Opinion in Chemical Engineering, 2021, 34 : 100711
CrossRef Google scholar
[61]
ZhouS Q, ChenK Y, HuangJ W, WangL, ZhangM Y, BaiB, LiuH, WangQ Z. Preparation of heterometallic CoNi-MOFs-modified BiVO4: a steady photoanode for improved performance in photoelectrochemical water splitting. Applied Catalysis B, 2020, 266 : 118513
CrossRef Google scholar
[62]
AhmedM, DincerI. A review on photoelectrochemical hydrogen production systems: challenges and future directions. International Journal of Hydrogen Energy, 2019, 44( 5): 2474– 2507
CrossRef Google scholar
[63]
BakT, NowotnyJ, RekasM, SorrellC C. Photo-electrochemical hydrogen generation from water using solar energy, materials-related aspects. International Journal of Hydrogen Energy, 2002, 27( 10): 991– 1022
CrossRef Google scholar
[64]
VanpouckeD E P, BultinckP, CottenierS, Van SpeybroeckV, Van DriesscheI. Aliovalent doping of CeO2: DFT study of oxidation state and vacancy effects. Journal of Materials Chemistry A, 2014, 2( 33): 13723– 13737
CrossRef Google scholar
[65]
LiuG, ZhaoY N, SunC H, LiF, LuG Q, ChengH M. Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2. Angewandte Chemie International Edition, 2008, 47( 24): 4516– 4520
CrossRef Google scholar
[66]
LongR, EnglishN J. First-principles calculation of synergistic (N, P)-codoping effects on the visible-light photocatalytic activity of anatase TiO2. Journal of Physical Chemistry C, 2010, 114( 27): 11984– 11990
CrossRef Google scholar
[67]
NiuM, ChengD J, CaoD P. Enhanced photoelectrochemical performance of anatase TiO2 by metal-assisted S–O coupling for water splitting. International Journal of Hydrogen Energy, 2013, 38( 3): 1251– 1257
CrossRef Google scholar
[68]
HuY F, HuangH T, FengJ Y, WangW, GuanH M, LiZ S, ZouZ G. Material design and surface/interface engineering of photoelectrodes for solar water splitting. Solar RRL, 2021, 5( 4): 2100100
CrossRef Google scholar
[69]
JiaoY, HellmanA, FangY R, GaoS W, KallM. Schottky barrier formation and band bending revealed by first-principles calculations. Scientific Reports, 2015, 5( 1): 11374
CrossRef Google scholar
[70]
KwonS, LeeS J, KimS M, LeeY, SongH, ParkJ Y. Probing the nanoscale Schottky barrier of metal/semiconductor interfaces of Pt/CdSe/Pt nanodumbbells by conductive-probe atomic force microscopy. Nanoscale, 2015, 7( 29): 12297– 12301
CrossRef Google scholar
[71]
TungR T. The physics and chemistry of the Schottky barrier height. Applied Physics Reviews, 2014, 1( 1): 011304
CrossRef Google scholar
[72]
ZawadzkiP, LaursenA B, JacobsenK W, DahlS, RossmeislJ. Oxidative trends of TiO2-hole trapping at anatase and rutile surfaces. Energy & Environmental Science, 2012, 5( 12): 9866– 9869
CrossRef Google scholar
[73]
AlexandrovV, NeumannA, SchererM M, RossoK M. Electron exchange and conduction in nontronite from first-principles. Journal of Physical Chemistry C, 2013, 117( 5): 2032– 2040
CrossRef Google scholar
[74]
JafariT, MoharreriE, AminA S, MiaoR, SongW, SuibS L. Photocatalytic water splitting-the untamed dream: a review of recent advances. Molecules (Basel, Switzerland), 2016, 21( 7): 900
CrossRef Google scholar
[75]
ZouZ, YeJ, SayamaK, ArakawaH. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 2001, 414( 6864): 625– 627
CrossRef Google scholar
[76]
RissA, ElserM J, BernardiJ, DiwaldO. Stability and photoelectronic properties of layered titanate nanostructures. Journal of the American Chemical Society, 2009, 131( 17): 6198– 6206
CrossRef Google scholar
[77]
WickmanB, Bastos FantaA, BurrowsA, HellmanA, WagnerJ B, IandoloB. Iron oxide films prepared by rapid thermal processing for solar energy conversion. Scientific Reports, 2017, 7( 1): 40500
CrossRef Google scholar
[78]
XiaY, YangP, SunY, WuY, MayersB, GatesB, YinY, KimF, YanH. One-dimensional nanostructures: synthesis, characterization, and applications. Advanced Materials, 2003, 15( 5): 353– 389
CrossRef Google scholar
[79]
MahalingamS, AbdullahH. Electron transport study of indium oxide as photoanode in DSSCs: a review. Renewable & Sustainable Energy Reviews, 2016, 63 : 245– 255
CrossRef Google scholar
[80]
XuJ, WangZ, LiW, ZhangX, HeD, XiaoX. Ag nanoparticles located on three-dimensional pine tree-like hierarchical TiO2 nanotube array films as high-efficiency plasmonic photocatalysts. Nanoscale Research Letters, 2017, 12( 1): 54
CrossRef Google scholar
[81]
BedinK C, MucheD N F, MeloM A Jr, FreitasA L M, GonçalvesR V, SouzaF L. Role of cocatalysts on hematite photoanodes in photoelectrocatalytic water splitting: challenges and future perspectives. ChemCatChem, 2020, 12( 12): 3156– 3169
CrossRef Google scholar
[82]
RajaambalS, SivaranjaniK, GopinathC S. Recent developments in solar H2 generation from water splitting. Journal of Chemical Sciences, 2015, 127( 1): 33– 47
CrossRef Google scholar
[83]
ZafarZ YiS S LiJ P LiC Q ZhuY F ZadaA YaoW J LiuZ Y YueX Z. Recent development in defects engineered photocatalysts: an overview of the experimental and theoretical strategies. Energy & Environmental Materials, 2021. doi: 10.1002/eem1002.12171
[84]
ZhangP, LouX W. Design of heterostructured hollow photocatalysts for solar-to-chemical energy conversion. Advanced Materials, 2019, 31( 29): 1900281
CrossRef Google scholar
[85]
ChenS R, LiC L, HouZ Y. The novel behavior of photoelectrochemical property of annealing TiO2 nanorod arrays. Journal of Materials Science, 2020, 55( 14): 5969– 5981
CrossRef Google scholar
[86]
JooJ B, ZhangQ, DahlM, LeeI, GoeblJ, ZaeraF, YinY D. Control of the nanoscale crystallinity in mesoporous TiO2 shells for enhanced photocatalytic activity. Energy & Environmental Science, 2012, 5( 4): 6321– 6327
CrossRef Google scholar
[87]
TanH L, AmalR, NgY H. Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO4: a review. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5( 32): 16498– 16521
CrossRef Google scholar
[88]
YanZ Y, HuangW X, JiangX R, GaoJ Z, HuY W, ZhangH Z, ShiQ W. Hollow structured black TiO2 with thickness-controllable microporous shells for enhanced visible-light-driven photocatalysis. Microporous and Mesoporous Materials, 2021, 323 : 111228
CrossRef Google scholar
[89]
ZhangW, TianY, HeH L, XuL, LiW, ZhaoD Y. Recent advances in the synthesis of hierarchically mesoporous TiO2 materials for energy and environmental applications. National Science Review, 2020, 7( 11): 1702– 1725
CrossRef Google scholar
[90]
PihoshY, MinegishiT, NandalV, HigashiT, KatayamaM, YamadaT, SasakiY, SekiK, SuzukiY, NakabayashiM. . Ta3N5-nanorods enabling highly efficient water oxidation via advantageous light harvesting and charge collection. Energy & Environmental Science, 2020, 13( 5): 1519– 1530
CrossRef Google scholar
[91]
CaoM Q, LiH M, LiuK, HuJ H, PanH, FuJ W, LiuM. Vertical SrNbO2N nanorod arrays for solar-driven photoelectrochemical water splitting. Solar RRL, 2021, 5( 6): 2000448
CrossRef Google scholar
[92]
ChenX B, LiuL, YuP Y, MaoS S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 2011, 331( 6018): 746– 750
CrossRef Google scholar
[93]
TakagiF, KageshimaY, TeshimaK, DomenK, NishikioriH. Enhanced photoelectrochemical performance from particulate ZnSe:Cu(In,Ga)Se-2 photocathodes during solar hydrogen production via particle size control. Sustainable Energy & Fuels, 2021, 5( 2): 412– 423
CrossRef Google scholar
[94]
MishraA K, PradhanD. Morphology controlled solution-based synthesis of Cu2O crystals for the facets-dependent catalytic reduction of highly toxic aqueous Cr(VI). Crystal Growth & Design, 2016, 16( 7): 3688– 3698
CrossRef Google scholar
[95]
TanH L, AmalR, NgY H. Exploring the different roles of particle size in photoelectrochemical and photocatalytic water oxidation on BiVO4. ACS Applied Materials & Interfaces, 2016, 8( 42): 28607– 28614
CrossRef Google scholar
[96]
XiaoM, WangZ L, LyuM Q, LuoB, WangS C, LiuG, ChengH M, WangL Z. Hollow nanostructures for photocatalysis: advantages and challenges. Advanced Materials, 2019, 31( 38): 1801369
CrossRef Google scholar
[97]
KimK, MoonJ H. Three-dimensional bicontinuous BiVO4/ZnO photoanodes for high solar water-splitting performance at low bias potential. ACS Applied Materials & Interfaces, 2018, 10( 40): 34238– 34244
CrossRef Google scholar
[98]
OsterlohF E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chemical Society Reviews, 2013, 42( 6): 2294– 2320
CrossRef Google scholar
[99]
ReddyN L, EminS, ValantM, ShankarM V. Nanostructured Bi2O3@TiO2 photocatalyst for enhanced hydrogen production. International Journal of Hydrogen Energy, 2017, 42( 10): 6627– 6636
CrossRef Google scholar
[100]
YinJ, LiaoG Z, ZhouJ L, HuangC M, LingY, LuP, LiL S. High performance of magnetic BiFeO3 nanoparticle-mediated photocatalytic ozonation for wastewater decontamination. Separation and Purification Technology, 2016, 168 : 134– 140
CrossRef Google scholar
[101]
EftekhariA, BabuV J, RamakrishnaS. Photoelectrode nanomaterials for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2017, 42( 16): 11078– 11109
CrossRef Google scholar
[102]
VishwakarmaA K, TripathiP, SrivastavaA, SinhaA S K, SrivastavaO N. Band gap engineering of Gd and Co doped BiFeO3 and their application in hydrogen production through photoelectrochemical route. International Journal of Hydrogen Energy, 2017, 42( 36): 22677– 22686
CrossRef Google scholar
[103]
WangJ J, SunH F, HuangJ, LiQ X, YangJ L. Band structure tuning of TiO2 for enhanced photoelectrochemical water splitting. Journal of Physical Chemistry C, 2014, 118( 14): 7451– 7457
CrossRef Google scholar
[104]
MomeniM M, AkbarniaM, GhayebY. Preparation of S-W-codoped TiO2 nanotubes and effect of various hole scavengers on their photoelectrochemical activity: alcohol series. International Journal of Hydrogen Energy, 2020, 45( 58): 33552– 33562
CrossRef Google scholar
[105]
GhoshD, RoyK, SarkarK, DeviP, KumarP. Surface plasmon-enhanced carbon dot-embellished multifaceted Si(111) nanoheterostructure for photoelectrochemical water splitting. ACS Applied Materials & Interfaces, 2020, 12( 25): 28792– 28800
CrossRef Google scholar
[106]
KumarD, SharmaS, KhareN. Enhanced photoelectrochemical performance of plasmonic Ag nanoparticles grafted ternary Ag/PaNi/NaNbO3 nanocomposite photoanode for photoelectrochemical water splitting. Renewable Energy, 2020, 156 : 173– 182
CrossRef Google scholar
[107]
LiH X, LiX, DongW, XiJ H, DuG, JiZ G. Cu nanoparticles hybridized with ZnO thin film for enhanced photoelectrochemical oxygen evolution. Journal of Alloys and Compounds, 2018, 768 : 830– 837
CrossRef Google scholar
[108]
LiZ, ShiL, FranklinD, KoulS, KushimaA, YangY. Drastic enhancement of photoelectrochemical water splitting performance over plasmonic Al@TiO2 heterostructured nanocavity arrays. Nano Energy, 2018, 51 : 400– 407
CrossRef Google scholar
[109]
ZhengZ K, XieW, HuangB B, DaiY. Plasmon-enhanced solar water splitting on metal-semiconductor photocatalysts. Chemistry (Weinheim an der Bergstrasse, Germany), 2018, 24( 69): 18322– 18333
CrossRef Google scholar
[110]
WarrenS C, ThimsenE. Plasmonic solar water splitting. Energy & Environmental Science, 2012, 5( 1): 5133– 5146
CrossRef Google scholar
[111]
LeeJ, MubeenS, JiX, StuckyG D, MoskovitsM. Plasmonic photoanodes for solar water splitting with visible light. Nano Letters, 2012, 12( 9): 5014– 5019
CrossRef Google scholar
[112]
OnishiT, TeranishiM, NayaS, FujishimaM, TadaH. Electrocatalytic effect on the photon-to-current conversion efficiency of gold-nanoparticle-loaded titanium(IV) oxide plasmonic electrodes for water oxidation. Journal of Physical Chemistry C, 2020, 124( 11): 6103– 6109
CrossRef Google scholar
[113]
PatraB K, KhilariS, PradhanD, PradhanN. Hybrid dot-disk Au-CuInS2 nanostructures as active photocathode for efficient evolution of hydrogen from water. Chemistry of Materials, 2016, 28( 12): 4358– 4366
CrossRef Google scholar
[114]
LickledererM, MohammadiR, NguyenN T, ParkH, HejaziS, HalikM, VogelN, AltomareM, SchmukiP. Dewetted Au nanoparticles on TiO2 surfaces: evidence of a size-independent plasmonic photoelectrochemical response. Journal of Physical Chemistry C, 2019, 123( 27): 16934– 16942
CrossRef Google scholar
[115]
DuttaA, PihuleacB, ChenY, ZongC, Dal NegroL, YangC. Au@SiO2@Au core-shell-shell nanoparticles for enhancing photocatalytic activity of hematite. Materials Today Energy, 2021, 19 : 100576
CrossRef Google scholar
[116]
HaiderR S, WangS, GaoY, MalikA S, TaN, LiH, ZengB, DupuisM, FanF, LiC. Boosting photocatalytic water oxidation by surface plasmon resonance of AgxAu1−x alloy nanoparticles. Nano Energy, 2021, 87 : 106189
CrossRef Google scholar
[117]
HaydousF, LuoS J, WuK T, LawleyC, DobeliM, IshiharaT, LippertT. Surface analysis of perovskite oxynitride thin films as photoelectrodes for solar water splitting. ACS Applied Materials & Interfaces, 2021, 13( 31): 37785– 37796
CrossRef Google scholar
[118]
HigashiM, DomenK, AbeR. Fabrication of efficient TaON and Ta3N5 photoanodes for water splitting under visible light irradiation. Energy & Environmental Science, 2011, 4( 10): 4138– 4147
CrossRef Google scholar
[119]
BaeD, SegerB, VesborgP C K, HansenO, ChorkendorffI. Strategies for stable water splitting via protected photoelectrodes. Chemical Society Reviews, 2017, 46( 7): 1933– 1954
CrossRef Google scholar
[120]
RosC, CarreteroN M, DavidJ, ArbiolJ, AndreuT, MoranteJ R. Insight into the degradation mechanisms of atomic layer deposited TiO2 as photoanode protective layer. ACS Applied Materials & Interfaces, 2019, 11( 33): 29725– 29735
CrossRef Google scholar
[121]
WangR, WangL, ZhouY, ZouZ. Al-ZnO/CdS photoanode modified with a triple functions conformal TiO2 film for enhanced photoelectrochemical efficiency and stability. Applied Catalysis B, 2019, 255 : 117738
CrossRef Google scholar
[122]
HuS, LewisN S, AgerJ W, YangJ, McKoneJ R, StrandwitzN C. Thin-film materials for the protection of semiconducting photoelectrodes in solar-fuel generators. Journal of Physical Chemistry C, 2015, 119( 43): 24201– 24228
CrossRef Google scholar
[123]
KenneyM J, GongM, LiY G, WuJ Z, FengJ, LanzaM, DaiH J. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science, 2013, 342( 6160): 836– 840
CrossRef Google scholar
[124]
RosC, AndreuT, DavidJ, ArbiolJ, MoranteJ R. Degradation and regeneration mechanisms of NiO protective layers deposited by ALD on photoanodes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7( 38): 21892– 21902
CrossRef Google scholar
[125]
McDowellM T, LichtermanM F, SpurgeonJ M, HuS, SharpI D, BrunschwigB S, LewisN S. Improved stability of polycrystalline bismuth vanadate photoanodes by use of dual-layer thin TiO2/Ni coatings. Journal of Physical Chemistry C, 2014, 118( 34): 19618– 19624
CrossRef Google scholar
[126]
FanR L, DongW, FangL, ZhengF G, SuX D, ZouS, HuangJ, WangX S, ShenM R. Stable and efficient multi-crystalline n + p silicon photocathode for H2 production with pyramid-like surface nanostructure and thin Al2O3 protective layer. Applied Physics Letters, 2015, 106( 1): 013902
CrossRef Google scholar
[127]
PavlenkoM, SiuzdakK, CoyE, ZałęskiK, JancelewiczM, IatsunskyiI. Enhanced solar-driven water splitting of 1D core-shell Si/TiO2/ZnO nanopillars. International Journal of Hydrogen Energy, 2020, 45( 50): 26426– 26433
CrossRef Google scholar
[128]
AshcheulovP, TaylorA, MortetV, PorubaA, LeFormal F, KrýsováH, KlementováM, HubíkP, KopečekJ, LorinčíkJ. . Nanocrystalline boron-doped diamond as a corrosion-resistant anode for water oxidation via Si photoelectrodes. ACS Applied Materials & Interfaces, 2018, 10( 35): 29552– 29564
CrossRef Google scholar
[129]
CoyE, SiuzdakK, Grądzka-KurzajI, SayeghS, WeberM, ZiółekM, BechelanyM, IatsunskyiI. Exploring the effect of BN and B-N bridges on the photocatalytic performance of semiconductor heterojunctions: enhancing carrier transfer mechanism. Applied Materials Today, 2021, 24 : 101095
CrossRef Google scholar
[130]
YangW, PrabhakarR R, TanJ, TilleyS D, MoonJ. Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting. Chemical Society Reviews, 2019, 48( 19): 4979– 5015
CrossRef Google scholar
[131]
ZhaoX, LuoW J, FengJ Y, LiM X, LiZ S, YuT, ZouZ G. Quantitative analysis and visualized evidence for high charge separation efficiency in a solid-liquid bulk heterojunction. Advanced Energy Materials, 2014, 4( 9): 1301785
CrossRef Google scholar
[132]
SafaS, KhajehM, OveisiA R, AzimiradR, SalehzadehH. Photocatalytic performance of graphene quantum dot incorporated UiO-66-NH2 composite assembled on plasma-treated membrane. Advanced Powder Technology, 2021, 32( 4): 1081– 1087
CrossRef Google scholar
[133]
SangL X, LinJ, ZhaoY B. Preparation of carbon dots/TiO2 electrodes and their photoelectrochemical activities for water splitting. International Journal of Hydrogen Energy, 2017, 42( 17): 12122– 12132
CrossRef Google scholar
[134]
WangP, ZhouX B, ShaoY, LiD Z, ZuoZ F, LiuX Z. CdS quantum dots-decorated InOOH: facile synthesis and excellent photocatalytic activity under visible light. Journal of Colloid and Interface Science, 2021, 601 : 186– 195
CrossRef Google scholar
[135]
WenP, LiH, MaX, LeiR B, WangX W, GeyerS M, QiuY J. A colloidal ZnTe quantum dot-based photocathode with a metal-insulator-semiconductor structure towards solar-driven CO2 reduction to tunable syngas. Journal of Materials Chemistry A, 2021, 9( 6): 3589– 3596
CrossRef Google scholar
[136]
ZhuC, LiuC G, ZhouY J, FuY J, GuoS J, LiH, ZhaoS Q, HuangH, LiuY, KangZ H. Carbon dots enhance the stability of CdS for visible-light-driven overall water splitting. Applied Catalysis B, 2017, 216 : 114– 121
CrossRef Google scholar
[137]
DeshmukhP R, SohnY, ShinW G. Chemical synthesis of ZnO nanorods: investigations of electrochemical performance and photo-electrochemical water splitting applications. Journal of Alloys and Compounds, 2017, 711 : 573– 580
CrossRef Google scholar
[138]
MohajerniaS, HejaziS, MazareA, NguyenN T, SchmukiP. Photoelectrochemical H2 generation from suboxide TiO2 nanotubes: visible-light absorption versus conductivity. Chemistry (Weinheim an der Bergstrasse, Germany), 2017, 23( 50): 12406– 12411
CrossRef Google scholar
[139]
TiwariJ N, SinghA N, SultanS, KimK S. Recent advancement of p- and d-block elements, single atoms, and graphene-based photoelectrochemical electrodes for water splitting. Advanced Energy Materials, 2020, 10( 24): 2000280
CrossRef Google scholar
[140]
CoshamS D, CelorrioV, KulakA N, HyettG. Observation of visible light activated photocatalytic degradation of stearic acid on thin films of tantalum oxynitride synthesized by aerosol assisted chemical vapour deposition. Dalton Transactions (Cambridge, England), 2019, 48( 28): 10619– 10627
CrossRef Google scholar
[141]
Iborra-TorresA, KulakA N, PalgraveR G, HyettG. Demonstration of visible light-activated photocatalytic self-cleaning by thin films of perovskite tantalum and niobium oxynitrides. ACS Applied Materials & Interfaces, 2020, 12( 30): 33603– 33612
CrossRef Google scholar
[142]
MamiA, SaafiI, LarbiT, Ben MessaoudK, YacoubiN, AmloukM. Unraveling the effect of thickness on the structural, morphological, opto-thermal and DFT calculation of hematite Fe2O3 thin films for photo-catalytic application. Journal of Materials Science Materials in Electronics, 2021, 32( 13): 17974– 17989
CrossRef Google scholar
[143]
HouY, ZuoF, DaggA, FengP Y. A three-dimensional branched cobalt-doped alpha-Fe2O3 nanorod/MgFe2O4 heterojunction array as a flexible photoanode for efficient photoelectrochemical water oxidation. Angewandte Chemie International Edition, 2013, 52( 4): 1248– 1252
CrossRef Google scholar
[144]
HouY, ZuoF, DaggA P, LiuJ K, FengP Y. Branched WO3 nanosheet array with layered C3N4 heterojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation. Advanced Materials, 2014, 26( 29): 5043– 5049
CrossRef Google scholar
[145]
ZhangX, LiuY, KangZ H. 3D branched ZnO nanowire arrays decorated with plasmonic Au manoparticles for high-performance photoelectrochemical water splitting. ACS Applied Materials & Interfaces, 2014, 6( 6): 4480– 4489
CrossRef Google scholar
[146]
ZhangC X, ZhaoP Y, LiuS X, YuK. Three-dimensionally ordered macroporous perovskite materials for environmental applications. Chinese Journal of Catalysis, 2019, 40( 9): 1324– 1338
CrossRef Google scholar
[147]
ChoI S, ChenZ B, FormanA J, KimD R, RaoP M, JaramilloT F, ZhengX L. Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Letters, 2011, 11( 11): 4978– 4984
CrossRef Google scholar
[148]
WarrenS C, VoitchovskyK, DotanH, LeroyC M, CornuzM, StellacciF, HebertC, RothschildA, GratzelM. Identifying champion nanostructures for solar water-splitting. Nature Materials, 2013, 12( 9): 842– 849
CrossRef Google scholar
[149]
ChenS, HuangD L, XuP A, XueW J, LeiL, ChengM, WangR Z, LiuX G, DengR. Semiconductor-based photocatalysts for photocatalytic and photoelectrochemical water splitting: will we stop with photocorrosion?. Journal of Materials Chemistry A, 2020, 8( 5): 2286– 2322
CrossRef Google scholar
[150]
WolcottA, SmithW A, KuykendallT R, ZhaoY P, ZhangJ Z. Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. Small, 2009, 5( 1): 104– 111
CrossRef Google scholar
[151]
ViterR, IatsunskyiI, FedorenkoV, TumenasS, BaleviciusZ, RamanaviciusA, BalmeS, KempińskiM, NowaczykG, JurgaS. . Enhancement of electronic and optical properties of ZnO/Al2O3 nanolaminate coated electrospun nanofibers. Journal of Physical Chemistry C, 2016, 120( 9): 5124– 5132
CrossRef Google scholar
[152]
IatsunskyiI, CoyE, ViterR, NowaczykG, JancelewiczM, BaleviciuteI, ZaleskiK, JurgaS. Study on structural, mechanical, and optical properties of Al2O3-TiO2 nanolaminates prepared by atomic layer deposition. Journal of Physical Chemistry C, 2015, 119( 35): 20591– 20599
CrossRef Google scholar
[153]
WenP, SunY H, LiH, LiangZ Q, WuH H, ZhangJ C, ZengH J, GeyerS M, JiangL. A highly active three-dimensional Z-scheme ZnO/Au/g-C3N4 photocathode for efficient photoelectrochemical water splitting. Applied Catalysis B, 2020, 263 : 118180
CrossRef Google scholar
[154]
MaedaK, HigashiM, LuD L, AbeR, DomenK. Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. Journal of the American Chemical Society, 2010, 132( 16): 5858– 5868
CrossRef Google scholar
[155]
WangX W, LiuG, ChenZ G, LiF, WangL Z, LuG Q, ChengH M. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures. Chemical Communications, 2009( 23): 3452– 3454
CrossRef Google scholar
[156]
KatoH, SasakiY, IwaseA, KudoA. Role of iron ion electron mediator on photocatalytic overall water splitting under visible light irradiation using Z-scheme systems. Bulletin of the Chemical Society of Japan, 2007, 80( 12): 2457– 2464
CrossRef Google scholar
[157]
ChenS S, VequizoJ J M, PanZ H, HisatomiT, NakabayashiM, LinL H, WangZ, KatoK, YamakataA, ShibataN. . Surface modifications of (ZnSe)0.5(CuGa2.5Se4.25)0.5 to promote photocatalytic Z-scheme overall water splitting. Journal of the American Chemical Society, 2021, 143( 28): 10633– 10641
CrossRef Google scholar
[158]
NgB J, PutriL K, KongX Y, PasbakhshP, ChaiS P. Z-scheme photocatalyst sheets with P-doped twinned Zn0.5Cd0.5S1−x and Bi4NbO8Cl connected by carbon electron mediator for overall water splitting under ambient condition. Chemical Engineering Journal, 2021, 404 : 127030
CrossRef Google scholar
[159]
WangZ L, ChenZ, DanJ D, ChenW Q, ZhouC H, ShenZ X, SumZ C, WangX S. Improving photoelectrochemical activity of ZnO/TiO2 core-shell nanostructure through Ag nanoparticle integration. Catalysts, 2021, 11( 8): 911
CrossRef Google scholar
[160]
LyuS, FarreY, DucasseL, PellegrinY, ToupanceT, OlivierC, OdobelF. Push-pull ruthenium diacetylide complexes: new dyes for p-type dye-sensitized solar cells. RSC Advances, 2016, 6( 24): 19928– 19936
CrossRef Google scholar
[161]
LyuS, MassinJ, PavoneM, Munoz-GarciaA B, LabrugereC, ToupanceT, Chavarot-KerlidouM, ArteroV, OlivierC. H2-evolving dye-sensitized photocathode based on a ruthenium-diacetylide/cobaloxime supramolecular assembly. ACS Applied Energy Materials, 2019, 2( 7): 4971– 4980
CrossRef Google scholar
[162]
MassinJ, LyuS, PavoneM, Munoz-GarciaA B, KauffmannB, ToupanceT, Chavarot-KerlidouM, ArteroV, OlivierC. Design and synthesis of novel organometallic dyes for NiO sensitization and photo-electrochemical applications. Dalton Transactions (Cambridge, England), 2016, 45( 31): 12539– 12547
CrossRef Google scholar
[163]
BrilletJ, YumJ H, CornuzM, HisatomiT, SolarskaR, AugustynskiJ, GraetzelM, SivulaK. Highly efficient water splitting by a dual-absorber tandem cell. Nature Photonics, 2012, 6( 12): 823– 827
CrossRef Google scholar
[164]
KimJ K, ShinK, ChoS M, LeeT W, ParkJ H. Synthesis of transparent mesoporous tungsten trioxide films with enhanced photoelectrochemical response: application to unassisted solar water splitting. Energy & Environmental Science, 2011, 4( 4): 1465– 1470
CrossRef Google scholar
[165]
FuX C, ChangH, ShangZ C, LiuP L, LiuJ K, LuoH A. Three-dimensional Cu2O nanorods modified by hydrogen treated Ti3C2Tx MXene with enriched oxygen vacancies as a photocathode and a tandem cell for unassisted solar water splitting. Chemical Engineering Journal, 2020, 381 : 122001
CrossRef Google scholar
[166]
PeerakiatkhajohnP, YunJ H, WangS C, WangL Z. Review of recent progress in unassisted photoelectrochemical water splitting: from material modification to configuration design. Journal of Photonics for Energy, 2017, 7( 1): 012006
CrossRef Google scholar
[167]
KimJ H, JoY, KimJ H, JangJ W, KangH J, LeeY H, KimD S, JunY, LeeJ S. Wireless solar water splitting device with robust cobalt-catalyzed, dual-doped BiVO4 photoanode and perovskite solar cell in tandem: a dual absorber artificial leaf. ACS Nano, 2015, 9( 12): 11820– 11829
CrossRef Google scholar
[168]
LuoJ S, ImJ H, MayerM T, SchreierM, NazeeruddinM K, ParkN G, TilleyS D, FanH J, GratzelM. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science, 2014, 345( 6204): 1593– 1596
CrossRef Google scholar
[169]
WangS C, ChenP, BaiY, YunJ H, LiuG, WangL Z. New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting. Advanced Materials, 2018, 30( 20): 1800486
CrossRef Google scholar
[170]
BeraS, LeeS A, LeeW J, KimJ H, KimC, KimH G, KhanH, JanaS, JangH W, KwonS H. Hierarchical nanoporous BiVO4 photoanodes with high charge separation and transport efficiency for water oxidation. ACS Applied Materials & Interfaces, 2021, 13( 12): 14304– 14314
CrossRef Google scholar
[171]
MorG K, VargheseO K, WilkeR H T, SharmaS, ShankarK, LatempaT J, ChoiK S, GrimesC A. p-Type Cu–Ti–O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. Nano Letters, 2008, 8( 7): 1906– 1911
CrossRef Google scholar
[172]
OhS, SongH, OhJ. An optically and electrochemically decoupled monolithic photoelectrochemical cell for high-performance solar-driven water splitting. Nano Letters, 2017, 17( 9): 5416– 5422
CrossRef Google scholar
[173]
GaneshV, AlizadehM, ShuhaimiA, AdreenA, PandikumarA, JayakumarM, HuangN M, RameshR, BaskarK, RahmanS A. Correlation between indium content in monolithic InGaN/GaN multi quantum well structures on photoelectrochemical activity for water splitting. Journal of Alloys and Compounds, 2017, 706 : 629– 636
CrossRef Google scholar
[174]
ZhuJ J, GudmundsdottirJ B, StrandbakkeR, BothK G, AarholtT, CarvalhoP A, SorbyM H, JensenI J T, GuzikM N, NorbyT, HaugH, ChatzitakisA. Double perovskite cobaltites integrated in a monolithic and noble metal-free photoelectrochemical device for efficient water splitting. ACS Applied Materials & Interfaces, 2021, 13( 17): 20313– 20325
CrossRef Google scholar
[175]
AhmetI Y, BerglundS, ChemseddineA, BogdanoffP, PrägR F, AbdiF F, vande Krol R. Planar and nanostructured n-Si/metal-oxide/WO3/BiVO4 monolithic tandem devices for unassisted solar water splitting. Advanced Energy and Sustainability Research, 2020, 1( 2): 2000037
CrossRef Google scholar
[176]
VankaS, ZhouB W, AwniR A, SongZ N, ChowdhuryF A, LiuX D, HajibabaeiH, ShiW, XiaoY X, NavidI A. . InGaN/Si double-junction photocathode for unassisted solar water splitting. ACS Energy Letters, 2020, 5( 12): 3741– 3751
CrossRef Google scholar

Acknowledgements

Yang Hou acknowledges the funding supports from the National Natural Science Foundation of China (Grant Nos. 2196116074, 21878270, and 221922811), Fundamental Research Funds for the Central Universities (Grant No. 2020XZZX002-09), Zhejiang Provincial Natural Science Foundation of China (Grant No. LR19B060002), Startup Foundation for Hundred-Talent Program of Zhejiang University, Zhejiang Key Laboratory of Marine Materials and Protective Technologies (Grant No. 2020K10), Jiangxi Province “Double Thousand Plan” project (Grant No. 205201000020), Key Laboratory of Marine Materials and Related Technologies, CAS, and the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang (Grant No. 2019R01006). Zhibin Liu acknowledges the funding support of the Research Funds of Institute of Zhejiang University-Quzhou.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(6778 KB)

Accesses

Citations

Detail

Sections
Recommended

/