Molecular diffusion in ternary poly(vinyl alcohol) solutions

Katarzyna Majerczak , Ophelie Squillace , Zhiwei Shi , Zhanping Zhang , Zhenyu J. Zhang

Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (6) : 1003 -1016.

PDF (1355KB)
Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (6) : 1003 -1016. DOI: 10.1007/s11705-021-2121-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Molecular diffusion in ternary poly(vinyl alcohol) solutions

Author information +
History +
PDF (1355KB)

Abstract

The diffusion kinetics of a molecular probe—rhodamine B—in ternary aqueous solutions containing poly(vinyl alcohol), glycerol, and surfactants was investigated using fluorescence correlation spectroscopy and dynamic light scattering. We show that the diffusion characteristics of rhodamine B in such complex systems is determined by a synergistic effect of molecular crowding and intermolecular interactions between chemical species. The presence of glycerol has no noticeable impact on rhodamine B diffusion at low concentration, but significantly slows down the diffusion of rhodamine B above 3.9% (w/v) due to a dominating steric inhibition effect. Furthermore, introducing surfactants (cationic/nonionic/anionic) to the system results in a decreased diffusion coefficient of the molecular probe. In solutions containing nonionic surfactant, this can be explained by an increased crowding effect. For ternary poly(vinyl alcohol) solutions containing cationic or anionic surfactant, surfactant–polymer and surfactant–rhodamine B interactions alongside the crowding effect of the molecules slow down the overall diffusivity of rhodamine B. The results advance our insight of molecular migration in a broad range of industrial complex formulations that incorporate multiple compounds, and highlight the importance of selecting the appropriate additives and surfactants in formulated products.

Graphical abstract

Keywords

fluorescence correlation spectroscopy / poly(vinyl alcohol) / anomalous diffusion / crowding effects / dynamic light scattering / binding effects / rhodamine B

Cite this article

Download citation ▾
Katarzyna Majerczak, Ophelie Squillace, Zhiwei Shi, Zhanping Zhang, Zhenyu J. Zhang. Molecular diffusion in ternary poly(vinyl alcohol) solutions. Front. Chem. Sci. Eng., 2022, 16(6): 1003-1016 DOI:10.1007/s11705-021-2121-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Moraes I C F, Carvalho R A, Bittante A M Q B, Solorza-Feria J, Sobral P J A. Film forming solutions based on gelatin and poly(vinyl alcohol) blends: thermal and rheological characterizations. Journal of Food Engineering, 2009, 95(4): 588–596

[2]

Hasimi A, Stavropoulou A, Papadokostaki K G, Sanopoulou M. Transport of water in polyvinyl alcohol films: effect of thermal treatment and chemical crosslinking. European Polymer Journal, 2008, 44(12): 4114–4123

[3]

Kawai F, Hu X. Biochemistry of microbial polyvinyl alcohol degradation. Applied Microbiology and Biotechnology, 2009, 84(2): 227–237

[4]

Kim D Y, Rhee Y H. Biodegradation of microbial and synthetic polyesters by fungi. Applied Microbiology and Biotechnology, 2003, 61(4): 300–308

[5]

Bergo P, Moraes I C F, Sobral P J A. Effects of different moisture contents on physical properties of PVA–gelatin films. Food Biophysics, 2012, 7(4): 354–361

[6]

El-Nasser H M. Effects of methyl red acidity and UV illumination on absorption coefficient of MR/PVA thin films. Physica B, Condensed Matter, 2011, 406(10): 1940–1943

[7]

Konidari M V, Papadokostaki K G, Sanopoulou M. Moisture-induced effects on the tensile mechanical properties and glass-transition temperature of poly(vinyl alcohol) films. Journal of Applied Polymer Science, 2011, 120(6): 3381–3386

[8]

Hodge R M, Bastow T J, Edward G H, Simon G P, Hill A J. Free volume and the mechanism of plasticization in water-swollen poly(vinyl alcohol). Macromolecules, 1996, 29(25): 8137–8143

[9]

Fick A. On liquid diffusion. The London, Edinburgh, and Dublin Hilosophical Magazine and Journal of Science, 1855, 10(63): 30–39

[10]

Miller C C. The Stokes–Einstein law for diffusion in solution. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1924, 106(740): 724–749

[11]

Masuda A, Ushida K, Okamoto T. New fluorescence correlation spectroscopy (FCS) suitable for the observation of anomalous diffusion in polymer solution: time and space dependences of diffusion coefficients. Journal of Photochemistry and Photobiology A Chemistry, 2006, 183(3): 304–308

[12]

Michelman-Ribeiro A, Horkay F, Nossal R, Boukari H. Probe diffusion in aqueous poly(vinyl alcohol) solutions studied by fluorescence correlation spectroscopy. Biomacromolecules, 2007, 8(5): 1595–1600

[13]

Bu Z, Russo P S. Diffusion of dextran in aqueous (hydroxypropyl)cellulose. Macromolecules, 1994, 27(5): 1187–1194

[14]

Amsden B. Solute diffusion in hydrogels: an examination of the retardation effect. Polymer Gels and Networks, 1998, 6(1): 13–43

[15]

Mustafa M B, Tipton D L, Barkley M D, Russo P S, Blum F D. Dye diffusion in isotropic and liquid crystalline aqueous (hydroxypropyl)cellulose. Macromolecules, 1993, 26(2): 370–378

[16]

Vrentas J S, Duda J L. Diffusion in polymer-solvent systems. I. Reexamination of the free-volume theory. Journal of Polymer Science. Polymer Physics Edition, 1977, 15(12): 403–416

[17]

Vrentas J S, Duda J L. Diffusion in polymer-solvent systems. II. A predictive theory for the dependence of diffusion coefficient on temperature, concentration, and molecular weight. Journal of Polymer Science. Polymer Physics Edition, 1977, 15(12): 417–439

[18]

Phillies G D J. Universal scaling equation for self-diffusion by macromolecules in solution. Macromolecules, 1986, 19(9): 2367–2376

[19]

Park I H, Johnson C S, Hill C, Carolina N, Gabriel D A. Probe diffusion in polyacrylamide gels as observed by means of holographic relacation methods: search for a universal equation. Macromolecules, 1990, 23(5): 1548–1553

[20]

Senanayake K K, Fakhrabadi E A, Liberatore M W, Mukhopadhyay A. Diffusion of nanoparticles in entangled poly(vinyl alcohol) solutions and gels. Macromolecules, 2019, 52(3): 787–795

[21]

Slim A H, Poling-Skutvik R, Conrad J C. Local confinement controls diffusive nanoparticle dynamics in semidilute polyelectrolyte solutions. Langmuir, 2020, 36(31): 9153–9159

[22]

Gratz M, Tschöpe A. Size effects in the oscillatory rotation dynamics of Ni nanorods in poly(ethylene oxide) solutions. Macromolecules, 2019, 52(17): 6600–6612

[23]

Cherdhirankorn T, Harmandaris V, Juhari A, Voudouris P, Fytas G, Kremer K, Koynov K. Fluorescence correlation spectroscopy study of molecular probe diffusion in polymer melts. Macromolecules, 2009, 42(13): 4858–4866

[24]

Senanayake K K, Shokeen N, Fakhrabadi E A, Liberatore M W, Mukhopadhyay A. Diffusion of nanoparticles within a semidilute polyelectrolyte solution. Soft Matter, 2019, 15(38): 7616–7622

[25]

Wang W, Barkai E, Burov S. Large deviations for continuous time random walks. Entropy (Basel, Switzerland), 2020, 22(6): 697–719

[26]

Xue C, Shi X, Tian Y, Zheng X, Hu G. Diffusion of nanoparticles with activated hopping in crowded polymer solutions. Nano Letters, 2020, 20(5): 3895–3904

[27]

Jia D, Muthukumar M. Electrostatically driven topological freezing of polymer diffusion at intermediate confinements. Physical Review Letters, 2021, 126(5): 057802

[28]

Banks D S, Tressler C, Peters R D, Höfling F, Fradin C. Characterizing anomalous diffusion in crowded polymer solutions and gels over five decades in time with variable-lengthscale fluorescence correlation spectroscopy. Soft Matter, 2016, 12(18): 4190–4203

[29]

Guillemet F, Piculell L. Interactions in aqueous mixtures of hydrophobically modified polyelectrolyte and oppositely charged surfactant: mixed micelle formation and associative phase separation. Journal of Physical Chemistry, 1995, 99(22): 9201–9209

[30]

Langevin D. Complexation of oppositely charged polyelectrolytes and surfactants in aqueous solutions: a review. Advances in Colloid and Interface Science, 2009, 147–148: 170–177

[31]

Lewis K E, Robinson C P. The interaction of sodium dodecyl sulfate with methyl cellulose and polyvinyl alcohol. Journal of Colloid and Interface Science, 1970, 32(3): 539–546

[32]

Qiu L, Cheng M, Xie A, Shen Y. Study on the viscosity of cationic gemini surfactant-nonionic polymer complex in water. Journal of Colloid and Interface Science, 2004, 278(1): 40–43

[33]

Negm N A, Mohamed A S, Ahmed S M, El-Raouf M A. Polymer-cationic surfactant interaction. 1. Surface and physicochemical properties of polyvinyl alcohol (PVA)-S-alkyl isothiouronium bromide surfactant mixed systems. Journal of Surfactants and Detergents, 2015, 18(2): 245–250

[34]

Trabelsi S, Guillot S, Ritacco H, Boué F, Langevin D. Nanostructures of colloidal complexes formed in oppositely charged polyelectrolyte/surfactant dilute aqueous solutions. European Physical Journal E, 2007, 23(3): 305–311

[35]

Babak V G, Merkovich E A, Desbrières J, Rinaudo M. Formation of an ordered nanostructure in surfactant-polyelectrolyte complexes formed by interfacial diffusion. Polymer Bulletin, 2000, 45(1): 77–81

[36]

Zana R, Lianos P, Lang J. Fluorescence probe studies of the interactions between poly(oxyethylene) and surfactant micelles and microemulsion droplets in aqueous solutions. Journal of Physical Chemistry, 1985, 89(1): 41–44

[37]

Wöll D. Fluorescence correlation spectroscopy in polymer science. RSC Advances, 2014, 4(5): 2447–2465

[38]

Annunziata O, Buzatu D, Albright J G. Protein diffusion coefficients determined by macroscopic-gradient rayleigh interferometry and dynamic light scattering. Langmuir, 2005, 21(26): 12085–12089

[39]

Ivanov D A, Grossmann T, Winkelmann J. Comparison of ternary diffusion coefficients obtained from dynamic light scattering and Taylor dispersion. Fluid Phase Equilibria, 2005, 228–229: 283–291

[40]

Wang S, Sun P, Zhang R, Lu A, Liu M, Zhang L. Cation/macromolecule interaction in alkaline cellulose solution characterized with pulsed field-gradient spin-echo NMR spectroscopy. Physical Chemistry Chemical Physics, 2017, 19(11): 7486–7490

[41]

Baldwin R L, Ogston A G. The diffusion and sedimentation coefficients of a liquid two-component system in terms of macroscopic properties of the system. Transactions of the Faraday Society, 1954, 50: 749–755

[42]

Ono M, Mashim T. Sedimentation process for atoms in a Bi-Sb system alloy under a strong gravitational field: a new type of diffusion of substitutional solutes. Philosophical Magazine. A. Physics of Condensed Matter. Structure, Defects and Mechanical Properties, 2002, 82(3): 591–600

[43]

Zettl U, Hoffmann S T, Koberling F, Krausch G, Enderlein J, Harnau L, Ballauff M. Self-diffusion and cooperative diffusion in semidilute polymer solutions as measured by fluorescence correlation spectroscopy. Macromolecules, 2009, 42(24): 9537–9547

[44]

Giacin J R. Evaluation of plastics packaging materials for food packaging applications: food safety considerations. Journal of Food Safety, 1980, 2(4): 257–276

[45]

Liu R, Gao X, Adams J, Oppermann W. A fluorescence correlation spectroscopy study on the self-diffusion of polystyrene chains in dilute and semidilute solution. Macromolecules, 2005, 38(21): 8845–8849

[46]

Zettl H, Zettl U, Krausch G, Enderlein J, Ballauff M. Direct observation of single molecule mobility in semidilute polymer solutions. Physical Review. E, 2007, 75(6): 194–196

[47]

Zettl H, Hafner W, Boker A, Schmalz H, Lanzendorfer M, Muller A H E, Krausch G. Fluorescence correlation spectroscopy of single dye-labeled polymers in organic solvents. Macromolecules, 2004, 37(5): 1917–1920

[48]

Cai L, Panyukov S, Rubinstein M. Mobility of nonsticky nanoparticles in polymer liquids. Macromolecules, 2011, 44(19): 7853–7863

[49]

Cherdhirankorn T, Best A, Koynov K, Peneva K, Muellen K, Fytas G. Diffusion in polymer solutions studied by fluorescence correlation spectroscopy. Journal of Physical Chemistry B, 2009, 113(11): 3355–3359

[50]

Boukari H, Nossal R, Sackett D, Schuck P. Hydrodynamics of nanoscopic tubulin rings in dilute solutions. Physical Review Letters, 2004, 93(9): 098106

[51]

Michelman-Ribeiro A, Boukari H, Nossal R, Horkay F. Fluorescence correlation spectroscopy study of probe diffusion in poly(vinyl alcohol) solutions and gels. Macromolecular Symposia, 2005, 227(1): 221–230

[52]

Pristinski D, Kozlovskaya V, Sukhishvili S A. Fluorescence correlation spectroscopy studies of diffusion of a weak polyelectrolyte in aqueous solutions. Journal of Chemical Physics, 2005, 122(1): 14907–14910

[53]

Zhao J J, Bae S C, Xie F, Granick S. Diffusion of polymer-coated nanoparticles studied by fluorescence correlation spectroscopy. Macromolecules, 2001, 34(10): 3123–3126

[54]

Enderlein J, Gregor I, Patra D, Dertinger T, Kaupp U B. Performance of fluorescence correlation spectroscopy for measuring diffusion and concentration. ChemPhysChem, 2005, 6(11): 2324–2336

[55]

Zustiak S P, Nossal R, Sackett D L. Hindered diffusion in polymeric solutions studied by fluorescence correlation spectroscopy. Biophysical Journal, 2011, 101(1): 255–264

[56]

Rusu L, Lumma D, Rädler J O. Charge and size dependence of liposome diffusion in semidilute biopolymer solutions. Macromolecular Bioscience, 2010, 10(12): 1465–1472

[57]

Vagias A, Raccis R, Koynov K, Jonas U, Butt H, Fytas G, Kosovan P, Lenz O, Holm C. Complex tracer diffusion dynamics in polymer solutions. Physical Review Letters, 2013, 111(8): 088301

[58]

Omari R A, Aneese A M, Grabowski C A, Mukhopadhyay A. Diffusion of nanoparticles in semidilute and entangled polymer solutions. Journal of Physical Chemistry B, 2009, 113(25): 8449–8452

[59]

Rashid R, Chee S M L, Raghunath M, Wohland T. Macromolecular crowding gives rise to microviscosity, anomalous diffusion and accelerated actin polymerization. Physical Biology, 2015, 12(3): 034001

[60]

Ochab-Marcinek A, Hołyst R. Scale-dependent diffusion of spheres in solutions of flexible and rigid polymers: mean square displacement and autocorrelation function for FCS and DLS measurements. Soft Matter, 2011, 7(16): 7366–7369

[61]

Dong Y, Feng X, Zhao N, Hou Z. Diffusion of nanoparticles in semidilute polymer solutions: a mode-coupling theory study. Journal of Chemical Physics, 2015, 143(2): 024903

[62]

Mchedlov-Petrossyan N O, Vodolazkaya N A, Doroshenko A O. Ionic equilibria of fluorophores in organized solutions: the Influence of micellar microenvironment on protolytic and photophysical properties of rhodamine B. Journal of Fluorescence, 2003, 13(3): 235–248

[63]

Merouani S, Hamdaoui O, Saoudi F, Chiha M. Sonochemical degradation of rhodamine B in aqueous phase: effects of additives. Chemical Engineering Journal, 2010, 158(3): 550–557

[64]

Arbeloa I L, Ojeda P R. Molecular forms of rhodamine B. Chemical Physics Letters, 1981, 79(2): 347–350

[65]

Soares E T, Lansarin M A, Moro C C. A study of process variables for the photocatalytic degradation of rhodamine B. Brazilian Journal of Chemical Engineering, 2007, 24(1): 29–36

[66]

Goins A B, Sanabria H, Waxham M N. Macromolecular crowding and size effects on probe microviscosity. Biophysical Journal, 2008, 95(11): 5362–5373

[67]

Mohsin M, Hossin A, Haik Y. Thermal and mechanical properties of poly(vinyl alcohol) plasticized with glycerol. Journal of Applied Polymer Science, 2011, 122(5): 3102–3109

[68]

Dix L R, Gilblas R. Lyotropic and interfacial behaviour of an anionic gemini surfactant. Journal of Colloid and Interface Science, 2006, 296(2): 762–765

[69]

Zhang Z, Mosey M, Alswieleh A, Morse A J, Lewis A L, Geoghegan M, Leggett A J. Effect of salt on phosphorylcholine-based zwitterionic polymer brushes. Langmuir, 2016, 32(20): 5048–5057

[70]

Shakouri A, Ahmari H, Hojjat M, Zeinali Heris S. Effect of TiO2 nanoparticle on rheological behavior of poly(vinyl alcohol) solution. Journal of Vinyl and Additive Technology, 2017, 23(3): 234–240

[71]

Stetefeld J, McKenna S A, Patel T R. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophysical Reviews, 2016, 8(4): 409–427

[72]

Phillies G D J. Dynamics of macromolecules in concentrated solutions: the universal scaling function derived. Macromolecules, 1987, 20(3): 558–564

[73]

Briddick A, Li P, Hughes A, Courchay F, Martinez A, Thompson R L. Surfactant and plasticizer segregation in thin poly(vinyl alcohol) films. Langmuir, 2016, 32(3): 864–872

[74]

Korosi A, Fabuss B M. Viscosity of liquid water from 25 to 150 °C: measurements in pressurized glass capillary viscometer. Analytical Chemistry, 1968, 40(1): 157–162

[75]

Sozański K, Wiśniewska A, Kalwarczyk T, Hołyst R. Activation energy for mobility of dyes and proteins in polymer solutions: from diffusion of single particles to macroscale flow. Physical Review Letters, 2013, 111(22): 228301

[76]

Ohta T, Nakanishi A. Theory of semi-dilute polymer solutions. I. Static property in a good solvent. Journal of Physics. A, Mathematical and General, 1983, 16(17): 4155–4170

[77]

Atanase L I, Riess G. Poly(vinyl alcohol-co-vinyl acetate) complex formation with anionic surfactants particle size of nanogels and their disaggregation with sodium dodecyl sulfate. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2010, 355(1–3): 29–36

[78]

Kjøniksen A L, Nyström B. Dynamic light scattering of poly(vinyl alcohol) solutions and their dynamical behavior during the chemical gelation process. Macromolecules, 1996, 29(22): 7116–7123

[79]

Taylor S J, Haw M D, Sefcik J, Fletcher A J. Gelation mechanism of resorcinol-formaldehyde gels investigated by dynamic light scattering. Langmuir, 2014, 30(34): 10231–10240

[80]

Tomaszewska E, Soliwoda K, Kadziola K, Tkacz-Szczesna B, Celichowski G, Cichomski M, Szmaja W, Grobelny J. Detection limits of DLS and UV-Vis spectroscopy in characterization of polydisperse nanoparticles colloids. Journal of Nanomaterials, 2013, 2013: 1–10

[81]

Kok C M, Rudin A. Relationship between the hydrodynamic radius and the radius of gyration of a polymer in solution. Die Makromolekulare Chemie. Rapid Communications, 1981, 2(11): 655–659

[82]

Hong P, Chou C, He C. Solvent effects on aggregation behavior of polyvinyl alcohol solutions. Polymer, 2001, 42(14): 6105–6112

[83]

Briddick A, Fong R J, Sabattie E F D, Li P, Skoda M W A, Courchay F, Thompson R L. Blooming of smectic surfactant/plasticizer layers on spin-cast poly(vinyl alcohol) films. Langmuir, 2018, 34(4): 1410–1418

[84]

Sheely M L. Glycerol viscosity tables. Industrial & Engineering Chemistry, 1932, 24(9): 1060–1064

[85]

Tajalli H, Ghanadzadeh Gilani A, Zakerhamidi M S, Moghadam M. Effects of surfactants on the molecular aggregation of rhodamine dyes in aqueous solutions. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2009, 72(4): 697–702

[86]

Hansson P, Lindman B. Surfactant-polymer interactions. Current Opinion in Colloid & Interface Science, 1996, 1(5): 604–613

[87]

McHedlov-Petrosyan N O, Kholin Y V. Aggregation of rhodamine B in water. Russian Journal of Applied Chemistry, 2004, 77(3): 414–422

[88]

Haglund B O, Sundelöf L, Upadrashta S M, Wurster D E. Effect of SDS micelles on rhodamine-B diffusion in hydrogels. Journal of Chemical Education, 1996, 73(9): 889

[89]

Saito S, Yukawa M. Interactions of polymers and cationic surfactants with thiocyanate as counterions. Journal of Colloid and Interface Science, 1969, 30(2): 211–218

[90]

Saito S, Kitamura K. Counterion effect of tetraalkylammonium and long-chain alkylammonium salts in the interaction with nonionic polymers. Journal of Colloid and Interface Science, 1971, 35(2): 346–353

[91]

Nakagaki M, Ninomiya Y. Colloid chemical studies of starching materials. VI. Viscometric studies of the interaction between polyvinyl alcohol and sodium dodecyl sulfate. Bulletin of the Chemical Society of Japan, 1964, 37(6): 817–821

[92]

Arai H, Horin S, Goods H. Interaction between polymer and detergent in aqueous solution. Journal of Colloid and Interface Science, 1969, 30(3): 372–377

[93]

Isemura T, Imanishi A. The dissolution of water-insoluble polymers in the surfactant solution: the polyelectrolyte-like behavior of the dissolved polymers. Journal of Polymer Science, 1958, 33(126): 337–352

[94]

Jia L, Qin X. The effect of different surfactants on the electrospinning poly(vinyl alcohol) (PVA) nanofibers. Journal of Thermal Analysis and Calorimetry, 2013, 112(2): 595–605

[95]

Tadros T F. The interaction of cetyltrimethylammonium bromide and sodium dodecylbenzene sulfonate with polyvinyl alcohol: adsorption of the polymer-surfactant complexes on silica. Journal of Colloid and Interface Science, 1974, 46(3): 528–540

RIGHTS & PERMISSIONS

The Author(s) 2021. This article is published with open access at link.springer.com and journal.hep.com.cn

AI Summary AI Mindmap
PDF (1355KB)

Supplementary files

Supplementary materials

2515

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/