Rational design on photoelectrodes and devices to boost photoelectrochemical performance of solar-driven water splitting: a mini review

Siliu Lyu , Muhammad Adnan Younis , Zhibin Liu , Libin Zeng , Xianyun Peng , Bin Yang , Zhongjian Li , Lecheng Lei , Yang Hou

Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (6) : 777 -798.

PDF (6778KB)
Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (6) : 777 -798. DOI: 10.1007/s11705-022-2148-0
REVIEW ARTICLE
REVIEW ARTICLE

Rational design on photoelectrodes and devices to boost photoelectrochemical performance of solar-driven water splitting: a mini review

Author information +
History +
PDF (6778KB)

Abstract

As an eco-friendly, efficient, and low-cost technique, photoelectrochemical water splitting has attracted growing interest in the production of clean and sustainable hydrogen by the conversion of abundant solar energy. In the photoelectrochemical system, the photoelectrode plays a vital role in absorbing the energy of sunlight to trigger the water splitting process and the overall efficiency depends largely on the integration and design of photoelectrochemical devices. In recent years, the optimization of photoelectrodes and photoelectrochemical devices to achieve highly efficient hydrogen production has been extensively investigated. In this paper, a concise review of recent advances in the modification of nanostructured photoelectrodes and the design of photoelectrochemical devices is presented. Meanwhile, the general principles of structural and morphological factors in altering the photoelectrochemical performance of photoelectrodes are discussed. Furthermore, the performance indicators and first principles to describe the behaviors of charge carriers are analyzed, which will be of profound guiding significance to increasing the overall efficiency of the photoelectrochemical water splitting system. Finally, current challenges and prospects for an in-depth understanding of reaction mechanisms using advanced characterization technologies and potential strategies for developing novel photoelectrodes and advanced photoelectrochemical water splitting devices are demonstrated.

Graphical abstract

Keywords

photoelectrochemical water splitting / photoelectrodes / hydrogen production / charge separation / catalytic mechanism

Cite this article

Download citation ▾
Siliu Lyu, Muhammad Adnan Younis, Zhibin Liu, Libin Zeng, Xianyun Peng, Bin Yang, Zhongjian Li, Lecheng Lei, Yang Hou. Rational design on photoelectrodes and devices to boost photoelectrochemical performance of solar-driven water splitting: a mini review. Front. Chem. Sci. Eng., 2022, 16(6): 777-798 DOI:10.1007/s11705-022-2148-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ShiP, ChengX, LyuS. Efficient electrocatalytic oxygen evolution at ultra-high current densities over 3D Fe, N doped Ni(OH)2 nanosheets. Chinese Chemical Letters, 2021, 32( 3): 1210– 1214

[2]

WangK, WangX, LiZ, YangB, LingM, GaoX, LuJ, ShiQ, LeiL, WuG, HouY. Designing 3d dual transition metal electrocatalysts for oxygen evolution reaction in alkaline electrolyte: beyond oxides. Nano Energy, 2020, 77 : 105162

[3]

KannanN, VakeesanD. Solar energy for future world: a review. Renewable & Sustainable Energy Reviews, 2016, 62 : 1092– 1105

[4]

JiangC, MonizS J A, WangA, ZhangT, TangJ. Photoelectrochemical devices for solar water splitting—materials and challenges. Chemical Society Reviews, 2017, 46( 15): 4645– 4660

[5]

ZhaoY, DingC, ZhuJ, QinW, TaoX, FanF, LiR, LiC. A hydrogen farm strategy for scalable solar hydrogen production with particulate photocatalysts. Angewandte Chemie International Edition, 2020, 59( 24): 9653– 9658

[6]

KudoA, MisekiY. Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009, 38( 1): 253– 278

[7]

ChangX, WangT, GongJ. CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy & Environmental Science, 2016, 9( 7): 2177– 2196

[8]

KojimaA, TeshimaK, ShiraiY, MiyasakaT. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131( 17): 6050– 6051

[9]

GrätzelM. Photoelectrochemical cells. Nature, 2001, 414( 6861): 338– 344

[10]

ChoudhuryC, AndersenS L, RekstadJ. A solar air heater for low temperature applications. Solar Energy, 1988, 40( 4): 335– 343

[11]

ChengF, WangL, WangH, LeiC, YangB, LiZ, ZhangQ, LeiL, WangS, HouY. Boosting alkaline hydrogen evolution and Zn-H2O cell induced by interfacial electron transfer. Nano Energy, 2020, 71 : 104621

[12]

LeiC, ChenH, CaoJ, YangJ, QiuM, XiaY, YuanC, YangB, LiZ, ZhangX. . Fe-N4 sites embedded into carbon nanofiber integrated with electrochemically exfoliated graphene for oxygen evolution in acidic medium. Advanced Energy Materials, 2018, 8( 26): 1801912

[13]

LeiC, WangY, HouY, LiuP, YangJ, ZhangT, ZhuangX, ChenM, YangB, LeiL. . Efficient alkaline hydrogen evolution on atomically dispersed Ni-Nx species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics. Energy & Environmental Science, 2019, 12( 1): 149– 156

[14]

WangL, LiZ, WangK, DaiQ, LeiC, YangB, ZhangQ, LeiL, LeungM K H, HouY. Tuning d-band center of tungsten carbide via Mo doping for efficient hydrogen evolution and Zn-H2O cell over a wide pH range. Nano Energy, 2020, 74 : 104850

[15]

HouY, QiuM, KimM G, LiuP, NamG, ZhangT, ZhuangX, YangB, ChoJ, ChenM. . Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nature Communications, 2019, 10( 1): 1392

[16]

HouY, QiuM, NamG, KimM G, ZhangT, LiuK, ZhuangX, ChoJ, YuanC, FengX. Integrated hierarchical cobalt sulfide/nickel selenide hybrid nanosheets as an efficient three-dimensional electrode for electrochemical and photoelectrochemical water splitting. Nano Letters, 2017, 17( 7): 4202– 4209

[17]

HouY, QiuM, ZhangT, MaJ, LiuS, ZhuangX, YuanC, FengX. Efficient electrochemical and photoelectrochemical water splitting by a 3D nanostructured carbon supported on flexible exfoliated graphene foil. Advanced Materials, 2017, 29( 3): 1604480

[18]

WhiteJ L, BaruchM F, PanderJ E III, HuY, FortmeyerI C, ParkJ E, ZhangT, LiaoK, GuJ, YanY. . Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chemical Reviews, 2015, 115( 23): 12888– 12935

[19]

NiuF, WangD, LiF, LiuY, ShenS, MeyerT J. Hybrid photoelectrochemical water splitting systems: from interface design to system assembly. Advanced Energy Materials, 2019, 10( 11): 1900399

[20]

Siavash MoakharR, Hosseini-HosseinabadS M, Masudy-PanahS, SezaA, JalaliM, Fallah-AraniH, DabirF, GholipourS, AbdiY, Bagheri-HaririM. . Photoelectrochemical water-splitting using CuO-based electrodes for hydrogen production: a review. Advanced Materials, 2021, 33( 33): 2007285

[21]

FujishimaA, HondaK. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238( 5358): 37– 38

[22]

HellmanA, WangB. First-principles view on photoelectrochemistry: water-splitting as case study. Inorganics, 2017, 5( 2): 37

[23]

ZhangH, WangH Z, XuanJ. Rational design of photoelectrochemical cells towards bias-free water splitting: thermodynamic and kinetic insights. Journal of Power Sources, 2020, 462 : 228113

[24]

ZhangX Q, Bieberle-HutterA. Modeling and simulations in photoelectrochemical water oxidation: from single level to multiscale modeling. ChemSusChem, 2016, 9( 11): 1223– 1242

[25]

BoumeriameH, Da SilvaE S, CherevanA S, ChafikT, FariaJ L, EderD. Layered double hydroxide (LDH)-based materials: a mini-review on strategies to improve the performance for photocatalytic water splitting. Journal of Energy Chemistry, 2022, 64 : 406– 431

[26]

ReddyC V, ReddyI N, HarishV V N, ReddyK R, ShettiN P, ShimJ, AminabhaviT M. Efficient removal of toxic organic dyes and photoelectrochemical properties of iron-doped zirconia nanoparticles. Chemosphere, 2020, 239 : 124766

[27]

YeK H, LiH B, HuangD, XiaoS, QiuW T, LiM Y, HuY W, MaiW J, JiH B, YangS H. Enhancing photoelectrochemical water splitting by combining work function tuning and heterojunction engineering. Nature Communications, 2019, 10( 1): 3687

[28]

ChandrasekaranS, YaoL, DengL B, BowenC, ZhangY, ChenS M, LinZ Q, PengF, ZhangP X. Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chemical Society Reviews, 2019, 48( 15): 4178– 4280

[29]

ChenY B, ZhengW Y, Murcia-LopezS, LvF, MoranteJ R, VayssieresL, BurdaC. Light management in photoelectrochemical water splitting—from materials to device engineering. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2021, 9( 11): 3726– 3748

[30]

KimJ H, HansoraD, SharmaP, JangJ W, LeeJ S. Toward practical solar hydrogen production—an artificial photosynthetic leaf-to-farm challenge. Chemical Society Reviews, 2019, 48( 7): 1908– 1971

[31]

LiL Z, LiuC H, QiuY Y, MitsuzakN, ChenZ D. Convex-nanorods of alpha-Fe2O3/CQDs heterojunction photoanode synthesized by a facile hydrothermal method for highly efficient water oxidation. International Journal of Hydrogen Energy, 2017, 42( 31): 19654– 19663

[32]

WangC Z, ChenZ, JinH B, CaoC B, LiJ B, MiZ T. Enhancing visible-light photoelectrochemical water splitting through transition-metal doped TiO2 nanorod arrays. Journal of Materials Chemistry A, 2014, 2( 42): 17820– 17827

[33]

VaradhanP, FuH C, PrianteD, RetamalJ R D, ZhaoC, EbaidM, NgT K, AjiaI, MitraS, RoqanI S. . Surface passivation of GaN nanowires for enhanced photoelectrochemical water-splitting. Nano Letters, 2017, 17( 3): 1520– 1528

[34]

NieQ, YangL, CaoC, ZengY M, WangG Z, WangC Z, LinS W. Interface optimization of ZnO nanorod/CdS quantum dots heterostructure by a facile two-step low-temperature thermal treatment for improved photoelectrochemical water splitting. Chemical Engineering Journal, 2017, 325 : 151– 159

[35]

HisatomiT, KubotaJ, DomenK. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chemical Society Reviews, 2014, 43( 22): 7520– 7535

[36]

HamdaniI R, BhaskarwarA N. Recent progress in material selection and device designs for photoelectrochemical water-splitting. Renewable & Sustainable Energy Reviews, 2021, 138 : 110503

[37]

LiJ K, ChengK W. Surface modification of the p-type Cu2ZnSnS4 photocathode with n-type zinc oxide nanorods for photo-driven salt water splitting. International Journal of Hydrogen Energy, 2021, 46( 53): 26961– 26975

[38]

LiZ S, LuoW J, ZhangM L, FengJ Y, ZouZ G. Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy & Environmental Science, 2013, 6( 2): 347– 370

[39]

WuN Q. Plasmonic metal-semiconductor photocatalysts and photoelectrochemical cells: a review. Nanoscale, 2018, 10( 6): 2679– 2696

[40]

KimJ H, LeeJ S. Elaborately modified BiVO4 photoanodes for solar water splitting. Advanced Materials, 2019, 31( 20): 1806938

[41]

SaraswatS K, RodeneD D, GuptaR B. Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light. Renewable & Sustainable Energy Reviews, 2018, 89 : 228– 248

[42]

ChenF, MaT Y, ZhangT R, ZhangY H, HuangH W. Atomic-level charge separation strategies in semiconductor-based photocatalysts. Advanced Materials, 2021, 33( 10): 2005256

[43]

QianW Q, XuS W, ZhangX M, LiC B, YangW Y, BowenC R, YangY. Differences and similarities of photocatalysis and electrocatalysis in two-dimensional nanomaterials: strategies, traps, applications and challenges. Nano-Micro Letters, 2021, 13( 1): 156

[44]

ZhangS, YeH, HuaJ, TianH. Recent advances in dye-sensitized photoelectrochemical cells for water splitting. EnergyChem, 2019, 1( 3): 100015

[45]

JoyJ, MathewJ, GeorgeS C. Nanomaterials for photoelectrochemical water splitting—review. International Journal of Hydrogen Energy, 2018, 43( 10): 4804– 4817

[46]

XuP T, McCoolN S, MalloukT E. Water splitting dye-sensitized solar cells. Nano Today, 2017, 14 : 42– 58

[47]

HuangY T, KavanaghS R, ScanlonD O, WalshA, HoyeR L Z. Perovskite-inspired materials for photovoltaics and beyond-from design to devices. Nanotechnology, 2021, 32( 13): 132004

[48]

WangQ, DomenK. Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chemical Reviews, 2020, 120( 2): 919– 985

[49]

LaskowskiF A L, NellistM R, QuJ J, BoettcherS W. Metal oxide/(oxy)hydroxide overlayers as hole collectors and oxygen-evolution catalysts on water-splitting photoanodes. Journal of the American Chemical Society, 2019, 141( 4): 1394– 1405

[50]

MazzeoA, SantallaS, GaviglioC, DoctorovichF, PellegrinoJ. Recent progress in homogeneous light-driven hydrogen evolution using first-row transition metal catalysts. Inorganica Chimica Acta, 2021, 517 : 119950

[51]

XuY, SchoonenM A A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist, 2000, 85( 3-4): 543– 556

[52]

BoltonJ R, StricklerS J, ConnollyJ S. Limiting and realizable efficiencies of solar photolysis of water. Nature, 1985, 316( 6028): 495– 500

[53]

SwathiS, YuvakkumarR, RaviG, BabuE S, VelauthapillaiD, AlharbiS A. Morphological exploration of chemical vapor-deposited P-doped ZnO nanorods for efficient photoelectrochemical water splitting. Ceramics International, 2021, 47( 5): 6521– 6527

[54]

EidsvagH, BentoubaS, VajeestonP, YohiS, VelauthapillaiD. TiO2 as a photocatalyst for water splitting—an experimental and theoretical review. Molecules (Basel, Switzerland), 2021, 26( 6): 1687

[55]

BrilletJ, CornuzM, FormalF L, YumJ H, GrätzelM, SivulaK. Examining architectures of photoanode-photovoltaic tandem cells for solar water splitting. Journal of Materials Research, 2010, 25( 1): 17– 24

[56]

ChenY B, FengX Y, LiuY, GuanX J, BurdaC, GuoL J. Metal oxide-based tandem cells for self-biased photoelectrochemical water splitting. ACS Energy Letters, 2020, 5( 3): 844– 866

[57]

SolarskaR, AlexanderB D, AugustynskiJ. Electrochromic and structural characteristics of mesoporous WO3 films prepared by a sol-gel method. Journal of Solid State Electrochemistry, 2004, 8( 10): 748– 756

[58]

PeterL M, Upul WijayanthaK G. Photoelectrochemical water splitting at semiconductor electrodes: fundamental problems and new perspectives. ChemPhysChem, 2014, 15( 10): 1983– 1995

[59]

WuH, TanH L, ToeC Y, ScottJ, WangL Z, AmalR, NgY H. Photocatalytic and photoelectrochemical systems: similarities and differences. Advanced Materials, 2020, 32( 18): 1904717

[60]

ZhengZ X, LoI M C. Multifunctional photoelectrochemical systems for coupled water treatment and high-value product generation: current status, mechanisms, remaining challenges, and future opportunities. Current Opinion in Chemical Engineering, 2021, 34 : 100711

[61]

ZhouS Q, ChenK Y, HuangJ W, WangL, ZhangM Y, BaiB, LiuH, WangQ Z. Preparation of heterometallic CoNi-MOFs-modified BiVO4: a steady photoanode for improved performance in photoelectrochemical water splitting. Applied Catalysis B, 2020, 266 : 118513

[62]

AhmedM, DincerI. A review on photoelectrochemical hydrogen production systems: challenges and future directions. International Journal of Hydrogen Energy, 2019, 44( 5): 2474– 2507

[63]

BakT, NowotnyJ, RekasM, SorrellC C. Photo-electrochemical hydrogen generation from water using solar energy, materials-related aspects. International Journal of Hydrogen Energy, 2002, 27( 10): 991– 1022

[64]

VanpouckeD E P, BultinckP, CottenierS, Van SpeybroeckV, Van DriesscheI. Aliovalent doping of CeO2: DFT study of oxidation state and vacancy effects. Journal of Materials Chemistry A, 2014, 2( 33): 13723– 13737

[65]

LiuG, ZhaoY N, SunC H, LiF, LuG Q, ChengH M. Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2. Angewandte Chemie International Edition, 2008, 47( 24): 4516– 4520

[66]

LongR, EnglishN J. First-principles calculation of synergistic (N, P)-codoping effects on the visible-light photocatalytic activity of anatase TiO2. Journal of Physical Chemistry C, 2010, 114( 27): 11984– 11990

[67]

NiuM, ChengD J, CaoD P. Enhanced photoelectrochemical performance of anatase TiO2 by metal-assisted S–O coupling for water splitting. International Journal of Hydrogen Energy, 2013, 38( 3): 1251– 1257

[68]

HuY F, HuangH T, FengJ Y, WangW, GuanH M, LiZ S, ZouZ G. Material design and surface/interface engineering of photoelectrodes for solar water splitting. Solar RRL, 2021, 5( 4): 2100100

[69]

JiaoY, HellmanA, FangY R, GaoS W, KallM. Schottky barrier formation and band bending revealed by first-principles calculations. Scientific Reports, 2015, 5( 1): 11374

[70]

KwonS, LeeS J, KimS M, LeeY, SongH, ParkJ Y. Probing the nanoscale Schottky barrier of metal/semiconductor interfaces of Pt/CdSe/Pt nanodumbbells by conductive-probe atomic force microscopy. Nanoscale, 2015, 7( 29): 12297– 12301

[71]

TungR T. The physics and chemistry of the Schottky barrier height. Applied Physics Reviews, 2014, 1( 1): 011304

[72]

ZawadzkiP, LaursenA B, JacobsenK W, DahlS, RossmeislJ. Oxidative trends of TiO2-hole trapping at anatase and rutile surfaces. Energy & Environmental Science, 2012, 5( 12): 9866– 9869

[73]

AlexandrovV, NeumannA, SchererM M, RossoK M. Electron exchange and conduction in nontronite from first-principles. Journal of Physical Chemistry C, 2013, 117( 5): 2032– 2040

[74]

JafariT, MoharreriE, AminA S, MiaoR, SongW, SuibS L. Photocatalytic water splitting-the untamed dream: a review of recent advances. Molecules (Basel, Switzerland), 2016, 21( 7): 900

[75]

ZouZ, YeJ, SayamaK, ArakawaH. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 2001, 414( 6864): 625– 627

[76]

RissA, ElserM J, BernardiJ, DiwaldO. Stability and photoelectronic properties of layered titanate nanostructures. Journal of the American Chemical Society, 2009, 131( 17): 6198– 6206

[77]

WickmanB, Bastos FantaA, BurrowsA, HellmanA, WagnerJ B, IandoloB. Iron oxide films prepared by rapid thermal processing for solar energy conversion. Scientific Reports, 2017, 7( 1): 40500

[78]

XiaY, YangP, SunY, WuY, MayersB, GatesB, YinY, KimF, YanH. One-dimensional nanostructures: synthesis, characterization, and applications. Advanced Materials, 2003, 15( 5): 353– 389

[79]

MahalingamS, AbdullahH. Electron transport study of indium oxide as photoanode in DSSCs: a review. Renewable & Sustainable Energy Reviews, 2016, 63 : 245– 255

[80]

XuJ, WangZ, LiW, ZhangX, HeD, XiaoX. Ag nanoparticles located on three-dimensional pine tree-like hierarchical TiO2 nanotube array films as high-efficiency plasmonic photocatalysts. Nanoscale Research Letters, 2017, 12( 1): 54

[81]

BedinK C, MucheD N F, MeloM A Jr, FreitasA L M, GonçalvesR V, SouzaF L. Role of cocatalysts on hematite photoanodes in photoelectrocatalytic water splitting: challenges and future perspectives. ChemCatChem, 2020, 12( 12): 3156– 3169

[82]

RajaambalS, SivaranjaniK, GopinathC S. Recent developments in solar H2 generation from water splitting. Journal of Chemical Sciences, 2015, 127( 1): 33– 47

[83]

ZafarZ YiS S LiJ P LiC Q ZhuY F ZadaA YaoW J LiuZ Y YueX Z. Recent development in defects engineered photocatalysts: an overview of the experimental and theoretical strategies. Energy & Environmental Materials, 2021. doi: 10.1002/eem1002.12171

[84]

ZhangP, LouX W. Design of heterostructured hollow photocatalysts for solar-to-chemical energy conversion. Advanced Materials, 2019, 31( 29): 1900281

[85]

ChenS R, LiC L, HouZ Y. The novel behavior of photoelectrochemical property of annealing TiO2 nanorod arrays. Journal of Materials Science, 2020, 55( 14): 5969– 5981

[86]

JooJ B, ZhangQ, DahlM, LeeI, GoeblJ, ZaeraF, YinY D. Control of the nanoscale crystallinity in mesoporous TiO2 shells for enhanced photocatalytic activity. Energy & Environmental Science, 2012, 5( 4): 6321– 6327

[87]

TanH L, AmalR, NgY H. Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO4: a review. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5( 32): 16498– 16521

[88]

YanZ Y, HuangW X, JiangX R, GaoJ Z, HuY W, ZhangH Z, ShiQ W. Hollow structured black TiO2 with thickness-controllable microporous shells for enhanced visible-light-driven photocatalysis. Microporous and Mesoporous Materials, 2021, 323 : 111228

[89]

ZhangW, TianY, HeH L, XuL, LiW, ZhaoD Y. Recent advances in the synthesis of hierarchically mesoporous TiO2 materials for energy and environmental applications. National Science Review, 2020, 7( 11): 1702– 1725

[90]

PihoshY, MinegishiT, NandalV, HigashiT, KatayamaM, YamadaT, SasakiY, SekiK, SuzukiY, NakabayashiM. . Ta3N5-nanorods enabling highly efficient water oxidation via advantageous light harvesting and charge collection. Energy & Environmental Science, 2020, 13( 5): 1519– 1530

[91]

CaoM Q, LiH M, LiuK, HuJ H, PanH, FuJ W, LiuM. Vertical SrNbO2N nanorod arrays for solar-driven photoelectrochemical water splitting. Solar RRL, 2021, 5( 6): 2000448

[92]

ChenX B, LiuL, YuP Y, MaoS S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 2011, 331( 6018): 746– 750

[93]

TakagiF, KageshimaY, TeshimaK, DomenK, NishikioriH. Enhanced photoelectrochemical performance from particulate ZnSe:Cu(In,Ga)Se-2 photocathodes during solar hydrogen production via particle size control. Sustainable Energy & Fuels, 2021, 5( 2): 412– 423

[94]

MishraA K, PradhanD. Morphology controlled solution-based synthesis of Cu2O crystals for the facets-dependent catalytic reduction of highly toxic aqueous Cr(VI). Crystal Growth & Design, 2016, 16( 7): 3688– 3698

[95]

TanH L, AmalR, NgY H. Exploring the different roles of particle size in photoelectrochemical and photocatalytic water oxidation on BiVO4. ACS Applied Materials & Interfaces, 2016, 8( 42): 28607– 28614

[96]

XiaoM, WangZ L, LyuM Q, LuoB, WangS C, LiuG, ChengH M, WangL Z. Hollow nanostructures for photocatalysis: advantages and challenges. Advanced Materials, 2019, 31( 38): 1801369

[97]

KimK, MoonJ H. Three-dimensional bicontinuous BiVO4/ZnO photoanodes for high solar water-splitting performance at low bias potential. ACS Applied Materials & Interfaces, 2018, 10( 40): 34238– 34244

[98]

OsterlohF E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chemical Society Reviews, 2013, 42( 6): 2294– 2320

[99]

ReddyN L, EminS, ValantM, ShankarM V. Nanostructured Bi2O3@TiO2 photocatalyst for enhanced hydrogen production. International Journal of Hydrogen Energy, 2017, 42( 10): 6627– 6636

[100]

YinJ, LiaoG Z, ZhouJ L, HuangC M, LingY, LuP, LiL S. High performance of magnetic BiFeO3 nanoparticle-mediated photocatalytic ozonation for wastewater decontamination. Separation and Purification Technology, 2016, 168 : 134– 140

[101]

EftekhariA, BabuV J, RamakrishnaS. Photoelectrode nanomaterials for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2017, 42( 16): 11078– 11109

[102]

VishwakarmaA K, TripathiP, SrivastavaA, SinhaA S K, SrivastavaO N. Band gap engineering of Gd and Co doped BiFeO3 and their application in hydrogen production through photoelectrochemical route. International Journal of Hydrogen Energy, 2017, 42( 36): 22677– 22686

[103]

WangJ J, SunH F, HuangJ, LiQ X, YangJ L. Band structure tuning of TiO2 for enhanced photoelectrochemical water splitting. Journal of Physical Chemistry C, 2014, 118( 14): 7451– 7457

[104]

MomeniM M, AkbarniaM, GhayebY. Preparation of S-W-codoped TiO2 nanotubes and effect of various hole scavengers on their photoelectrochemical activity: alcohol series. International Journal of Hydrogen Energy, 2020, 45( 58): 33552– 33562

[105]

GhoshD, RoyK, SarkarK, DeviP, KumarP. Surface plasmon-enhanced carbon dot-embellished multifaceted Si(111) nanoheterostructure for photoelectrochemical water splitting. ACS Applied Materials & Interfaces, 2020, 12( 25): 28792– 28800

[106]

KumarD, SharmaS, KhareN. Enhanced photoelectrochemical performance of plasmonic Ag nanoparticles grafted ternary Ag/PaNi/NaNbO3 nanocomposite photoanode for photoelectrochemical water splitting. Renewable Energy, 2020, 156 : 173– 182

[107]

LiH X, LiX, DongW, XiJ H, DuG, JiZ G. Cu nanoparticles hybridized with ZnO thin film for enhanced photoelectrochemical oxygen evolution. Journal of Alloys and Compounds, 2018, 768 : 830– 837

[108]

LiZ, ShiL, FranklinD, KoulS, KushimaA, YangY. Drastic enhancement of photoelectrochemical water splitting performance over plasmonic Al@TiO2 heterostructured nanocavity arrays. Nano Energy, 2018, 51 : 400– 407

[109]

ZhengZ K, XieW, HuangB B, DaiY. Plasmon-enhanced solar water splitting on metal-semiconductor photocatalysts. Chemistry (Weinheim an der Bergstrasse, Germany), 2018, 24( 69): 18322– 18333

[110]

WarrenS C, ThimsenE. Plasmonic solar water splitting. Energy & Environmental Science, 2012, 5( 1): 5133– 5146

[111]

LeeJ, MubeenS, JiX, StuckyG D, MoskovitsM. Plasmonic photoanodes for solar water splitting with visible light. Nano Letters, 2012, 12( 9): 5014– 5019

[112]

OnishiT, TeranishiM, NayaS, FujishimaM, TadaH. Electrocatalytic effect on the photon-to-current conversion efficiency of gold-nanoparticle-loaded titanium(IV) oxide plasmonic electrodes for water oxidation. Journal of Physical Chemistry C, 2020, 124( 11): 6103– 6109

[113]

PatraB K, KhilariS, PradhanD, PradhanN. Hybrid dot-disk Au-CuInS2 nanostructures as active photocathode for efficient evolution of hydrogen from water. Chemistry of Materials, 2016, 28( 12): 4358– 4366

[114]

LickledererM, MohammadiR, NguyenN T, ParkH, HejaziS, HalikM, VogelN, AltomareM, SchmukiP. Dewetted Au nanoparticles on TiO2 surfaces: evidence of a size-independent plasmonic photoelectrochemical response. Journal of Physical Chemistry C, 2019, 123( 27): 16934– 16942

[115]

DuttaA, PihuleacB, ChenY, ZongC, Dal NegroL, YangC. Au@SiO2@Au core-shell-shell nanoparticles for enhancing photocatalytic activity of hematite. Materials Today Energy, 2021, 19 : 100576

[116]

HaiderR S, WangS, GaoY, MalikA S, TaN, LiH, ZengB, DupuisM, FanF, LiC. Boosting photocatalytic water oxidation by surface plasmon resonance of AgxAu1−x alloy nanoparticles. Nano Energy, 2021, 87 : 106189

[117]

HaydousF, LuoS J, WuK T, LawleyC, DobeliM, IshiharaT, LippertT. Surface analysis of perovskite oxynitride thin films as photoelectrodes for solar water splitting. ACS Applied Materials & Interfaces, 2021, 13( 31): 37785– 37796

[118]

HigashiM, DomenK, AbeR. Fabrication of efficient TaON and Ta3N5 photoanodes for water splitting under visible light irradiation. Energy & Environmental Science, 2011, 4( 10): 4138– 4147

[119]

BaeD, SegerB, VesborgP C K, HansenO, ChorkendorffI. Strategies for stable water splitting via protected photoelectrodes. Chemical Society Reviews, 2017, 46( 7): 1933– 1954

[120]

RosC, CarreteroN M, DavidJ, ArbiolJ, AndreuT, MoranteJ R. Insight into the degradation mechanisms of atomic layer deposited TiO2 as photoanode protective layer. ACS Applied Materials & Interfaces, 2019, 11( 33): 29725– 29735

[121]

WangR, WangL, ZhouY, ZouZ. Al-ZnO/CdS photoanode modified with a triple functions conformal TiO2 film for enhanced photoelectrochemical efficiency and stability. Applied Catalysis B, 2019, 255 : 117738

[122]

HuS, LewisN S, AgerJ W, YangJ, McKoneJ R, StrandwitzN C. Thin-film materials for the protection of semiconducting photoelectrodes in solar-fuel generators. Journal of Physical Chemistry C, 2015, 119( 43): 24201– 24228

[123]

KenneyM J, GongM, LiY G, WuJ Z, FengJ, LanzaM, DaiH J. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science, 2013, 342( 6160): 836– 840

[124]

RosC, AndreuT, DavidJ, ArbiolJ, MoranteJ R. Degradation and regeneration mechanisms of NiO protective layers deposited by ALD on photoanodes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7( 38): 21892– 21902

[125]

McDowellM T, LichtermanM F, SpurgeonJ M, HuS, SharpI D, BrunschwigB S, LewisN S. Improved stability of polycrystalline bismuth vanadate photoanodes by use of dual-layer thin TiO2/Ni coatings. Journal of Physical Chemistry C, 2014, 118( 34): 19618– 19624

[126]

FanR L, DongW, FangL, ZhengF G, SuX D, ZouS, HuangJ, WangX S, ShenM R. Stable and efficient multi-crystalline n + p silicon photocathode for H2 production with pyramid-like surface nanostructure and thin Al2O3 protective layer. Applied Physics Letters, 2015, 106( 1): 013902

[127]

PavlenkoM, SiuzdakK, CoyE, ZałęskiK, JancelewiczM, IatsunskyiI. Enhanced solar-driven water splitting of 1D core-shell Si/TiO2/ZnO nanopillars. International Journal of Hydrogen Energy, 2020, 45( 50): 26426– 26433

[128]

AshcheulovP, TaylorA, MortetV, PorubaA, LeFormal F, KrýsováH, KlementováM, HubíkP, KopečekJ, LorinčíkJ. . Nanocrystalline boron-doped diamond as a corrosion-resistant anode for water oxidation via Si photoelectrodes. ACS Applied Materials & Interfaces, 2018, 10( 35): 29552– 29564

[129]

CoyE, SiuzdakK, Grądzka-KurzajI, SayeghS, WeberM, ZiółekM, BechelanyM, IatsunskyiI. Exploring the effect of BN and B-N bridges on the photocatalytic performance of semiconductor heterojunctions: enhancing carrier transfer mechanism. Applied Materials Today, 2021, 24 : 101095

[130]

YangW, PrabhakarR R, TanJ, TilleyS D, MoonJ. Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting. Chemical Society Reviews, 2019, 48( 19): 4979– 5015

[131]

ZhaoX, LuoW J, FengJ Y, LiM X, LiZ S, YuT, ZouZ G. Quantitative analysis and visualized evidence for high charge separation efficiency in a solid-liquid bulk heterojunction. Advanced Energy Materials, 2014, 4( 9): 1301785

[132]

SafaS, KhajehM, OveisiA R, AzimiradR, SalehzadehH. Photocatalytic performance of graphene quantum dot incorporated UiO-66-NH2 composite assembled on plasma-treated membrane. Advanced Powder Technology, 2021, 32( 4): 1081– 1087

[133]

SangL X, LinJ, ZhaoY B. Preparation of carbon dots/TiO2 electrodes and their photoelectrochemical activities for water splitting. International Journal of Hydrogen Energy, 2017, 42( 17): 12122– 12132

[134]

WangP, ZhouX B, ShaoY, LiD Z, ZuoZ F, LiuX Z. CdS quantum dots-decorated InOOH: facile synthesis and excellent photocatalytic activity under visible light. Journal of Colloid and Interface Science, 2021, 601 : 186– 195

[135]

WenP, LiH, MaX, LeiR B, WangX W, GeyerS M, QiuY J. A colloidal ZnTe quantum dot-based photocathode with a metal-insulator-semiconductor structure towards solar-driven CO2 reduction to tunable syngas. Journal of Materials Chemistry A, 2021, 9( 6): 3589– 3596

[136]

ZhuC, LiuC G, ZhouY J, FuY J, GuoS J, LiH, ZhaoS Q, HuangH, LiuY, KangZ H. Carbon dots enhance the stability of CdS for visible-light-driven overall water splitting. Applied Catalysis B, 2017, 216 : 114– 121

[137]

DeshmukhP R, SohnY, ShinW G. Chemical synthesis of ZnO nanorods: investigations of electrochemical performance and photo-electrochemical water splitting applications. Journal of Alloys and Compounds, 2017, 711 : 573– 580

[138]

MohajerniaS, HejaziS, MazareA, NguyenN T, SchmukiP. Photoelectrochemical H2 generation from suboxide TiO2 nanotubes: visible-light absorption versus conductivity. Chemistry (Weinheim an der Bergstrasse, Germany), 2017, 23( 50): 12406– 12411

[139]

TiwariJ N, SinghA N, SultanS, KimK S. Recent advancement of p- and d-block elements, single atoms, and graphene-based photoelectrochemical electrodes for water splitting. Advanced Energy Materials, 2020, 10( 24): 2000280

[140]

CoshamS D, CelorrioV, KulakA N, HyettG. Observation of visible light activated photocatalytic degradation of stearic acid on thin films of tantalum oxynitride synthesized by aerosol assisted chemical vapour deposition. Dalton Transactions (Cambridge, England), 2019, 48( 28): 10619– 10627

[141]

Iborra-TorresA, KulakA N, PalgraveR G, HyettG. Demonstration of visible light-activated photocatalytic self-cleaning by thin films of perovskite tantalum and niobium oxynitrides. ACS Applied Materials & Interfaces, 2020, 12( 30): 33603– 33612

[142]

MamiA, SaafiI, LarbiT, Ben MessaoudK, YacoubiN, AmloukM. Unraveling the effect of thickness on the structural, morphological, opto-thermal and DFT calculation of hematite Fe2O3 thin films for photo-catalytic application. Journal of Materials Science Materials in Electronics, 2021, 32( 13): 17974– 17989

[143]

HouY, ZuoF, DaggA, FengP Y. A three-dimensional branched cobalt-doped alpha-Fe2O3 nanorod/MgFe2O4 heterojunction array as a flexible photoanode for efficient photoelectrochemical water oxidation. Angewandte Chemie International Edition, 2013, 52( 4): 1248– 1252

[144]

HouY, ZuoF, DaggA P, LiuJ K, FengP Y. Branched WO3 nanosheet array with layered C3N4 heterojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation. Advanced Materials, 2014, 26( 29): 5043– 5049

[145]

ZhangX, LiuY, KangZ H. 3D branched ZnO nanowire arrays decorated with plasmonic Au manoparticles for high-performance photoelectrochemical water splitting. ACS Applied Materials & Interfaces, 2014, 6( 6): 4480– 4489

[146]

ZhangC X, ZhaoP Y, LiuS X, YuK. Three-dimensionally ordered macroporous perovskite materials for environmental applications. Chinese Journal of Catalysis, 2019, 40( 9): 1324– 1338

[147]

ChoI S, ChenZ B, FormanA J, KimD R, RaoP M, JaramilloT F, ZhengX L. Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Letters, 2011, 11( 11): 4978– 4984

[148]

WarrenS C, VoitchovskyK, DotanH, LeroyC M, CornuzM, StellacciF, HebertC, RothschildA, GratzelM. Identifying champion nanostructures for solar water-splitting. Nature Materials, 2013, 12( 9): 842– 849

[149]

ChenS, HuangD L, XuP A, XueW J, LeiL, ChengM, WangR Z, LiuX G, DengR. Semiconductor-based photocatalysts for photocatalytic and photoelectrochemical water splitting: will we stop with photocorrosion?. Journal of Materials Chemistry A, 2020, 8( 5): 2286– 2322

[150]

WolcottA, SmithW A, KuykendallT R, ZhaoY P, ZhangJ Z. Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. Small, 2009, 5( 1): 104– 111

[151]

ViterR, IatsunskyiI, FedorenkoV, TumenasS, BaleviciusZ, RamanaviciusA, BalmeS, KempińskiM, NowaczykG, JurgaS. . Enhancement of electronic and optical properties of ZnO/Al2O3 nanolaminate coated electrospun nanofibers. Journal of Physical Chemistry C, 2016, 120( 9): 5124– 5132

[152]

IatsunskyiI, CoyE, ViterR, NowaczykG, JancelewiczM, BaleviciuteI, ZaleskiK, JurgaS. Study on structural, mechanical, and optical properties of Al2O3-TiO2 nanolaminates prepared by atomic layer deposition. Journal of Physical Chemistry C, 2015, 119( 35): 20591– 20599

[153]

WenP, SunY H, LiH, LiangZ Q, WuH H, ZhangJ C, ZengH J, GeyerS M, JiangL. A highly active three-dimensional Z-scheme ZnO/Au/g-C3N4 photocathode for efficient photoelectrochemical water splitting. Applied Catalysis B, 2020, 263 : 118180

[154]

MaedaK, HigashiM, LuD L, AbeR, DomenK. Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. Journal of the American Chemical Society, 2010, 132( 16): 5858– 5868

[155]

WangX W, LiuG, ChenZ G, LiF, WangL Z, LuG Q, ChengH M. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures. Chemical Communications, 2009( 23): 3452– 3454

[156]

KatoH, SasakiY, IwaseA, KudoA. Role of iron ion electron mediator on photocatalytic overall water splitting under visible light irradiation using Z-scheme systems. Bulletin of the Chemical Society of Japan, 2007, 80( 12): 2457– 2464

[157]

ChenS S, VequizoJ J M, PanZ H, HisatomiT, NakabayashiM, LinL H, WangZ, KatoK, YamakataA, ShibataN. . Surface modifications of (ZnSe)0.5(CuGa2.5Se4.25)0.5 to promote photocatalytic Z-scheme overall water splitting. Journal of the American Chemical Society, 2021, 143( 28): 10633– 10641

[158]

NgB J, PutriL K, KongX Y, PasbakhshP, ChaiS P. Z-scheme photocatalyst sheets with P-doped twinned Zn0.5Cd0.5S1−x and Bi4NbO8Cl connected by carbon electron mediator for overall water splitting under ambient condition. Chemical Engineering Journal, 2021, 404 : 127030

[159]

WangZ L, ChenZ, DanJ D, ChenW Q, ZhouC H, ShenZ X, SumZ C, WangX S. Improving photoelectrochemical activity of ZnO/TiO2 core-shell nanostructure through Ag nanoparticle integration. Catalysts, 2021, 11( 8): 911

[160]

LyuS, FarreY, DucasseL, PellegrinY, ToupanceT, OlivierC, OdobelF. Push-pull ruthenium diacetylide complexes: new dyes for p-type dye-sensitized solar cells. RSC Advances, 2016, 6( 24): 19928– 19936

[161]

LyuS, MassinJ, PavoneM, Munoz-GarciaA B, LabrugereC, ToupanceT, Chavarot-KerlidouM, ArteroV, OlivierC. H2-evolving dye-sensitized photocathode based on a ruthenium-diacetylide/cobaloxime supramolecular assembly. ACS Applied Energy Materials, 2019, 2( 7): 4971– 4980

[162]

MassinJ, LyuS, PavoneM, Munoz-GarciaA B, KauffmannB, ToupanceT, Chavarot-KerlidouM, ArteroV, OlivierC. Design and synthesis of novel organometallic dyes for NiO sensitization and photo-electrochemical applications. Dalton Transactions (Cambridge, England), 2016, 45( 31): 12539– 12547

[163]

BrilletJ, YumJ H, CornuzM, HisatomiT, SolarskaR, AugustynskiJ, GraetzelM, SivulaK. Highly efficient water splitting by a dual-absorber tandem cell. Nature Photonics, 2012, 6( 12): 823– 827

[164]

KimJ K, ShinK, ChoS M, LeeT W, ParkJ H. Synthesis of transparent mesoporous tungsten trioxide films with enhanced photoelectrochemical response: application to unassisted solar water splitting. Energy & Environmental Science, 2011, 4( 4): 1465– 1470

[165]

FuX C, ChangH, ShangZ C, LiuP L, LiuJ K, LuoH A. Three-dimensional Cu2O nanorods modified by hydrogen treated Ti3C2Tx MXene with enriched oxygen vacancies as a photocathode and a tandem cell for unassisted solar water splitting. Chemical Engineering Journal, 2020, 381 : 122001

[166]

PeerakiatkhajohnP, YunJ H, WangS C, WangL Z. Review of recent progress in unassisted photoelectrochemical water splitting: from material modification to configuration design. Journal of Photonics for Energy, 2017, 7( 1): 012006

[167]

KimJ H, JoY, KimJ H, JangJ W, KangH J, LeeY H, KimD S, JunY, LeeJ S. Wireless solar water splitting device with robust cobalt-catalyzed, dual-doped BiVO4 photoanode and perovskite solar cell in tandem: a dual absorber artificial leaf. ACS Nano, 2015, 9( 12): 11820– 11829

[168]

LuoJ S, ImJ H, MayerM T, SchreierM, NazeeruddinM K, ParkN G, TilleyS D, FanH J, GratzelM. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science, 2014, 345( 6204): 1593– 1596

[169]

WangS C, ChenP, BaiY, YunJ H, LiuG, WangL Z. New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting. Advanced Materials, 2018, 30( 20): 1800486

[170]

BeraS, LeeS A, LeeW J, KimJ H, KimC, KimH G, KhanH, JanaS, JangH W, KwonS H. Hierarchical nanoporous BiVO4 photoanodes with high charge separation and transport efficiency for water oxidation. ACS Applied Materials & Interfaces, 2021, 13( 12): 14304– 14314

[171]

MorG K, VargheseO K, WilkeR H T, SharmaS, ShankarK, LatempaT J, ChoiK S, GrimesC A. p-Type Cu–Ti–O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. Nano Letters, 2008, 8( 7): 1906– 1911

[172]

OhS, SongH, OhJ. An optically and electrochemically decoupled monolithic photoelectrochemical cell for high-performance solar-driven water splitting. Nano Letters, 2017, 17( 9): 5416– 5422

[173]

GaneshV, AlizadehM, ShuhaimiA, AdreenA, PandikumarA, JayakumarM, HuangN M, RameshR, BaskarK, RahmanS A. Correlation between indium content in monolithic InGaN/GaN multi quantum well structures on photoelectrochemical activity for water splitting. Journal of Alloys and Compounds, 2017, 706 : 629– 636

[174]

ZhuJ J, GudmundsdottirJ B, StrandbakkeR, BothK G, AarholtT, CarvalhoP A, SorbyM H, JensenI J T, GuzikM N, NorbyT, HaugH, ChatzitakisA. Double perovskite cobaltites integrated in a monolithic and noble metal-free photoelectrochemical device for efficient water splitting. ACS Applied Materials & Interfaces, 2021, 13( 17): 20313– 20325

[175]

AhmetI Y, BerglundS, ChemseddineA, BogdanoffP, PrägR F, AbdiF F, vande Krol R. Planar and nanostructured n-Si/metal-oxide/WO3/BiVO4 monolithic tandem devices for unassisted solar water splitting. Advanced Energy and Sustainability Research, 2020, 1( 2): 2000037

[176]

VankaS, ZhouB W, AwniR A, SongZ N, ChowdhuryF A, LiuX D, HajibabaeiH, ShiW, XiaoY X, NavidI A. . InGaN/Si double-junction photocathode for unassisted solar water splitting. ACS Energy Letters, 2020, 5( 12): 3741– 3751

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (6778KB)

3902

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/