Engineering the grain boundary: a promising strategy to configure NiCoP4O12/NiCoP nanowire arrays for ultra-stable supercapacitor

Mengqi Cui , Zining Wang , Yuanye Jiang , Hui Wang

Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (8) : 1259 -1267.

PDF (1897KB)
Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (8) : 1259 -1267. DOI: 10.1007/s11705-021-2132-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Engineering the grain boundary: a promising strategy to configure NiCoP4O12/NiCoP nanowire arrays for ultra-stable supercapacitor

Author information +
History +
PDF (1897KB)

Abstract

NiCoP4O12/NiCoP nanorod-like arrays with tunable grain boundary density and pores were synthesized by the processes composed of hydrothermal and pyrolysis, in which, the electron structure of Ni and Co atoms characterized by X-ray photoelectron spectroscopy was contemporaneous inverse manipulated. The optimized NiCoP4O12/NiCoP arrays have a high specific capacitance of 507.8 μAh∙cm–2 at 1 mA∙cm–2, and good rate ability of 64.7% retention at 30-folds increased current density. Importantly, an ultra-stable ability, 88.5% of retention after 10000 cycles, was achieved in an asymmetric cell assembled of the NiCoP4O12/NiCoP arrays with activated carbon. In addition, the energy and power densities of an asymmetric cell were higher than those of other work, demonstrating as-prepared NiCoP4O12/NiCoP arrays are promising electrodes for supercapacitors.

Graphical abstract

Keywords

NiCo / array electrode / grain boundary / stability / supercapacitor

Cite this article

Download citation ▾
Mengqi Cui, Zining Wang, Yuanye Jiang, Hui Wang. Engineering the grain boundary: a promising strategy to configure NiCoP4O12/NiCoP nanowire arrays for ultra-stable supercapacitor. Front. Chem. Sci. Eng., 2022, 16(8): 1259-1267 DOI:10.1007/s11705-021-2132-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen F, Ji S, Liu Q, Wang H, Liu H, Brett D J L, Wang G, Wang R. Rational design of hierarchically core-shell structured Ni3S2@NiMoO4 nanowires for electrochemical energy storage. Small, 2018, 14(27): 1800791

[2]

Cai D, Wang D, Liu B, Wang L, Liu Y, Li H, Wang Y, Li Q, Wang T. Three-dimensional Co3O4@NiMoO4 core/shell nanowire arrays on Ni foam for electrochemical energy storage. ACS Applied Materials & Interfaces, 2014, 6(7): 5050–5055

[3]

Chen F, Wang H, Ji S, Linkov V, Wang R. Core-shell structured Ni3S2@Co(OH)2 nano-wires grown on Ni foam as binder-free electrode for asymmetric supercapacitors. Chemical Engineering Journal, 2018, 345: 48–57

[4]

Ji S, Ma Y, Wang H, Key J, Brett D J L, Wang R. Cage-like MnO2-Mn2O3 hollow spheres with high specific capacitance and high rate capability as supercapacitor material. Electrochimica Acta, 2016, 219: 540–546

[5]

Lu Z, Yang Q, Zhu W, Chang Z, Liu J, Sun X, Evans D G, Duan X. Hierarchical Co3O4@Ni-Co-O supercapacitor electrodes with ultrahigh specific capacitance per area. Nano Research, 2012, 5(5): 369–378

[6]

Chen G, Liaw S S, Li B, Xu Y, Dunwell M, Deng S, Fan H, Luo H. Microwave-assisted synthesis of hybrid CoxNi1−x(OH)2 nanosheets: Tuning the composition for high performance supercapacitor. Journal of Power Sources, 2014, 251: 338–343

[7]

Chen H, Hu L, Yan Y, Che R, Chen M, Wu L. One-step fabrication of ultrathin porous nickel hydroxide-manganese dioxide hybrid nanosheets for supercapacitor electrodes with excellent capacitive performance. Advanced Energy Materials, 2013, 3(12): 1636–1646

[8]

Liu Y, Liu G, Nie X, Pan A, Liang S, Zhu T. In situ formation of Ni3S2-Cu1.8S nanosheets to promote hybrid supercapacitor performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(18): 11044–11052

[9]

Wang Z, Chen F, Kannan P, Ji S, Wang H. Nickel phosphate nanowires directly grown on Ni foam as binder-free electrode for pseudocapacitors. Materials Letters, 2019, 257: 126743

[10]

Wang Z, Wang H, Ji S, Wang X, Zhou P, Huo S, Linkov V, Wang R. Hollow-structured NiCoP nanorods as high-performance electrodes for asymmetric supercapacitors. Materials & Design, 2020, 193: 108807

[11]

Wang Z, Wang H, Ji S, Wang H, Brett D J L, Wang R. Design and synthesis of tremella-like Ni-Co-S flakes on co-coated cotton textile as high-performance electrode for flexible supercapacitor. Journal of Alloys and Compounds, 2020, 814: 151789

[12]

Chen F, Wang H, Ji S, Linkov V, Wang R. High-performance all-solid-state asymmetric supercapacitors based on sponge-like NiS/Ni3S2 hybrid nanosheets. Materials Today. Energy, 2019, 11: 211–217

[13]

Chen F, Wang H, Ji S, Linkov V, Wang R. A 3D petal-like Ni3S2/CoNi2S4 hybrid grown on Ni foam as a binder-free electrode for energy storage. Sustainable Energy & Fuels, 2018, 2(8): 1791–1798

[14]

Chen S, Xing W, Duan J, Hu X, Qiao S Z. Nanostructured morphology control for efficient supercapacitor electrodes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(9): 2941–2954

[15]

Liu X Y, Zhang Y Q, Xia X H, Shi S J, Lu Y, Wang X L, Gu C D, Tu J P. Self-assembled porous NiCo2O4 hetero-structure array for electrochemical capacitor. Journal of Power Sources, 2013, 239: 157–163

[16]

Zhang L, Wang H, Ji S, Wang X, Wang R. Porous-sheet-assembled Ni(OH)2/NiS arrays with vertical in-plane edge structure for supercapacitors with high stability. Dalton Transactions (Cambridge, England), 2019, 48(46): 17364–17370

[17]

Wang Z N, Ji S, Liu F S, Wang H, Wang X Y, Wang Q Z, Pollet B G, Wang R F. Highly efficient and stable catalyst based on Co(OH)2@Ni electroplated on Cu-metallized cotton textile for water splitting. ACS Applied Materials & Interfaces, 2019, 11(33): 29791–29798

[18]

Shi X, Wang H, Kannan P, Ding J, Ji S, Liu F, Gai H, Wang R. Rich-grain-boundary of Ni3Se2 nanowire arrays as multifunctional electrode for electrochemical energy storage and conversion applications. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(7): 3344–3352

[19]

Thongsamrit W, Phrompet C, Maneesai K, Karaphun A, Tuichai W, Sriwong C, Ruttanapun C. Effect of grain boundary interfaces on electrochemical and thermoelectric properties of a Bi2Te3/reduced graphene oxide composites. Materials Chemistry and Physics, 2020, 250(1): 123196

[20]

Yuan C, Li J, Hou L, Lin J, Zhang X, Xiong S. Polymer-assisted synthesis of a 3D hierarchical porous network-like spinel NiCo2O4 framework towards high-performance electrochemical capacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(37): 11145

[21]

Wang H, Liu Z, Ma Y, Julian K, Ji S, Linkov V, Wang R. Synthesis of carbon-supported PdSn-SnO2 nanoparticles with different degrees of interfacial contact and enhanced catalytic activities for formic acid oxidation. Physical Chemistry Chemical Physics, 2013, 15(33): 13999–14005

[22]

Ma Y, Wang R, Wang H, Linkov V, Ji S. Evolution of nanoscale amorphous, crystalline and phase-segregated PtNiP nanoparticles and their electrocatalytic effect on methanol oxidation reaction. Physical Chemistry Chemical Physics, 2014, 16(8): 3593–3602

[23]

Ma Y, Wang H, Lv W, Ji S, Pollet B G, Li S, Wang R. Amorphous PtNiP particle networks of different particle sizes for the electro-oxidation of hydrazine. RSC Advances, 2015, 5(84): 68655–68661

[24]

Wu Y T, Wang H, Ji S, Pollet B G, Wang X Y, Wang R F. Engineered porous Ni2P-nanoparticle/Ni2P-nanosheet arrays via the Kirkendall effect and Ostwald ripening towards efficient overall water splitting. Nano Research, 2020, 13(8): 2098–2105

[25]

Moulder J F, Stickle W F, Sobol P C, Bomben K D. Handbook of X-Ray Photoelectron Spectroscopy. 2nd ed. Waltham: Perkin-Elmer Corporation, 1992, 1–262

[26]

Shi X, Key J, Ji S, Linkov V, Liu F, Wang H, Gai H, Wang R. Ni(OH)2 nanoflakes supported on 3D Ni3Se2 nanowire array as highly efficient electrodes for asymmetric supercapacitor and Ni/MH battery. Small, 2019, 15(29): 1802861

[27]

Sakamoto K, Hayashi F, Sato K, Hirano M, Ohtsu N. XPS spectral analysis for a multiple oxide comprising NiO, TiO2, and NiTiO3. Applied Surface Science, 2020, 526: 146729

[28]

Bondarchuk O, LaGrow A P, Kvasha A, Thieu T, Ayerbe E, Urdampilleta I. On the X-ray photoelectron spectroscopy analysis of LiNixMnyCozO2 material and electrodes. Applied Surface Science, 2021, 535: 147699

[29]

Zong Q, Yang H, Wang Q, Zhang Q, Xu J, Zhu Y, Wang H, Wang H, Zhang F, Shen Q. NiCo2O4/NiCoP nanoflake-nanowire arrays: a homogeneous hetero-structure for high performance asymmetric hybrid supercapacitors. Dalton Transactions (Cambridge, England), 2018, 47(45): 16320–16328

[30]

Zhang Y, Sun L, Zhang L, Li X, Gu J, Si H, Wu L, Shi Y, Sun C, Zhang Y. Highly porous oxygen-doped NiCoP immobilized in reduced graphene oxide for supercapacitive energy storage. Composites. Part B, Engineering, 2020, 182: 107611

[31]

Xing J, Du J, Zhang X, Shao Y, Zhang T, Xu C A. Ni-P@NiCo LDH core-shell nanorod-decorated nickel foam with enhanced areal specific capacitance for high-performance supercapacitors. Dalton Transactions (Cambridge, England), 2017, 46(30): 10064–10072

[32]

Lan Y, Zhao H, Zong Y, Li X, Sun Y, Feng J, Wang Y, Zheng X, Du Y. Phosphorization boosts the capacitance of mixed metal nanosheet arrays for high performance supercapacitor electrodes. Nanoscale, 2018, 10(25): 11775–11781

[33]

Shao Y, Zhao Y, Li H, Xu C. Three-dimensional hierarchical NixCo1−xO/NiyCo2−yP@C hybrids on nickel foam for excellent supercapacitors. ACS Applied Materials & Interfaces, 2016, 8(51): 35368–35376

[34]

Kong W, Lu C, Zhang W, Pu J, Wang Z. Homogeneous core-shell NiCo2S4 nanostructures supported on nickel foam for supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(23): 12452–12460

[35]

Tang C, Tang Z, Gong H. Hierarchically porous Ni-Co oxide for high reversibility asymmetric full-cell supercapacitors. Journal of the Electrochemical Society, 2012, 159(5): A651–A656

[36]

Chen X, Cheng M, Chen D, Wang R. Shape-controlled synthesis of Co2P nanostructures and their application in supercapacitors. ACS Applied Materials & Interfaces, 2016, 8(6): 3892–3900

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1897KB)

Supplementary files

FCE-21066-OF-CM_suppl_1

3228

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/