An overview and recent advances in electrocatalysts for direct seawater splitting

Hao-Yu Wang, Chen-Chen Weng, Jin-Tao Ren, Zhong-Yong Yuan

PDF(2503 KB)
PDF(2503 KB)
Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (6) : 1408-1426. DOI: 10.1007/s11705-021-2102-6
REVIEW ARTICLE
REVIEW ARTICLE

An overview and recent advances in electrocatalysts for direct seawater splitting

Author information +
History +

Abstract

In comparison to pure water, seawater is widely accepted as an unlimited resource. The direct seawater splitting is economical and eco-friendly, but the key challenges in seawater, especially the chlorine-related competing reactions at the anode, seriously hamper its practical application. The development of earth-abundant electrocatalysts toward direct seawater splitting has emerged as a promising strategy. Highly efficient electrocatalysts with improved selectivity and stability are of significance in preventing the interference of side reactions and resisting various impurities. This review first discusses the macroscopic understanding of direct seawater electrolysis and then focuses on the strategies for rational design of electrocatalysts toward direct seawater splitting. The perspectives of improved electrocatalysts to solve emerging challenges and further development of direct seawater splitting are also provided.

Graphical abstract

Keywords

seawater splitting / electrocatalysts / oxygen evolution reaction / hydrogen evolution reaction / chlorine chemistry

Cite this article

Download citation ▾
Hao-Yu Wang, Chen-Chen Weng, Jin-Tao Ren, Zhong-Yong Yuan. An overview and recent advances in electrocatalysts for direct seawater splitting. Front. Chem. Sci. Eng., 2021, 15(6): 1408‒1426 https://doi.org/10.1007/s11705-021-2102-6

References

[1]
Xu K, Cheng H, Lv H F, Wang J Y, Liu L Q, Liu S, Wu X J, Chu W S, Wu C Z, Xie Y. Controllable surface reorganization engineering on cobalt phosphide nanowire arrays for efficient alkaline hydrogen evolution reaction. Advanced Materials, 2018, 30(1): 1703322
CrossRef Google scholar
[2]
Liu T, Li P, Yao N, Cheng G Z, Chen S L, Luo W, Yin Y D. CoP-doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction. Angewandte Chemie International Edition, 2019, 58(14): 4679–4684
CrossRef Google scholar
[3]
Ren J T, Wang Y S, Chen L, Gao L J, Tian W W, Yuan Z Y. Binary FeNi phosphides dispersed on N,P-doped carbon nanosheets for highly efficient overall water splitting and rechargeable Zn-air batteries. Chemical Engineering Journal, 2020, 389: 124408
CrossRef Google scholar
[4]
Martindale B C M, Reisner E. Bi-functional iron-only electrodes for efficient water splitting with enhanced stability through in situ electrochemical regeneration. Advanced Energy Materials, 2016, 6(6): 1502095
CrossRef Google scholar
[5]
Zhang J W, Lv X W, Ren T Z, Wang Z, Bandosz T J, Yuan Z Y. Engineering heterostructured Ni@Ni(OH)2 core-shell nanomaterials for synergistically enhanced water electrolysis. Green Energy & Environment, 2021, doi: 10.1016/j.gee.2020.12.009
[6]
Ren J T, Chen L, Yang D D, Yuan Z Y. Molybdenum-based nanoparticles (Mo2C, MoP and MoS2) coupled heteroatoms-doped carbon nanosheets for efficient hydrogen evolution reaction. Applied Catalysis B: Environmental, 2020, 263: 118352
CrossRef Google scholar
[7]
Zheng Y, Jiao Y, Vasileff A, Qiao S Z. The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angewandte Chemie International Edition, 2018, 57(26): 7568–7579
CrossRef Google scholar
[8]
Ren J T, Yao Y, Yuan Z Y. Fabrication strategies of porous precious-metal-free bifunctional electrocatalysts for overall water splitting: recent advances. Green Energy & Environment, 2021, 6(5): 620–643
CrossRef Google scholar
[9]
Roger I, Shipman M A, Symes M D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nature Reviews Chemistry, 2017, 1: 0003
[10]
Lv X W, Hu Z P, Chen L, Ren J T, Liu Y P, Yuan Z Y. Organic-inorganic metal phosphonate-derived nitrogen-doped core-shell Ni2P nanoparticles supported on Ni foam for efficient hydrogen evolution reaction at all pH values. ACS Sustainable Chemistry & Engineering, 2019, 7(15): 12770–12778
CrossRef Google scholar
[11]
Zhang J W, Zhang H, Ren T Z, Yuan Z Y, Bandosz T J. FeNi doped porous carbon as an efficient catalyst for oxygen evolution reaction. Frontiers of Chemical Science and Engineering, 2021, 15(2): 279–287
CrossRef Google scholar
[12]
Ji X X, Lin Y H, Zeng J, Ren Z H, Lin Z J, Mu Y B, Qiu Y J, Yu J. Graphene/MoS2/FeCoNi(OH)x and graphene/MoS2/FeCoNiPx multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting. Nature Communications, 2021, 12(1): 1380
CrossRef Google scholar
[13]
Wang J, Kim S J, Liu J P, Gao Y, Choi S B, Han J W, Shin H Y, Jo S G, Kim J W, Ciucci F, . Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nature Catalysis, 2021, 4(3): 212–222
CrossRef Google scholar
[14]
Ursua A, Gandia L M, Sanchis P. Hydrogen production from water electrolysis: current status and future trends. Proceedings of the IEEE, 2012, 100(2): 410–426
CrossRef Google scholar
[15]
Zhao H, Yuan Z Y. Design strategies of transition-metal phosphate and phosphonate electrocatalysts for energy-related reactions. ChemSusChem, 2021, 14(1): 130–149
CrossRef Google scholar
[16]
Turner J A. Sustainable hydrogen production. Science, 2004, 305(5686): 972–974
CrossRef Google scholar
[17]
Weng C C, Ren J T, Yuan Z Y. Transition metal phosphide-based materials for efficient electrochemical hydrogen evolution: a critical review. ChemSusChem, 2020, 13(13): 3357–3375
CrossRef Google scholar
[18]
Ren J T, Song Y J, Yuan Z Y. Facile synthesis of molybdenum carbide nanoparticles in situ decorated on nitrogen-doped porous carbons for hydrogen evolution reaction. Journal of Energy Chemistry, 2019, 32: 78–84
CrossRef Google scholar
[19]
Cuartero M, Crespo G, Cherubini T, Pankratova N, Confalonieri F, Massa F, Tercier-Waeber M L, Abdou M, Schäfer J, Bakker E. In situ detection of macronutrients and chloride in seawater by submersible electrochemical sensors. Analytical Chemistry, 2018, 90(7): 4702–4710
CrossRef Google scholar
[20]
Xiang C, Papadantonakis K M, Lewis N S. Principles and implementations of electrolysis systems for water splitting. Materials Horizons, 2016, 3(3): 169–173
CrossRef Google scholar
[21]
Tong W, Forster M, Dionigi F, Dresp S, Sadeghi Erami R, Strasser P, Cowan A J, Farràs P. Electrolysis of low-grade and saline surface water. Nature Energy, 2020, 5(5): 367–377
CrossRef Google scholar
[22]
Kester D R, Duedall I W, Connors D N, Pytkowicz R M. Preparation of artifcicial seawater. Limnology and Oceanography, 1967, 12(1): 176–179
CrossRef Google scholar
[23]
Yu L, Zhu Q, Song S, McElhenny B, Wang D, Wu C, Qin Z, Bao J, Yu Y, Chen S, Ren Z. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nature Communications, 2019, 10(1): 5106
CrossRef Google scholar
[24]
Dionigi F, Reier T, Pawolek Z, Gliech M, Strasser P. Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis. ChemSusChem, 2016, 9(9): 962–972
CrossRef Google scholar
[25]
Exner K S, Sohrabnejad-Eskan I, Over H. A universal approach to determine the free energy diagram of an electrocatalytic reaction. ACS Catalysis, 2018, 8(3): 1864–1879
CrossRef Google scholar
[26]
Exner K S, Anton J, Jacob T, Over H. Controlling selectivity in the chlorine evolution reaction over RuO2-based catalysts. Angewandte Chemie International Edition, 2014, 53(41): 11032–11035
CrossRef Google scholar
[27]
Ysea N, Diaz L A, Lacconi G I, Franceschini E A. Stability study of materials for electrode supports for the hydrogen generation from a NaCl aqueous solution. Electrocatalysis, 2021, 12(5): 537–547
CrossRef Google scholar
[28]
Auinger M, Katsounaros I, Meier J C, Klemm S O, Biedermann P U, Topalov A A, Rohwerder M, Mayrhofer K J J. Near-surface ion distribution and buffer effects during electrochemical reactions. Physical Chemistry Chemical Physics, 2011, 13(36): 16384–16394
CrossRef Google scholar
[29]
Katsounaros I, Meier J C, Klemm S O, Topalov A A, Biedermann P U, Auinger M, Mayrhofer K J J. The effective surface pH during reactions at the solid-liquid interface. Electrochemistry Communications, 2011, 13(6): 634–637
CrossRef Google scholar
[30]
Kirk D W, Ledas A E. Precipitate formation during sea water electrolysis. International Journal of Hydrogen Energy, 1982, 7(12): 925–932
CrossRef Google scholar
[31]
Bennett J E. Electrodes for generation of hydrogen and oxygen from seawater. International Journal of Hydrogen Energy, 1980, 5(4): 401–408
CrossRef Google scholar
[32]
Wu X, Zhou S, Wang Z, Liu J, Pei W, Yang P, Zhao J, Qiu J. Engineering multifunctional collaborative catalytic interface enabling efficient hydrogen evolution in all pH range and seawater. Advanced Energy Materials, 2019, 9(34): 1901333
CrossRef Google scholar
[33]
Gao S, Li G D, Liu Y, Chen H, Feng L L, Wang Y, Yang M, Wang D, Wang S, Zou X. Electrocatalytic H2 production from seawater over Co, N-codoped nanocarbons. Nanoscale, 2015, 7(6): 2306–2316
CrossRef Google scholar
[34]
Karlsson R K B, Cornell A. Selectivity between oxygen and chlorine evolution in the chlor-alkali and chlorate processes. Chemical Reviews, 2016, 116(5): 2982–3028
CrossRef Google scholar
[35]
Oh B S, Oh S G, Hwang Y Y, Yu H W, Kang J W, Kim I S. Formation of hazardous inorganic by-products during electrolysis of seawater as a disinfection process for desalination. Science of the Total Environment, 2010, 408(23): 5958–5965
CrossRef Google scholar
[36]
Izumiya K, Akiyama E, Habazaki H, Kumagai N, Kawashima A, Hashimoto K. Effects of additional elements on electrocatalytic properties of thermally decomposed manganese oxide electrodes for oxygen evolution from seawater. Materials Transactions, 1997, 38(10): 899–905
CrossRef Google scholar
[37]
Izumiya K, Akiyama E, Habazaki H, Kumagai N, Kawashima A, Hashimoto K. Anodically deposited manganese oxide and manganese-tungsten oxide electrodes for oxygen evolution from seawater. Electrochimica Acta, 1998, 43(21): 3303–3312
CrossRef Google scholar
[38]
Niu J, Yang J, Channa A I, Ashalley E, Yang J, Jiang J, Li H, Ji H, Niu X. Enhancing the water splitting performance via decorating Co3O4 nanoarrays with ruthenium doping and phosphorization. RSC Advances, 2020, 10(45): 27235–27241
CrossRef Google scholar
[39]
Gupta S, Forster M, Yadav A, Cowan A J, Patel N, Patel M. Highly efficient and selective metal oxy-boride electrocatalysts for oxygen evolution from alkali and saline solutions. ACS Applied Energy Materials, 2020, 3(8): 7619–7628
CrossRef Google scholar
[40]
Fujimura K, Matsui T, Habazaki H, Kawashima A, Kumagai N, Hashimoto K. The durability of manganese-molybdenum oxide anodes for oxygen evolution in seawater electrolysis. Electrochimica Acta, 2000, 45(14): 2297–2303
CrossRef Google scholar
[41]
Dresp S, Dionigi F, Loos S, Ferreira de Araujo J, Spöri C, Gliech M, Dau H, Strasser P. Direct electrolytic splitting of seawater: activity, selectivity, degradation, and recovery studied from the molecular catalyst structure to the electrolyzer cell level. Advanced Energy Materials, 2018, 8(22): 1800338
CrossRef Google scholar
[42]
Yu L, Wu L B, McElhenny B, Song S W, Luo D, Zhang F H, Yu Y, Chen S, Ren Z F. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy & Environmental Science, 2020, 13(10): 3439–3446
CrossRef Google scholar
[43]
Wang C Z, Zhu M Z, Cao Z Y, Zhu P, Cao Y Q, Xu X Y, Xu C X, Yin Z Y. Heterogeneous bimetallic sulfides based seawater electrolysis towards stable industrial-level large current density. Applied Catalysis B: Environmental, 2021, 291: 120071
CrossRef Google scholar
[44]
Petrykin V, Macounova K, Shlyakhtin O A, Krtil P. Tailoring the selectivity for electrocatalytic oxygen evolution on ruthenium oxides by zinc substitution. Angewandte Chemie International Edition, 2010, 49(28): 4813–4815
CrossRef Google scholar
[45]
Gayen P, Saha S, Ramani V. Selective seawater splitting using pyrochlore electrocatalyst. ACS Applied Energy Materials, 2020, 3(4): 3978–3983
CrossRef Google scholar
[46]
Zhao Y, Jin B, Zheng Y, Jin H, Jiao Y, Qiao S Z. Charge state manipulation of cobalt selenide catalyst for overall seawater electrolysis. Advanced Energy Materials, 2018, 8(29): 1801926
CrossRef Google scholar
[47]
Surendranath Y, Dincǎ M, Nocera D G. Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts. Journal of the American Chemical Society, 2009, 131(7): 2615–2620
CrossRef Google scholar
[48]
Zhang Q J, Zhao X J, Miao X J, Yang W T, Wang C T, Pan Q H. ZIF-L-Co@carbon fiber paper composite derived Co/Co3O4@C electrocatalyst for ORR in alkali/acidic media and overall seawater splitting. International Journal of Hydrogen Energy, 2020, 45(58): 33028–33036
CrossRef Google scholar
[49]
Cheng F F, Feng X L, Chen X, Lin W G, Rong J F, Yang W S. Synergistic action of Co-Fe layered double hydroxide electrocatalyst and multiple ions of sea salt for efficient seawater oxidation at near-neutral pH. Electrochimica Acta, 2017, 251: 336–343
CrossRef Google scholar
[50]
Vos J G, Wezendonk T A, Jeremiasse A W, Koper M T M. MnOx/IrOx as selective oxygen evolution electrocatalyst in acidic chloride solution. Journal of the American Chemical Society, 2018, 140(32): 10270–10281
CrossRef Google scholar
[51]
Huang W H, Lin C Y. Iron phosphate modified calcium iron oxide as an efficient and robust catalyst in electrocatalyzing oxygen evolution from seawater. Faraday Discussions, 2019, 215: 205–215
CrossRef Google scholar
[52]
Jadhav A R, Kumar A, Lee J J, Yang T H, Na S Y, Lee J S, Luo Y G, Liu X H, Hwang Y, Liu Y, Lee H. Stable complete seawater electrolysis by using interfacial chloride ion blocking layer on catalyst surface. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(46): 24501–24514
CrossRef Google scholar
[53]
Balaji R, Kannan B S, Lakshmi J, Senthil N, Vasudevan S, Sozhan G, Shukla A K, Ravichandran S. An alternative approach to selective sea water oxidation for hydrogen production. Electrochemistry Communications, 2009, 11(8): 1700–1702
CrossRef Google scholar
[54]
Kuang Y, Kenney M J, Meng Y, Hung W H, Liu Y, Huang J E, Prasanna R, Li P, Li Y, Wang L, . Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(14): 6624–6629
CrossRef Google scholar
[55]
Fujimura K, Matsui T, Izumiya K, Kumagai N, Akiyama E, Habazaki H, Kawashima A, Asami K, Hashimoto K. Oxygen evolution on manganese-molybdenum oxide anodes in seawater electrolysis. Materials Science and Engineering A, 1999, 267(2): 254–259
CrossRef Google scholar
[56]
Abdel Ghany N A, Kumagai N, Meguro S, Asami K, Hashimoto K. Oxygen evolution anodes composed of anodically deposited Mn-Mo-Fe oxides for seawater electrolysis. Electrochimica Acta, 2002, 48(1): 21–28
CrossRef Google scholar
[57]
El-Moneim A A, Kumagai N, Asami K, Hashimoto K. Nanocrystalline manganese-molybdenum-tungsten oxide anodes for oxygen evolution in acidic seawater electrolysis. Materials Transactions, 2005, 46(2): 309–316
CrossRef Google scholar
[58]
El-Moneim A A, Kumagai N, Hashimoto K. Mn-Mo-W oxide anodes for oxygen evolution in seawater electrolysis for hydrogen production. Materials Transactions, 2009, 50(8): 1969–1977
CrossRef Google scholar
[59]
Kato Z, Bhattarai J, Kumagai N, Izumiya K, Hashimoto K. Durability enhancement and degradation of oxygen evolution anodes in seawater electrolysis for hydrogen production. Applied Surface Science, 2011, 257(19): 8230–8236
CrossRef Google scholar
[60]
Kato Z, Sato M, Sasaki Y, Izumiya K, Kumagai N, Hashimoto K. Electrochemical characterization of degradation of oxygen evolution anode for seawater electrolysis. Electrochimica Acta, 2014, 116: 152–157
CrossRef Google scholar
[61]
Trasatti S. Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochimica Acta, 1984, 29(11): 1503–1512
CrossRef Google scholar
[62]
Obata K, Takanabe K. A permselective CeOx coating to improve the stability of oxygen evolution electrocatalysts. Angewandte Chemie International Edition, 2018, 57(6): 1616–1620
CrossRef Google scholar
[63]
Yang F, Luo Y, Yu Q, Zhang Z, Zhang S, Liu Z, Ren W, Cheng H M, Li J, Liu B. A durable and efficient electrocatalyst for saline water splitting with current density exceeding 2000 mA·cm–2. Advanced Functional Materials, 2021, 31(21): 2010367
CrossRef Google scholar
[64]
Jakšić M M. Electrocatalysis of hydrogen evolution in the light of the Brewer-Engel theory for bonding in metals and intermetallic phases. Electrochimica Acta, 1984, 29(11): 1539–1550
CrossRef Google scholar
[65]
Zheng J J, Zhao Y Y, Xi H, Li C H. Seawater splitting for hydrogen evolution by robust electrocatalysts from secondary M (M= Cr, Fe, Co, Ni, Mo) incorporated Pt. RSC Advances, 2018, 8(17): 9423–9429
CrossRef Google scholar
[66]
Li H Y, Tang Q W, He B L, Yang P Z. Robust electrocatalysts from an alloyed Pt-Ru-M (M= Cr, Fe, Co, Ni, Mo)-decorated Ti mesh for hydrogen evolution by seawater splitting. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(17): 6513–6520
CrossRef Google scholar
[67]
Camões M F, Anes B, Oliveira C S, Jorge M E M. Surface changes at platinized platinum based hydrogen gas electrodes following use in highly saline aqueous solutions. Electroanalysis, 2014, 26(9): 1952–1957
CrossRef Google scholar
[68]
Yuan W, Cui Z, Zhu S, Li Z, Wu S, Liang Y. Structure engineering of electrodeposited NiMo films for highly efficient and durable seawater splitting. Electrochimica Acta, 2021, 365: 137366
CrossRef Google scholar
[69]
Miao J W, Xiao F X, Yang H B, Khoo S Y, Chen J Z, Fan Z X, Hsu Y Y, Chen H M, Zhang H, Liu B. Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: a flexible electrode for efficient hydrogen generation in neutral electrolyte. Science Advances, 2015, 1(7): e1500259
CrossRef Google scholar
[70]
Shang L, Zhao Y, Kong X Y, Shi R, Waterhouse G I N, Wen L, Zhang T. Underwater superaerophobic Ni nanoparticle-decorated nickel-molybdenum nitride nanowire arrays for hydrogen evolution in neutral media. Nano Energy, 2020, 78: 105375
CrossRef Google scholar
[71]
Song L J, Meng H M. Effect of carbon content on Ni-Fe-C electrodes for hydrogen evolution reaction in seawater. International Journal of Hydrogen Energy, 2010, 35(19): 10060–10066
CrossRef Google scholar
[72]
Dinh C T, Jain A, de Arquer F P G, De Luna P, Li J, Wang N, Zheng X, Cai J, Gregory B Z, Voznyy O, . Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. Nature Energy, 2019, 4(2): 107–114
CrossRef Google scholar
[73]
Jin H, Liu X, Vasileff A, Jiao Y, Zhao Y, Zheng Y, Qiao S Z. Single-crystal nitrogen-rich two-dimensional Mo5N6 nanosheets for efficient and stable seawater splitting. ACS Nano, 2018, 12(12): 12761–12769
CrossRef Google scholar
[74]
Zang W, Sun T, Yang T, Xi S, Waqar M, Kou Z, Lyu Z, Feng Y P, Wang J, Pennycook S J. Efficient hydrogen evolution of oxidized Ni-N3 defective sites for alkaline freshwater and seawater electrolysis. Advanced Materials, 2021, 33(8): 2003846
CrossRef Google scholar
[75]
Yu L, Wu L B, Song S W, McElhenny B, Zhang F H, Chen S, Ren Z F. Hydrogen generation from seawater electrolysis over a sandwich-like NiCoN|NixP|NiCoN microsheet array catalyst. ACS Energy Letters, 2020, 5(8): 2681–2689
CrossRef Google scholar
[76]
Endrődi B, Sandin S, Smulders V, Simic N, Wildlock M, Mul G, Mei B T, Cornell A. Towards sustainable chlorate production: the effect of permanganate addition on current efficiency. Journal of Cleaner Production, 2018, 182: 529–537
CrossRef Google scholar
[77]
Ma Y Y, Wu C X, Feng X J, Tan H Q, Yan L K, Liu Y, Kang Z H, Wang E B, Li Y G. Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy & Environmental Science, 2017, 10(3): 788–798
CrossRef Google scholar
[78]
Gao X, Zhang H, Li Q, Yu X, Hong Z, Zhang X, Liang C, Lin Z. Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting. Angewandte Chemie International Edition, 2016, 55(21): 6290–6294
CrossRef Google scholar
[79]
Ren J T, Yuan Z Y. Hierarchical nickel sulfide nanosheets directly grown on Ni foam: a stable and efficient electrocatalyst for water reduction and oxidation in alkaline medium. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 7203–7210
CrossRef Google scholar
[80]
Lv X W, Hu Z P, Ren J T, Liu Y P, Wang Z, Yuan Z Y. Self-supported Al-doped cobalt phosphide nanosheets grown on three-dimensional Ni foam for highly efficient water reduction and oxidation. Inorganic Chemistry Frontiers, 2019, 6(1): 74–81
CrossRef Google scholar
[81]
Zhu Y P, Liu Y P, Ren T Z, Yuan Z Y. Self-supported cobalt phosphide mesoporous nanorod arrays: a flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Advanced Functional Materials, 2015, 25(47): 7337–7347
CrossRef Google scholar
[82]
Ling T, Yan D Y, Wang H, Jiao Y, Hu Z, Zheng Y, Zheng L, Mao J, Liu H, Du X W, Jaroniec M, Qiao S Z. Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering. Nature Communications, 2017, 8(1): 1509
CrossRef Google scholar
[83]
Song F Z, Li W, Yang J Q, Han G Q, Liao P L, Sun Y J. Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions. Nature Communications, 2018, 9(1): 4531
CrossRef Google scholar
[84]
Han N N, Yang K R, Lu Z Y, Li Y J, Xu W W, Gao T F, Cai Z, Zhang Y, Batista V S, Liu W, . Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nature Communications, 2018, 9(1): 924
CrossRef Google scholar
[85]
Fabbri E, Nachtegaal M, Binninger T, Cheng X, Kim B J, Durst J, Bozza F, Graule T, Schäublin R, Wiles L, . Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nature Materials, 2017, 16(9): 925–931
CrossRef Google scholar
[86]
Lv X W, Tian W W, Liu Y P, Yuan Z Y. Well-defined CoP/Ni2P nanohybrids encapsulated in a nitrogen-doped carbon matrix as advanced multifunctional electrocatalysts for efficient overall water splitting and zinc-air batteries. Materials Chemistry Frontiers, 2019, 3(11): 2428–2436
CrossRef Google scholar
[87]
Duan S, Liu Z, Zhuo H H, Wang T Y, Liu J Y, Wang L, Liang J S, Han J T, Huang Y H, Li Q. Hydrochloric acid corrosion induced bifunctional free-standing NiFe hydroxide nanosheets towards high-performance alkaline seawater splitting. Nanoscale, 2020, 12(42): 21743–21749
CrossRef Google scholar
[88]
Wu L B, Yu L, Zhang F H, McElhenny B, Luo D, Karim A, Chen S, Ren Z F. Heterogeneous bimetallic phosphide Ni2P-Fe2P as an efficient bifunctional catalyst for water/seawater splitting. Advanced Functional Materials, 2021, 31(1): 2006484
CrossRef Google scholar
[89]
Zhao Y Q, Jin B, Vasileff A, Jiao Y, Qiao S Z. Interfacial nickel nitride/sulfide as a bifunctional electrode for highly efficient overall water/seawater electrolysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(14): 8117–8121
CrossRef Google scholar
[90]
Ros C, Murcia-López S, Garcia X, Rosado M, Arbiol J, Llorca J, Morante J R. Facing seawater splitting challenges by regeneration with Ni-Mo-Fe OER/HER bifunctional electrocatalyst. ChemSusChem, 2021, 14(14): 2872–2881
CrossRef Google scholar
[91]
Xu S S, Lv X W, Zhao Y M, Ren T Z, Yuan Z Y. Engineering morphologies of cobalt oxide/phosphate-carbon nanohybrids for high-efficiency electrochemical water oxidation and reduction. Journal of Energy Chemistry, 2021, 52: 139–146
CrossRef Google scholar
[92]
Zhao H, Yuan Z Y. Surface/interface engineering of high-efficiency noble metal-free electrocatalysts for energy-related electrochemical reactions. Journal of Energy Chemistry, 2021, 54: 89–104
CrossRef Google scholar
[93]
Hsu S H, Miao J, Zhang L, Gao J, Wang H, Tao H, Hung S F, Vasileff A, Qiao S Z, Liu B. An earth-abundant catalyst-based seawater photoelectrolysis system with 17.9% solar-to-hydrogen efficiency. Advanced Materials, 2018, 30(18): 1707261
CrossRef Google scholar
[94]
Vincent I, Bessarabov D. Low cost hydrogen production by anion exchange membrane electrolysis: a review. Renewable & Sustainable Energy Reviews, 2018, 81: 1690–1704
CrossRef Google scholar
[95]
Carmo M, Fritz D L, Mergel J, Stolten D. A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 2013, 38(12): 4901–4934
CrossRef Google scholar
[96]
Chae K J, Choi M, Ajayi F F, Park W, Chang I S, Kim I S. Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells. Energy & Fuels, 2008, 22(1): 169–176
CrossRef Google scholar
[97]
Müller M, Carmo M, Glüsen A, Hehemann M, Saba S, Zwaygardt W, Stolten D. Water management in membrane electrolysis and options for advanced plants. International Journal of Hydrogen Energy, 2019, 44(21): 10147–10155
CrossRef Google scholar
[98]
Dresp S, Ngo Thanh T, Klingenhof M, Brückner S, Hauke P, Strasser P. Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds. Energy & Environmental Science, 2020, 13(6): 1725–1729
CrossRef Google scholar
[99]
Kumari S, Turner White R, Kumar B, Spurgeon J M. Solar hydrogen production from seawater vapor electrolysis. Energy & Environmental Science, 2016, 9(5): 1725–1733
CrossRef Google scholar
[100]
Kida T, Kuwaki Y, Miyamoto A, Hamidah N L, Hatakeyama K, Quitain A T, Sasaki M, Urakawa A. Water vapor electrolysis with proton-conducting graphene oxide nanosheets. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11753–11758
CrossRef Google scholar

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 22111530112 and 21875118), the Natural Science Foundation of Tianjin (Grant No. 19JCZDJC37700), and the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (Grant No. 2020-KF-22).

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(2503 KB)

Accesses

Citations

Detail

Sections
Recommended

/