Scaling up of cluster beam deposition technology for catalysis application
Giuseppe Sanzone, Jinlong Yin, Hailin Sun
Scaling up of cluster beam deposition technology for catalysis application
Many research works have demonstrated that the combination of atomically precise cluster deposition and theoretical calculations is able to address fundamental aspects of size-effects, cluster-support interactions, and reaction mechanisms of cluster materials. Although the wet chemistry method has been widely used to synthesize nanoparticles, the gas-phase synthesis and size-selected strategy was the only method to prepare supported metal clusters with precise numbers of atoms for a long time. However, the low throughput of the physical synthesis method has severely constrained its wider adoption for catalysis applications. In this review, we introduce the latest progress on three types of cluster source which have the most promising potential for scale-up, including sputtering gas aggregation source, pulsed microplasma cluster source, and matrix assembly cluster source. While the sputtering gas aggregation source is leading ahead with a production rate of ~20 mg·h–1, the pulsed microplasma source has the smallest physical dimensions which makes it possible to compact multiple such devices into a small volume for multiplied production rate. The matrix assembly source has the shortest development history, but already show an impressive deposition rate of ~10 mg·h–1. At the end of the review, the possible routes for further throughput scale-up are envisaged.
nanoparticle / cluster / cluster beam deposition / magnetron sputtering / heterogeneous catalysis
[1] |
Haruta M, Kobayashi T, Sano H, Yamada N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chemistry Letters, 1987, 16(2): 405–408
CrossRef
Google scholar
|
[2] |
Tyo E C, Vajda S. Catalysis by clusters with precise numbers of atoms. Nature Nanotechnology, 2015, 10(7): 577–588
CrossRef
Google scholar
|
[3] |
Yao C, Guo N, Xi S, Xu C Q, Liu W, Zhao X, Li J, Fang H, Su J, Chen Z,
CrossRef
Google scholar
|
[4] |
Jin R, Li G, Sharma S, Li Y, Du X. Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures. Chemical Reviews, 2021, 121(2): 567–648
CrossRef
Google scholar
|
[5] |
Li Z, Ji S, Liu Y, Cao X, Tian S, Chen Y, Niu Z, Li Y. Well-defined materials for heterogeneous catalysis: from nanoparticles to isolated single-atom sites. Chemical Reviews, 2020, 120(2): 623–682
CrossRef
Google scholar
|
[6] |
Niu Z, Li Y. Removal and utilization of capping agents in nanocatalysis. Chemistry of Materials, 2014, 26(1): 72–83
CrossRef
Google scholar
|
[7] |
Du Y, Sheng H, Astruc D, Zhu M. Atomically precise noble metal nanoclusters as efficient catalysts: a bridge between structure and properties. Chemical Reviews, 2020, 120(2): 526–622
CrossRef
Google scholar
|
[8] |
Rong H, Ji S, Zhang J, Wang D, Li Y. Synthetic strategies of supported atomic clusters for heterogeneous catalysis. Nature Communications, 2020, 11(1): 5884
CrossRef
Google scholar
|
[9] |
Ellis P R, Brown C M, Bishop P T, Yin J, Cooke K, Terry W D, Liu J, Yin F, Palmer R E. The cluster beam route to model catalysts and beyond. Faraday Discussions, 2016, 188(0): 39–56
CrossRef
Google scholar
|
[10] |
Halder A, Curtiss L A, Fortunelli A, Vajda S. Perspective: size selected clusters for catalysis and electrochemistry. Journal of Chemical Physics, 2018, 148(11): 110901
CrossRef
Google scholar
|
[11] |
Roy C, Sebok B, Scott S B, Fiordaliso E M, Sørensen J E, Bodin A, Trimarco D B, Damsgaard C D, Vesborg P C K, Hansen O,
CrossRef
Google scholar
|
[12] |
Escalera-López D, Niu Y, Yin J, Cooke K, Rees N V, Palmer R E. Enhancement of the hydrogen evolution reaction from Ni-MoS2 hybrid nanoclusters. ACS Catalysis, 2016, 6(9): 6008–6017
CrossRef
Google scholar
|
[13] |
Calvo F. Nanoalloys. 2nd ed. Cambridge: Elsevier, 2020, 22
|
[14] |
De Toro J A, Normile P S, Binns C. Gas-Phase Synthesis of Nanoparticles. Weinheim: Wiley-VCH, 2017, 39–55
|
[15] |
Behrisch R, Eckstein W. Sputtering by Particle Bombardment. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, 33–187
|
[16] |
Yamamura Y, Tawara H. Energy dependence of ion-induced sputtering yields from monatomic solids at normal incidence. Atomic Data and Nuclear Data Tables, 1996, 62(2): 149–253
CrossRef
Google scholar
|
[17] |
Yamamura Y, Shindo S. An empirical formula for angular dependence of sputtering yields. Radiation Effects, 1984, 80(1–2): 57–72
CrossRef
Google scholar
|
[18] |
Sigmund P. Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets. Physical Review, 1969, 184(2): 383–416
CrossRef
Google scholar
|
[19] |
Bohdansky J. A universal relation for the sputtering yield of monatomic solids at normal ion incidence. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 1984, 2(1): 587–591
CrossRef
Google scholar
|
[20] |
Anders A. Deposition rates of high power impulse magnetron sputtering: physics and economics. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 2010, 28(4): 783–790
CrossRef
Google scholar
|
[21] |
Anders A. Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS). Journal of Applied Physics, 2017, 121(17): 171101
CrossRef
Google scholar
|
[22] |
Oechsner H. Sputtering—a review of some recent experimental and theoretical aspects. Applied Physics (Berlin), 1975, 8(3): 185–198
CrossRef
Google scholar
|
[23] |
Penning F M. Die glimmentladung bei niedrigem druck zwischen koaxialen zylindern in einem axialen magnetfeld. Physica, 1936, 3(9): 873–894
CrossRef
Google scholar
|
[24] |
Kay E. Magnetic field effects on an abnormal truncated glow discharge and their relation to sputtered thin-film growth. Journal of Applied Physics, 1963, 34(4): 760–768
CrossRef
Google scholar
|
[25] |
Waits R K. Planar magnetron sputtering. Journal of Vacuum Science and Technology, 1978, 15(2): 179–187
CrossRef
Google scholar
|
[26] |
Gill W D, Kay E. Efficient low pressure sputtering in a large inverted magnetron suitable for film synthesis. Review of Scientific Instruments, 1965, 36(3): 277–282
CrossRef
Google scholar
|
[27] |
Lundin D, Minea T, Gudmundsson J T. High Power Impulse Magnetron Sputtering. Amsterdam: Elsevier, 2020, 1–48
|
[28] |
Kashtanov P V, Smirnov B M, Hippler R. Magnetron plasma and nanotechnology. Physics Uspekhi, 2007, 50(5): 455–488
CrossRef
Google scholar
|
[29] |
Martin P M. Handbook of Deposition Technologies for Films and Coatings. 3rd ed. Boston: William Andrew Publishing, 2010, 253–296
|
[30] |
Huttel Y. Gas-Phase Synthesis of Nanoparticles. Weinheim: Wiley-VCH, 2017, 23–28
|
[31] |
Haberland H, Karrais M, Mall M, Thurner Y. Thin films from energetic cluster impact: a feasibility study. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 1992, 10(5): 3266–3271
CrossRef
Google scholar
|
[32] |
Haberland H, Mall M, Moseler M, Qiang Y, Reiners T, Thurner Y. Filling of micron-sized contact holes with copper by energetic cluster impact. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 1994, 12(5): 2925–2930
CrossRef
Google scholar
|
[33] |
Liu C, Zhang L, Zhang S, Liu F, Wang G, Han M. Influence of discharge power on the size of the Pd cluster generated with a magnetron plasma gas aggregation cluster source. Vacuum, 2020, 179: 109486
CrossRef
Google scholar
|
[34] |
Zhang C, Feng Y. Application of extended Smoluchowski equations to formation of silver nanoclusters generated by direct current magnetron sputtering source. Journal of the Physical Society of Japan, 2016, 85(9): 094606
CrossRef
Google scholar
|
[35] |
Sanzone G, Yin J, Cooke K, Sun H, Lievens P. Impact of the gas dynamics on the cluster flux in a magnetron cluster-source: influence of the chamber shape and gas-inlet position. Review of Scientific Instruments, 2021, 92(3): 033901
CrossRef
Google scholar
|
[36] |
Ganeva M, Peter T, Bornholdt S, Kersten H, Strunskus T, Zaporojtchenko V, Faupel F, Hippler R. Mass spectrometric investigations of nano-size cluster ions produced by high pressure magnetron sputtering. Contributions to Plasma Physics, 2012, 52(10): 881–889
CrossRef
Google scholar
|
[37] |
Peter T, Polonskyi O, Gojdka B, Mohammad Ahadi A, Strunskus T, Zaporojtchenko V, Biederman H, Faupel F. Influence of reactive gas admixture on transition metal cluster nucleation in a gas aggregation cluster source. Journal of Applied Physics, 2012, 112(11): 114321
CrossRef
Google scholar
|
[38] |
Polonskyi O, Solař P, Kylián O, Drábik M, Artemenko A, Kousal J, Hanuš J, Pešička J, Matolínová I, Kolíbalová E, Slavínská D, Biederman H. Nanocomposite metal/plasma polymer films prepared by means of gas aggregation cluster source. Thin Solid Films, 2012, 520(12): 4155–4162
CrossRef
Google scholar
|
[39] |
González J A, Andrés J P, De Toro J A, Muñiz P, Muñoz T, Crisan O, Binns C, Riveiro J M. Co-CoO nanoparticles prepared by reactive gas-phase aggregation. Journal of Nanoparticle Research, 2008, 11(8): 2105–2111
CrossRef
Google scholar
|
[40] |
Marek A, Valter J, Kadlec S, Vyskočil J. Gas aggregation nanocluster source—reactive sputter deposition of copper and titanium nanoclusters. Surface and Coatings Technology, 2011, 205: S573–S576
CrossRef
Google scholar
|
[41] |
Shyjumon I, Gopinadhan M, Helm C A, Smirnov B M, Hippler R. Deposition of titanium/titanium oxide clusters produced by magnetron sputtering. Thin Solid Films, 2006, 500(1): 41–51
CrossRef
Google scholar
|
[42] |
Smirnov B M, Shyjumon I, Hippler R. Formation of clusters through generation of free atoms. Physica Scripta, 2006, 73(3): 288–295
CrossRef
Google scholar
|
[43] |
Román García E L, Martínez-Orellana L, Díaz Lagos M, Huttel Y. Device and method for manufacturing nanoparticles. WO Patent, 2011, WO2011089298: A1
|
[44] |
Xu Y, Wang J. Magnetic properties of heterostructured Co-Au nanoparticles direct-synthesized from gas phase. IEEE Transactions on Magnetics, 2007, 43(6): 3109–3111
CrossRef
Google scholar
|
[45] |
Pearmain D, Park S J, Abdela A, Palmer R E, Li Z Y. The size-dependent morphology of Pd nanoclusters formed by gas condensation. Nanoscale, 2015, 7(46): 19647–19652
CrossRef
Google scholar
|
[46] |
Krishnan G, Verheijen M A, ten Brink G H, Palasantzas G, Kooi B J. Tuning structural motifs and alloying of bulk immiscible Mo-Cu bimetallic nanoparticles by gas-phase synthesis. Nanoscale, 2013, 5(12): 5375–5383
CrossRef
Google scholar
|
[47] |
Aktaş S, Thornton S C, Binns C, Lari L, Pratt A, Kröger R, Horsfield M A. Control of gas phase nanoparticle shape and its effect on MRI relaxivity. Materials Research Express, 2015, 2(3): 035002
CrossRef
Google scholar
|
[48] |
Martínez L, Díaz M, Román E, Ruano M, Llamosa P D, Huttel Y. Generation of nanoparticles with adjustable size and controlled stoichiometry: recent advances. Langmuir, 2012, 28(30): 11241–11249
CrossRef
Google scholar
|
[49] |
Llamosa D, Ruano M, Martínez L, Mayoral A, Roman E, García-Hernández M, Huttel Y. The ultimate step towards a tailored engineering of core@shell and core@shell@shell nanoparticles. Nanoscale, 2014, 6(22): 13483–13486
CrossRef
Google scholar
|
[50] |
Ruano M, Martínez L, Huttel Y. Investigation of the working parameters of a single magnetron of a multiple ion cluster source: determination of the relative influence of the parameters on the size and density of nanoparticles. Dataset Papers in Science, 2013, 2013: 597023
CrossRef
Google scholar
|
[51] |
Gudmundsson J T, Brenning N, Lundin D, Helmersson U. High power impulse magnetron sputtering discharge. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 2012, 30(3): 030801
CrossRef
Google scholar
|
[52] |
Anders A. Discharge physics of high power impulse magnetron sputtering. Surface and Coatings Technology, 2011, 205: S1–S9
CrossRef
Google scholar
|
[53] |
Lundin D, Sarakinos K. An introduction to thin film processing using high-power impulse magnetron sputtering. Journal of Materials Research, 2012, 27(5): 780–792
CrossRef
Google scholar
|
[54] |
Polonskyi O, Peter T, Mohammad Ahadi A, Hinz A, Strunskus T, Zaporojtchenko V, Biederman H, Faupel F. Huge increase in gas phase nanoparticle generation by pulsed direct current sputtering in a reactive gas admixture. Applied Physics Letters, 2013, 103(3): 033118
CrossRef
Google scholar
|
[55] |
Zhang C, Tsunoyama H, Akatsuka H, Sekiya H, Nagase T, Nakajima A. Advanced nanocluster ion source based on high-power impulse magnetron sputtering and time-resolved measurements of nanocluster formation. Journal of Physical Chemistry A, 2013, 117(40): 10211–10217
CrossRef
Google scholar
|
[56] |
Straňák V, Block S, Drache S, Hubička Z, Helm C A, Jastrabík L, Tichý M, Hippler R. Size-controlled formation of Cu nanoclusters in pulsed magnetron sputtering system. Surface and Coatings Technology, 2011, 205(8): 2755–2762
CrossRef
Google scholar
|
[57] |
Pilch I, Söderström D, Brenning N, Helmersson U. Size-controlled growth of nanoparticles in a highly ionized pulsed plasma. Applied Physics Letters, 2013, 102(3): 033108
CrossRef
Google scholar
|
[58] |
Pilch I, Söderström D, Hasan M I, Helmersson U, Brenning N. Fast growth of nanoparticles in a hollow cathode plasma through orbit motion limited ion collection. Applied Physics Letters, 2013, 103(19): 193108
CrossRef
Google scholar
|
[59] |
Arslanbekov R R, Kudryavtsev A A, Tobin R C. On the hollow-cathode effect: conventional and modified geometry. Plasma Sources Science & Technology, 1998, 7(3): 310–322
CrossRef
Google scholar
|
[60] |
Milani P, Ferretti M, Piseri P, Bottani C E, Ferrari A, Li Bassi A, Guizzetti G, Patrini M. Synthesis and characterization of cluster-assembled carbon thin films. Journal of Applied Physics, 1997, 82(11): 5793–5798
CrossRef
Google scholar
|
[61] |
Tafreshi H V, Benedek G, Piseri P, Vinati S, Barborini E, Milani P. A simple nozzle configuration for the production of low divergence supersonic cluster beam by aerodynamic focusing. Aerosol Science and Technology, 2002, 36(5): 593–606
CrossRef
Google scholar
|
[62] |
Ganteför G, Siekmann H R, Lutz H O, Meiwes-Broer K H. Pure metal and metal-doped rare-gas clusters grown in a pulsed ARC cluster ion source. Chemical Physics Letters, 1990, 165(4): 293–296
CrossRef
Google scholar
|
[63] |
Siekmann H R, Lüder C, Faehrmann J, Lutz H O, Meiwes-Broer K H. The pulsed arc cluster ion source (PACIS). Zeitschrift für Physik D, Atoms, Molecules and Clusters, 1991, 20(1): 417–420
CrossRef
Google scholar
|
[64] |
Cha C, Ganteför G, Eberhardt W. New experimental setup for photoelectron spectroscopy on cluster anions. Review of Scientific Instruments, 1992, 63(12): 5661–5666
CrossRef
Google scholar
|
[65] |
Lu W, Huang R, Ding J, Yang S. Generation of fullerenes and metal-carbon clusters in a pulsed arc cluster ion source (PACIS). Journal of Chemical Physics, 1996, 104(17): 6577–6581
CrossRef
Google scholar
|
[66] |
Blessing N, Burkart S, Ganteför G. Production of large metallocarbohedrene clusters using a pulsed arc cluster ion source. The European Physical Journal D—Atomic, Molecular. Optical and Plasma Physics, 2001, 17(1): 37–41
|
[67] |
Wang H, Zhang X, Ko Y J, Grubisic A, Li X, Ganteför G, Schnöckel H, Eichhorn B W, Lee M S, Jena P,
CrossRef
Google scholar
|
[68] |
Bettac A, Köller L, Rank V, Meiwes-Broer K H. Scanning tunneling spectroscopy on deposited platinum clusters. Surface Science, 1998, 402–404: 475–479
CrossRef
Google scholar
|
[69] |
Klipp B, Grass M, Müller J, Stolcic D, Lutz U, Ganteför G, Schlenker T, Boneberg J, Leiderer P. Deposition of mass-selected cluster ions using a pulsed arc cluster-ion source. Applied Physics. A, Materials Science & Processing, 2001, 73(5): 547–554
CrossRef
Google scholar
|
[70] |
Pietsch S, Dollinger A, Strobel C H, Park E J, Ganteför G, Seo H O, Kim Y D, Idrobo J C, Pennycook S J. The quest for inorganic fullerenes. Journal of Applied Physics, 2015, 118(13): 134302
CrossRef
Google scholar
|
[71] |
Barborini E, Piseri P, Milani P. A pulsed microplasma source of high intensity supersonic carbon cluster beams. Journal of Physics. D, Applied Physics, 1999, 32(21): L105–L109
CrossRef
Google scholar
|
[72] |
Schmidt-Ott A. Spark Ablation. 1st ed. Singapore: Jenny Stanford Publishing, 2020, 245–271
|
[73] |
Vahedi Tafreshi H, Piseri P, Benedek G, Milani P. The role of gas dynamics in operation conditions of a pulsed microplasma cluster source for nanostructured thin films deposition. Journal of Nanoscience and Nanotechnology, 2006, 6(4): 1140–1149
CrossRef
Google scholar
|
[74] |
Wegner K, Piseri P, Tafreshi H V, Milani P. Cluster beam deposition: a tool for nanoscale science and technology. Journal of Physics. D, Applied Physics, 2006, 39(22): R439–R459
CrossRef
Google scholar
|
[75] |
Piazzoni C, Buttery M, Hampson M R, Roberts E W, Ducati C, Lenardi C, Cavaliere F, Piseri P, Milani P. Tribological coatings for complex mechanical elements produced by supersonic cluster beam deposition of metal dichalcogenide nanoparticles. Journal of Physics. D, Applied Physics, 2015, 48(26): 265302
CrossRef
Google scholar
|
[76] |
Piseri P, Podestà A, Barborini E, Milani P. Production and characterization of highly intense and collimated cluster beams by inertial focusing in supersonic expansions. Review of Scientific Instruments, 2001, 72(5): 2261–2267
CrossRef
Google scholar
|
[77] |
Fernandez de la Mora J, Rosell-Llompart J. Aerodynamic focusing of heavy molecules in seeded supersonic jets. Journal of Chemical Physics, 1989, 91(4): 2603–2615
CrossRef
Google scholar
|
[78] |
Vahedi Tafreshi H, Piseri P, Barborini E, Benedek G, Milani P. Simulation on the effect of Brownian motion on nanoparticle trajectories in a pulsed microplasma cluster source. Journal of Nanoparticle Research, 2002, 4(6): 511–524
CrossRef
Google scholar
|
[79] |
Hagena O F, Obert W. Cluster formation in expanding supersonic jets: effect of pressure, temperature, nozzle size, and test gas. Journal of Chemical Physics, 1972, 56(5): 1793–1802
CrossRef
Google scholar
|
[80] |
De La Mora J F, Riesco-Chueca P. Aerodynamic focusing of particles in a carrier gas. Journal of Fluid Mechanics, 1988, 195(1): 1–21
CrossRef
Google scholar
|
[81] |
Di Fonzo F, Gidwani A, Fan M H, Neumann D, Iordanoglou D I, Heberlein J V R, McMurry P H, Girshick S L, Tymiak N, Gerberich W W,
CrossRef
Google scholar
|
[82] |
Palmer R E, Cao L, Yin F. Note: proof of principle of a new type of cluster beam source with potential for scale-up. Review of Scientific Instruments, 2016, 87(4): 046103
CrossRef
Google scholar
|
[83] |
Spadaro M C, Cao L, Terry W, Balog R, Yin F, Palmer R E. Size control of Au nanoparticles from the scalable and solvent-free matrix assembly cluster source. Journal of Nanoparticle Research, 2020, 22(6): 139
CrossRef
Google scholar
|
[84] |
Zhao J, Cao L, Palmer R E, Nordlund K, Djurabekova F. Formation and emission mechanisms of Ag nanoclusters in the Ar matrix assembly cluster source. Physical Review Materials, 2017, 1(6): 66002
CrossRef
Google scholar
|
[85] |
Ilinov A, Kuronen A, Nordlund K, Greaves G, Hinks J A, Busby P, Mellors N J, Donnelly S E. Sputtering yields exceeding 1000 by 80 keV Xe irradiation of Au nanorods. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 2014, 341: 17–21
CrossRef
Google scholar
|
[86] |
Spadaro M C, Zhao J, Terry W D, Liu J, Yin F, Djurabekova F, Palmer R E. Angular dependence of nanoparticle generation in the matrix assembly cluster source. Nano Research, 2019, 12(12): 3069–3074
CrossRef
Google scholar
|
[87] |
Cai R, Cao L, Griffin R, Chansai S, Hardacre C, Palmer R E. Scale-up of cluster beam deposition to the gram scale with the matrix assembly cluster source for heterogeneous catalysis (propylene combustion). AIP Advances, 2020, 10(2): 025314
CrossRef
Google scholar
|
[88] |
Cai R, Martelli F, Vernieres J, Albonetti S, Dimitratos N, Tizaoui C, Palmer R E. Scale-up of cluster beam deposition to the gram scale with the matrix assembly cluster source for heterogeneous catalysis (catalytic ozonation of nitrophenol in aqueous solution). ACS Applied Materials & Interfaces, 2020, 12(22): 24877–24882
CrossRef
Google scholar
|
/
〈 | 〉 |