An overview and recent advances in electrocatalysts for direct seawater splitting

Hao-Yu Wang , Chen-Chen Weng , Jin-Tao Ren , Zhong-Yong Yuan

Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (6) : 1408 -1426.

PDF (2503KB)
Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (6) : 1408 -1426. DOI: 10.1007/s11705-021-2102-6
REVIEW ARTICLE
REVIEW ARTICLE

An overview and recent advances in electrocatalysts for direct seawater splitting

Author information +
History +
PDF (2503KB)

Abstract

In comparison to pure water, seawater is widely accepted as an unlimited resource. The direct seawater splitting is economical and eco-friendly, but the key challenges in seawater, especially the chlorine-related competing reactions at the anode, seriously hamper its practical application. The development of earth-abundant electrocatalysts toward direct seawater splitting has emerged as a promising strategy. Highly efficient electrocatalysts with improved selectivity and stability are of significance in preventing the interference of side reactions and resisting various impurities. This review first discusses the macroscopic understanding of direct seawater electrolysis and then focuses on the strategies for rational design of electrocatalysts toward direct seawater splitting. The perspectives of improved electrocatalysts to solve emerging challenges and further development of direct seawater splitting are also provided.

Graphical abstract

Keywords

seawater splitting / electrocatalysts / oxygen evolution reaction / hydrogen evolution reaction / chlorine chemistry

Cite this article

Download citation ▾
Hao-Yu Wang, Chen-Chen Weng, Jin-Tao Ren, Zhong-Yong Yuan. An overview and recent advances in electrocatalysts for direct seawater splitting. Front. Chem. Sci. Eng., 2021, 15(6): 1408-1426 DOI:10.1007/s11705-021-2102-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xu K, Cheng H, Lv H F, Wang J Y, Liu L Q, Liu S, Wu X J, Chu W S, Wu C Z, Xie Y. Controllable surface reorganization engineering on cobalt phosphide nanowire arrays for efficient alkaline hydrogen evolution reaction. Advanced Materials, 2018, 30(1): 1703322

[2]

Liu T, Li P, Yao N, Cheng G Z, Chen S L, Luo W, Yin Y D. CoP-doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction. Angewandte Chemie International Edition, 2019, 58(14): 4679–4684

[3]

Ren J T, Wang Y S, Chen L, Gao L J, Tian W W, Yuan Z Y. Binary FeNi phosphides dispersed on N,P-doped carbon nanosheets for highly efficient overall water splitting and rechargeable Zn-air batteries. Chemical Engineering Journal, 2020, 389: 124408

[4]

Martindale B C M, Reisner E. Bi-functional iron-only electrodes for efficient water splitting with enhanced stability through in situ electrochemical regeneration. Advanced Energy Materials, 2016, 6(6): 1502095

[5]

Zhang J W, Lv X W, Ren T Z, Wang Z, Bandosz T J, Yuan Z Y. Engineering heterostructured Ni@Ni(OH)2 core-shell nanomaterials for synergistically enhanced water electrolysis. Green Energy & Environment, 2021, doi: 10.1016/j.gee.2020.12.009

[6]

Ren J T, Chen L, Yang D D, Yuan Z Y. Molybdenum-based nanoparticles (Mo2C, MoP and MoS2) coupled heteroatoms-doped carbon nanosheets for efficient hydrogen evolution reaction. Applied Catalysis B: Environmental, 2020, 263: 118352

[7]

Zheng Y, Jiao Y, Vasileff A, Qiao S Z. The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angewandte Chemie International Edition, 2018, 57(26): 7568–7579

[8]

Ren J T, Yao Y, Yuan Z Y. Fabrication strategies of porous precious-metal-free bifunctional electrocatalysts for overall water splitting: recent advances. Green Energy & Environment, 2021, 6(5): 620–643

[9]

Roger I, Shipman M A, Symes M D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nature Reviews Chemistry, 2017, 1: 0003

[10]

Lv X W, Hu Z P, Chen L, Ren J T, Liu Y P, Yuan Z Y. Organic-inorganic metal phosphonate-derived nitrogen-doped core-shell Ni2P nanoparticles supported on Ni foam for efficient hydrogen evolution reaction at all pH values. ACS Sustainable Chemistry & Engineering, 2019, 7(15): 12770–12778

[11]

Zhang J W, Zhang H, Ren T Z, Yuan Z Y, Bandosz T J. FeNi doped porous carbon as an efficient catalyst for oxygen evolution reaction. Frontiers of Chemical Science and Engineering, 2021, 15(2): 279–287

[12]

Ji X X, Lin Y H, Zeng J, Ren Z H, Lin Z J, Mu Y B, Qiu Y J, Yu J. Graphene/MoS2/FeCoNi(OH)x and graphene/MoS2/FeCoNiPx multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting. Nature Communications, 2021, 12(1): 1380

[13]

Wang J, Kim S J, Liu J P, Gao Y, Choi S B, Han J W, Shin H Y, Jo S G, Kim J W, Ciucci F, . Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nature Catalysis, 2021, 4(3): 212–222

[14]

Ursua A, Gandia L M, Sanchis P. Hydrogen production from water electrolysis: current status and future trends. Proceedings of the IEEE, 2012, 100(2): 410–426

[15]

Zhao H, Yuan Z Y. Design strategies of transition-metal phosphate and phosphonate electrocatalysts for energy-related reactions. ChemSusChem, 2021, 14(1): 130–149

[16]

Turner J A. Sustainable hydrogen production. Science, 2004, 305(5686): 972–974

[17]

Weng C C, Ren J T, Yuan Z Y. Transition metal phosphide-based materials for efficient electrochemical hydrogen evolution: a critical review. ChemSusChem, 2020, 13(13): 3357–3375

[18]

Ren J T, Song Y J, Yuan Z Y. Facile synthesis of molybdenum carbide nanoparticles in situ decorated on nitrogen-doped porous carbons for hydrogen evolution reaction. Journal of Energy Chemistry, 2019, 32: 78–84

[19]

Cuartero M, Crespo G, Cherubini T, Pankratova N, Confalonieri F, Massa F, Tercier-Waeber M L, Abdou M, Schäfer J, Bakker E. In situ detection of macronutrients and chloride in seawater by submersible electrochemical sensors. Analytical Chemistry, 2018, 90(7): 4702–4710

[20]

Xiang C, Papadantonakis K M, Lewis N S. Principles and implementations of electrolysis systems for water splitting. Materials Horizons, 2016, 3(3): 169–173

[21]

Tong W, Forster M, Dionigi F, Dresp S, Sadeghi Erami R, Strasser P, Cowan A J, Farràs P. Electrolysis of low-grade and saline surface water. Nature Energy, 2020, 5(5): 367–377

[22]

Kester D R, Duedall I W, Connors D N, Pytkowicz R M. Preparation of artifcicial seawater. Limnology and Oceanography, 1967, 12(1): 176–179

[23]

Yu L, Zhu Q, Song S, McElhenny B, Wang D, Wu C, Qin Z, Bao J, Yu Y, Chen S, Ren Z. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nature Communications, 2019, 10(1): 5106

[24]

Dionigi F, Reier T, Pawolek Z, Gliech M, Strasser P. Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis. ChemSusChem, 2016, 9(9): 962–972

[25]

Exner K S, Sohrabnejad-Eskan I, Over H. A universal approach to determine the free energy diagram of an electrocatalytic reaction. ACS Catalysis, 2018, 8(3): 1864–1879

[26]

Exner K S, Anton J, Jacob T, Over H. Controlling selectivity in the chlorine evolution reaction over RuO2-based catalysts. Angewandte Chemie International Edition, 2014, 53(41): 11032–11035

[27]

Ysea N, Diaz L A, Lacconi G I, Franceschini E A. Stability study of materials for electrode supports for the hydrogen generation from a NaCl aqueous solution. Electrocatalysis, 2021, 12(5): 537–547

[28]

Auinger M, Katsounaros I, Meier J C, Klemm S O, Biedermann P U, Topalov A A, Rohwerder M, Mayrhofer K J J. Near-surface ion distribution and buffer effects during electrochemical reactions. Physical Chemistry Chemical Physics, 2011, 13(36): 16384–16394

[29]

Katsounaros I, Meier J C, Klemm S O, Topalov A A, Biedermann P U, Auinger M, Mayrhofer K J J. The effective surface pH during reactions at the solid-liquid interface. Electrochemistry Communications, 2011, 13(6): 634–637

[30]

Kirk D W, Ledas A E. Precipitate formation during sea water electrolysis. International Journal of Hydrogen Energy, 1982, 7(12): 925–932

[31]

Bennett J E. Electrodes for generation of hydrogen and oxygen from seawater. International Journal of Hydrogen Energy, 1980, 5(4): 401–408

[32]

Wu X, Zhou S, Wang Z, Liu J, Pei W, Yang P, Zhao J, Qiu J. Engineering multifunctional collaborative catalytic interface enabling efficient hydrogen evolution in all pH range and seawater. Advanced Energy Materials, 2019, 9(34): 1901333

[33]

Gao S, Li G D, Liu Y, Chen H, Feng L L, Wang Y, Yang M, Wang D, Wang S, Zou X. Electrocatalytic H2 production from seawater over Co, N-codoped nanocarbons. Nanoscale, 2015, 7(6): 2306–2316

[34]

Karlsson R K B, Cornell A. Selectivity between oxygen and chlorine evolution in the chlor-alkali and chlorate processes. Chemical Reviews, 2016, 116(5): 2982–3028

[35]

Oh B S, Oh S G, Hwang Y Y, Yu H W, Kang J W, Kim I S. Formation of hazardous inorganic by-products during electrolysis of seawater as a disinfection process for desalination. Science of the Total Environment, 2010, 408(23): 5958–5965

[36]

Izumiya K, Akiyama E, Habazaki H, Kumagai N, Kawashima A, Hashimoto K. Effects of additional elements on electrocatalytic properties of thermally decomposed manganese oxide electrodes for oxygen evolution from seawater. Materials Transactions, 1997, 38(10): 899–905

[37]

Izumiya K, Akiyama E, Habazaki H, Kumagai N, Kawashima A, Hashimoto K. Anodically deposited manganese oxide and manganese-tungsten oxide electrodes for oxygen evolution from seawater. Electrochimica Acta, 1998, 43(21): 3303–3312

[38]

Niu J, Yang J, Channa A I, Ashalley E, Yang J, Jiang J, Li H, Ji H, Niu X. Enhancing the water splitting performance via decorating Co3O4 nanoarrays with ruthenium doping and phosphorization. RSC Advances, 2020, 10(45): 27235–27241

[39]

Gupta S, Forster M, Yadav A, Cowan A J, Patel N, Patel M. Highly efficient and selective metal oxy-boride electrocatalysts for oxygen evolution from alkali and saline solutions. ACS Applied Energy Materials, 2020, 3(8): 7619–7628

[40]

Fujimura K, Matsui T, Habazaki H, Kawashima A, Kumagai N, Hashimoto K. The durability of manganese-molybdenum oxide anodes for oxygen evolution in seawater electrolysis. Electrochimica Acta, 2000, 45(14): 2297–2303

[41]

Dresp S, Dionigi F, Loos S, Ferreira de Araujo J, Spöri C, Gliech M, Dau H, Strasser P. Direct electrolytic splitting of seawater: activity, selectivity, degradation, and recovery studied from the molecular catalyst structure to the electrolyzer cell level. Advanced Energy Materials, 2018, 8(22): 1800338

[42]

Yu L, Wu L B, McElhenny B, Song S W, Luo D, Zhang F H, Yu Y, Chen S, Ren Z F. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy & Environmental Science, 2020, 13(10): 3439–3446

[43]

Wang C Z, Zhu M Z, Cao Z Y, Zhu P, Cao Y Q, Xu X Y, Xu C X, Yin Z Y. Heterogeneous bimetallic sulfides based seawater electrolysis towards stable industrial-level large current density. Applied Catalysis B: Environmental, 2021, 291: 120071

[44]

Petrykin V, Macounova K, Shlyakhtin O A, Krtil P. Tailoring the selectivity for electrocatalytic oxygen evolution on ruthenium oxides by zinc substitution. Angewandte Chemie International Edition, 2010, 49(28): 4813–4815

[45]

Gayen P, Saha S, Ramani V. Selective seawater splitting using pyrochlore electrocatalyst. ACS Applied Energy Materials, 2020, 3(4): 3978–3983

[46]

Zhao Y, Jin B, Zheng Y, Jin H, Jiao Y, Qiao S Z. Charge state manipulation of cobalt selenide catalyst for overall seawater electrolysis. Advanced Energy Materials, 2018, 8(29): 1801926

[47]

Surendranath Y, Dincǎ M, Nocera D G. Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts. Journal of the American Chemical Society, 2009, 131(7): 2615–2620

[48]

Zhang Q J, Zhao X J, Miao X J, Yang W T, Wang C T, Pan Q H. ZIF-L-Co@carbon fiber paper composite derived Co/Co3O4@C electrocatalyst for ORR in alkali/acidic media and overall seawater splitting. International Journal of Hydrogen Energy, 2020, 45(58): 33028–33036

[49]

Cheng F F, Feng X L, Chen X, Lin W G, Rong J F, Yang W S. Synergistic action of Co-Fe layered double hydroxide electrocatalyst and multiple ions of sea salt for efficient seawater oxidation at near-neutral pH. Electrochimica Acta, 2017, 251: 336–343

[50]

Vos J G, Wezendonk T A, Jeremiasse A W, Koper M T M. MnOx/IrOx as selective oxygen evolution electrocatalyst in acidic chloride solution. Journal of the American Chemical Society, 2018, 140(32): 10270–10281

[51]

Huang W H, Lin C Y. Iron phosphate modified calcium iron oxide as an efficient and robust catalyst in electrocatalyzing oxygen evolution from seawater. Faraday Discussions, 2019, 215: 205–215

[52]

Jadhav A R, Kumar A, Lee J J, Yang T H, Na S Y, Lee J S, Luo Y G, Liu X H, Hwang Y, Liu Y, Lee H. Stable complete seawater electrolysis by using interfacial chloride ion blocking layer on catalyst surface. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(46): 24501–24514

[53]

Balaji R, Kannan B S, Lakshmi J, Senthil N, Vasudevan S, Sozhan G, Shukla A K, Ravichandran S. An alternative approach to selective sea water oxidation for hydrogen production. Electrochemistry Communications, 2009, 11(8): 1700–1702

[54]

Kuang Y, Kenney M J, Meng Y, Hung W H, Liu Y, Huang J E, Prasanna R, Li P, Li Y, Wang L, . Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(14): 6624–6629

[55]

Fujimura K, Matsui T, Izumiya K, Kumagai N, Akiyama E, Habazaki H, Kawashima A, Asami K, Hashimoto K. Oxygen evolution on manganese-molybdenum oxide anodes in seawater electrolysis. Materials Science and Engineering A, 1999, 267(2): 254–259

[56]

Abdel Ghany N A, Kumagai N, Meguro S, Asami K, Hashimoto K. Oxygen evolution anodes composed of anodically deposited Mn-Mo-Fe oxides for seawater electrolysis. Electrochimica Acta, 2002, 48(1): 21–28

[57]

El-Moneim A A, Kumagai N, Asami K, Hashimoto K. Nanocrystalline manganese-molybdenum-tungsten oxide anodes for oxygen evolution in acidic seawater electrolysis. Materials Transactions, 2005, 46(2): 309–316

[58]

El-Moneim A A, Kumagai N, Hashimoto K. Mn-Mo-W oxide anodes for oxygen evolution in seawater electrolysis for hydrogen production. Materials Transactions, 2009, 50(8): 1969–1977

[59]

Kato Z, Bhattarai J, Kumagai N, Izumiya K, Hashimoto K. Durability enhancement and degradation of oxygen evolution anodes in seawater electrolysis for hydrogen production. Applied Surface Science, 2011, 257(19): 8230–8236

[60]

Kato Z, Sato M, Sasaki Y, Izumiya K, Kumagai N, Hashimoto K. Electrochemical characterization of degradation of oxygen evolution anode for seawater electrolysis. Electrochimica Acta, 2014, 116: 152–157

[61]

Trasatti S. Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochimica Acta, 1984, 29(11): 1503–1512

[62]

Obata K, Takanabe K. A permselective CeOx coating to improve the stability of oxygen evolution electrocatalysts. Angewandte Chemie International Edition, 2018, 57(6): 1616–1620

[63]

Yang F, Luo Y, Yu Q, Zhang Z, Zhang S, Liu Z, Ren W, Cheng H M, Li J, Liu B. A durable and efficient electrocatalyst for saline water splitting with current density exceeding 2000 mA·cm–2. Advanced Functional Materials, 2021, 31(21): 2010367

[64]

Jakšić M M. Electrocatalysis of hydrogen evolution in the light of the Brewer-Engel theory for bonding in metals and intermetallic phases. Electrochimica Acta, 1984, 29(11): 1539–1550

[65]

Zheng J J, Zhao Y Y, Xi H, Li C H. Seawater splitting for hydrogen evolution by robust electrocatalysts from secondary M (M= Cr, Fe, Co, Ni, Mo) incorporated Pt. RSC Advances, 2018, 8(17): 9423–9429

[66]

Li H Y, Tang Q W, He B L, Yang P Z. Robust electrocatalysts from an alloyed Pt-Ru-M (M= Cr, Fe, Co, Ni, Mo)-decorated Ti mesh for hydrogen evolution by seawater splitting. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(17): 6513–6520

[67]

Camões M F, Anes B, Oliveira C S, Jorge M E M. Surface changes at platinized platinum based hydrogen gas electrodes following use in highly saline aqueous solutions. Electroanalysis, 2014, 26(9): 1952–1957

[68]

Yuan W, Cui Z, Zhu S, Li Z, Wu S, Liang Y. Structure engineering of electrodeposited NiMo films for highly efficient and durable seawater splitting. Electrochimica Acta, 2021, 365: 137366

[69]

Miao J W, Xiao F X, Yang H B, Khoo S Y, Chen J Z, Fan Z X, Hsu Y Y, Chen H M, Zhang H, Liu B. Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: a flexible electrode for efficient hydrogen generation in neutral electrolyte. Science Advances, 2015, 1(7): e1500259

[70]

Shang L, Zhao Y, Kong X Y, Shi R, Waterhouse G I N, Wen L, Zhang T. Underwater superaerophobic Ni nanoparticle-decorated nickel-molybdenum nitride nanowire arrays for hydrogen evolution in neutral media. Nano Energy, 2020, 78: 105375

[71]

Song L J, Meng H M. Effect of carbon content on Ni-Fe-C electrodes for hydrogen evolution reaction in seawater. International Journal of Hydrogen Energy, 2010, 35(19): 10060–10066

[72]

Dinh C T, Jain A, de Arquer F P G, De Luna P, Li J, Wang N, Zheng X, Cai J, Gregory B Z, Voznyy O, . Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. Nature Energy, 2019, 4(2): 107–114

[73]

Jin H, Liu X, Vasileff A, Jiao Y, Zhao Y, Zheng Y, Qiao S Z. Single-crystal nitrogen-rich two-dimensional Mo5N6 nanosheets for efficient and stable seawater splitting. ACS Nano, 2018, 12(12): 12761–12769

[74]

Zang W, Sun T, Yang T, Xi S, Waqar M, Kou Z, Lyu Z, Feng Y P, Wang J, Pennycook S J. Efficient hydrogen evolution of oxidized Ni-N3 defective sites for alkaline freshwater and seawater electrolysis. Advanced Materials, 2021, 33(8): 2003846

[75]

Yu L, Wu L B, Song S W, McElhenny B, Zhang F H, Chen S, Ren Z F. Hydrogen generation from seawater electrolysis over a sandwich-like NiCoN|NixP|NiCoN microsheet array catalyst. ACS Energy Letters, 2020, 5(8): 2681–2689

[76]

Endrődi B, Sandin S, Smulders V, Simic N, Wildlock M, Mul G, Mei B T, Cornell A. Towards sustainable chlorate production: the effect of permanganate addition on current efficiency. Journal of Cleaner Production, 2018, 182: 529–537

[77]

Ma Y Y, Wu C X, Feng X J, Tan H Q, Yan L K, Liu Y, Kang Z H, Wang E B, Li Y G. Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy & Environmental Science, 2017, 10(3): 788–798

[78]

Gao X, Zhang H, Li Q, Yu X, Hong Z, Zhang X, Liang C, Lin Z. Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting. Angewandte Chemie International Edition, 2016, 55(21): 6290–6294

[79]

Ren J T, Yuan Z Y. Hierarchical nickel sulfide nanosheets directly grown on Ni foam: a stable and efficient electrocatalyst for water reduction and oxidation in alkaline medium. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 7203–7210

[80]

Lv X W, Hu Z P, Ren J T, Liu Y P, Wang Z, Yuan Z Y. Self-supported Al-doped cobalt phosphide nanosheets grown on three-dimensional Ni foam for highly efficient water reduction and oxidation. Inorganic Chemistry Frontiers, 2019, 6(1): 74–81

[81]

Zhu Y P, Liu Y P, Ren T Z, Yuan Z Y. Self-supported cobalt phosphide mesoporous nanorod arrays: a flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Advanced Functional Materials, 2015, 25(47): 7337–7347

[82]

Ling T, Yan D Y, Wang H, Jiao Y, Hu Z, Zheng Y, Zheng L, Mao J, Liu H, Du X W, Jaroniec M, Qiao S Z. Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering. Nature Communications, 2017, 8(1): 1509

[83]

Song F Z, Li W, Yang J Q, Han G Q, Liao P L, Sun Y J. Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions. Nature Communications, 2018, 9(1): 4531

[84]

Han N N, Yang K R, Lu Z Y, Li Y J, Xu W W, Gao T F, Cai Z, Zhang Y, Batista V S, Liu W, . Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nature Communications, 2018, 9(1): 924

[85]

Fabbri E, Nachtegaal M, Binninger T, Cheng X, Kim B J, Durst J, Bozza F, Graule T, Schäublin R, Wiles L, . Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nature Materials, 2017, 16(9): 925–931

[86]

Lv X W, Tian W W, Liu Y P, Yuan Z Y. Well-defined CoP/Ni2P nanohybrids encapsulated in a nitrogen-doped carbon matrix as advanced multifunctional electrocatalysts for efficient overall water splitting and zinc-air batteries. Materials Chemistry Frontiers, 2019, 3(11): 2428–2436

[87]

Duan S, Liu Z, Zhuo H H, Wang T Y, Liu J Y, Wang L, Liang J S, Han J T, Huang Y H, Li Q. Hydrochloric acid corrosion induced bifunctional free-standing NiFe hydroxide nanosheets towards high-performance alkaline seawater splitting. Nanoscale, 2020, 12(42): 21743–21749

[88]

Wu L B, Yu L, Zhang F H, McElhenny B, Luo D, Karim A, Chen S, Ren Z F. Heterogeneous bimetallic phosphide Ni2P-Fe2P as an efficient bifunctional catalyst for water/seawater splitting. Advanced Functional Materials, 2021, 31(1): 2006484

[89]

Zhao Y Q, Jin B, Vasileff A, Jiao Y, Qiao S Z. Interfacial nickel nitride/sulfide as a bifunctional electrode for highly efficient overall water/seawater electrolysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(14): 8117–8121

[90]

Ros C, Murcia-López S, Garcia X, Rosado M, Arbiol J, Llorca J, Morante J R. Facing seawater splitting challenges by regeneration with Ni-Mo-Fe OER/HER bifunctional electrocatalyst. ChemSusChem, 2021, 14(14): 2872–2881

[91]

Xu S S, Lv X W, Zhao Y M, Ren T Z, Yuan Z Y. Engineering morphologies of cobalt oxide/phosphate-carbon nanohybrids for high-efficiency electrochemical water oxidation and reduction. Journal of Energy Chemistry, 2021, 52: 139–146

[92]

Zhao H, Yuan Z Y. Surface/interface engineering of high-efficiency noble metal-free electrocatalysts for energy-related electrochemical reactions. Journal of Energy Chemistry, 2021, 54: 89–104

[93]

Hsu S H, Miao J, Zhang L, Gao J, Wang H, Tao H, Hung S F, Vasileff A, Qiao S Z, Liu B. An earth-abundant catalyst-based seawater photoelectrolysis system with 17.9% solar-to-hydrogen efficiency. Advanced Materials, 2018, 30(18): 1707261

[94]

Vincent I, Bessarabov D. Low cost hydrogen production by anion exchange membrane electrolysis: a review. Renewable & Sustainable Energy Reviews, 2018, 81: 1690–1704

[95]

Carmo M, Fritz D L, Mergel J, Stolten D. A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 2013, 38(12): 4901–4934

[96]

Chae K J, Choi M, Ajayi F F, Park W, Chang I S, Kim I S. Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells. Energy & Fuels, 2008, 22(1): 169–176

[97]

Müller M, Carmo M, Glüsen A, Hehemann M, Saba S, Zwaygardt W, Stolten D. Water management in membrane electrolysis and options for advanced plants. International Journal of Hydrogen Energy, 2019, 44(21): 10147–10155

[98]

Dresp S, Ngo Thanh T, Klingenhof M, Brückner S, Hauke P, Strasser P. Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds. Energy & Environmental Science, 2020, 13(6): 1725–1729

[99]

Kumari S, Turner White R, Kumar B, Spurgeon J M. Solar hydrogen production from seawater vapor electrolysis. Energy & Environmental Science, 2016, 9(5): 1725–1733

[100]

Kida T, Kuwaki Y, Miyamoto A, Hamidah N L, Hatakeyama K, Quitain A T, Sasaki M, Urakawa A. Water vapor electrolysis with proton-conducting graphene oxide nanosheets. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11753–11758

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2503KB)

7746

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/