Scaling up of cluster beam deposition technology for catalysis application

Giuseppe Sanzone , Jinlong Yin , Hailin Sun

Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (6) : 1360 -1379.

PDF (7254KB)
Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (6) : 1360 -1379. DOI: 10.1007/s11705-021-2101-7
REVIEW ARTICLE
REVIEW ARTICLE

Scaling up of cluster beam deposition technology for catalysis application

Author information +
History +
PDF (7254KB)

Abstract

Many research works have demonstrated that the combination of atomically precise cluster deposition and theoretical calculations is able to address fundamental aspects of size-effects, cluster-support interactions, and reaction mechanisms of cluster materials. Although the wet chemistry method has been widely used to synthesize nanoparticles, the gas-phase synthesis and size-selected strategy was the only method to prepare supported metal clusters with precise numbers of atoms for a long time. However, the low throughput of the physical synthesis method has severely constrained its wider adoption for catalysis applications. In this review, we introduce the latest progress on three types of cluster source which have the most promising potential for scale-up, including sputtering gas aggregation source, pulsed microplasma cluster source, and matrix assembly cluster source. While the sputtering gas aggregation source is leading ahead with a production rate of ~20 mg·h–1, the pulsed microplasma source has the smallest physical dimensions which makes it possible to compact multiple such devices into a small volume for multiplied production rate. The matrix assembly source has the shortest development history, but already show an impressive deposition rate of ~10 mg·h–1. At the end of the review, the possible routes for further throughput scale-up are envisaged.

Graphical abstract

Keywords

nanoparticle / cluster / cluster beam deposition / magnetron sputtering / heterogeneous catalysis

Cite this article

Download citation ▾
Giuseppe Sanzone, Jinlong Yin, Hailin Sun. Scaling up of cluster beam deposition technology for catalysis application. Front. Chem. Sci. Eng., 2021, 15(6): 1360-1379 DOI:10.1007/s11705-021-2101-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Haruta M, Kobayashi T, Sano H, Yamada N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chemistry Letters, 1987, 16(2): 405–408

[2]

Tyo E C, Vajda S. Catalysis by clusters with precise numbers of atoms. Nature Nanotechnology, 2015, 10(7): 577–588

[3]

Yao C, Guo N, Xi S, Xu C Q, Liu W, Zhao X, Li J, Fang H, Su J, Chen Z, Atomically-precise dopant-controlled single cluster catalysis for electrochemical nitrogen reduction. Nature Communications, 2020, 11(1): 4389

[4]

Jin R, Li G, Sharma S, Li Y, Du X. Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures. Chemical Reviews, 2021, 121(2): 567–648

[5]

Li Z, Ji S, Liu Y, Cao X, Tian S, Chen Y, Niu Z, Li Y. Well-defined materials for heterogeneous catalysis: from nanoparticles to isolated single-atom sites. Chemical Reviews, 2020, 120(2): 623–682

[6]

Niu Z, Li Y. Removal and utilization of capping agents in nanocatalysis. Chemistry of Materials, 2014, 26(1): 72–83

[7]

Du Y, Sheng H, Astruc D, Zhu M. Atomically precise noble metal nanoclusters as efficient catalysts: a bridge between structure and properties. Chemical Reviews, 2020, 120(2): 526–622

[8]

Rong H, Ji S, Zhang J, Wang D, Li Y. Synthetic strategies of supported atomic clusters for heterogeneous catalysis. Nature Communications, 2020, 11(1): 5884

[9]

Ellis P R, Brown C M, Bishop P T, Yin J, Cooke K, Terry W D, Liu J, Yin F, Palmer R E. The cluster beam route to model catalysts and beyond. Faraday Discussions, 2016, 188(0): 39–56

[10]

Halder A, Curtiss L A, Fortunelli A, Vajda S. Perspective: size selected clusters for catalysis and electrochemistry. Journal of Chemical Physics, 2018, 148(11): 110901

[11]

Roy C, Sebok B, Scott S B, Fiordaliso E M, Sørensen J E, Bodin A, Trimarco D B, Damsgaard C D, Vesborg P C K, Hansen O, Impact of nanoparticle size and lattice oxygen on water oxidation on NiFeOxHy. Nature Catalysis, 2018, 1(11): 820–829

[12]

Escalera-López D, Niu Y, Yin J, Cooke K, Rees N V, Palmer R E. Enhancement of the hydrogen evolution reaction from Ni-MoS2 hybrid nanoclusters. ACS Catalysis, 2016, 6(9): 6008–6017

[13]

Calvo F. Nanoalloys. 2nd ed. Cambridge: Elsevier, 2020, 22

[14]

De Toro J A, Normile P S, Binns C. Gas-Phase Synthesis of Nanoparticles. Weinheim: Wiley-VCH, 2017, 39–55

[15]

Behrisch R, Eckstein W. Sputtering by Particle Bombardment. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, 33–187

[16]

Yamamura Y, Tawara H. Energy dependence of ion-induced sputtering yields from monatomic solids at normal incidence. Atomic Data and Nuclear Data Tables, 1996, 62(2): 149–253

[17]

Yamamura Y, Shindo S. An empirical formula for angular dependence of sputtering yields. Radiation Effects, 1984, 80(1–2): 57–72

[18]

Sigmund P. Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets. Physical Review, 1969, 184(2): 383–416

[19]

Bohdansky J. A universal relation for the sputtering yield of monatomic solids at normal ion incidence. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 1984, 2(1): 587–591

[20]

Anders A. Deposition rates of high power impulse magnetron sputtering: physics and economics. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 2010, 28(4): 783–790

[21]

Anders A. Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS). Journal of Applied Physics, 2017, 121(17): 171101

[22]

Oechsner H. Sputtering—a review of some recent experimental and theoretical aspects. Applied Physics (Berlin), 1975, 8(3): 185–198

[23]

Penning F M. Die glimmentladung bei niedrigem druck zwischen koaxialen zylindern in einem axialen magnetfeld. Physica, 1936, 3(9): 873–894

[24]

Kay E. Magnetic field effects on an abnormal truncated glow discharge and their relation to sputtered thin-film growth. Journal of Applied Physics, 1963, 34(4): 760–768

[25]

Waits R K. Planar magnetron sputtering. Journal of Vacuum Science and Technology, 1978, 15(2): 179–187

[26]

Gill W D, Kay E. Efficient low pressure sputtering in a large inverted magnetron suitable for film synthesis. Review of Scientific Instruments, 1965, 36(3): 277–282

[27]

Lundin D, Minea T, Gudmundsson J T. High Power Impulse Magnetron Sputtering. Amsterdam: Elsevier, 2020, 1–48

[28]

Kashtanov P V, Smirnov B M, Hippler R. Magnetron plasma and nanotechnology. Physics Uspekhi, 2007, 50(5): 455–488

[29]

Martin P M. Handbook of Deposition Technologies for Films and Coatings. 3rd ed. Boston: William Andrew Publishing, 2010, 253–296

[30]

Huttel Y. Gas-Phase Synthesis of Nanoparticles. Weinheim: Wiley-VCH, 2017, 23–28

[31]

Haberland H, Karrais M, Mall M, Thurner Y. Thin films from energetic cluster impact: a feasibility study. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 1992, 10(5): 3266–3271

[32]

Haberland H, Mall M, Moseler M, Qiang Y, Reiners T, Thurner Y. Filling of micron-sized contact holes with copper by energetic cluster impact. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 1994, 12(5): 2925–2930

[33]

Liu C, Zhang L, Zhang S, Liu F, Wang G, Han M. Influence of discharge power on the size of the Pd cluster generated with a magnetron plasma gas aggregation cluster source. Vacuum, 2020, 179: 109486

[34]

Zhang C, Feng Y. Application of extended Smoluchowski equations to formation of silver nanoclusters generated by direct current magnetron sputtering source. Journal of the Physical Society of Japan, 2016, 85(9): 094606

[35]

Sanzone G, Yin J, Cooke K, Sun H, Lievens P. Impact of the gas dynamics on the cluster flux in a magnetron cluster-source: influence of the chamber shape and gas-inlet position. Review of Scientific Instruments, 2021, 92(3): 033901

[36]

Ganeva M, Peter T, Bornholdt S, Kersten H, Strunskus T, Zaporojtchenko V, Faupel F, Hippler R. Mass spectrometric investigations of nano-size cluster ions produced by high pressure magnetron sputtering. Contributions to Plasma Physics, 2012, 52(10): 881–889

[37]

Peter T, Polonskyi O, Gojdka B, Mohammad Ahadi A, Strunskus T, Zaporojtchenko V, Biederman H, Faupel F. Influence of reactive gas admixture on transition metal cluster nucleation in a gas aggregation cluster source. Journal of Applied Physics, 2012, 112(11): 114321

[38]

Polonskyi O, Solař P, Kylián O, Drábik M, Artemenko A, Kousal J, Hanuš J, Pešička J, Matolínová I, Kolíbalová E, Slavínská D, Biederman H. Nanocomposite metal/plasma polymer films prepared by means of gas aggregation cluster source. Thin Solid Films, 2012, 520(12): 4155–4162

[39]

González J A, Andrés J P, De Toro J A, Muñiz P, Muñoz T, Crisan O, Binns C, Riveiro J M. Co-CoO nanoparticles prepared by reactive gas-phase aggregation. Journal of Nanoparticle Research, 2008, 11(8): 2105–2111

[40]

Marek A, Valter J, Kadlec S, Vyskočil J. Gas aggregation nanocluster source—reactive sputter deposition of copper and titanium nanoclusters. Surface and Coatings Technology, 2011, 205: S573–S576

[41]

Shyjumon I, Gopinadhan M, Helm C A, Smirnov B M, Hippler R. Deposition of titanium/titanium oxide clusters produced by magnetron sputtering. Thin Solid Films, 2006, 500(1): 41–51

[42]

Smirnov B M, Shyjumon I, Hippler R. Formation of clusters through generation of free atoms. Physica Scripta, 2006, 73(3): 288–295

[43]

Román García E L, Martínez-Orellana L, Díaz Lagos M, Huttel Y. Device and method for manufacturing nanoparticles. WO Patent, 2011, WO2011089298: A1

[44]

Xu Y, Wang J. Magnetic properties of heterostructured Co-Au nanoparticles direct-synthesized from gas phase. IEEE Transactions on Magnetics, 2007, 43(6): 3109–3111

[45]

Pearmain D, Park S J, Abdela A, Palmer R E, Li Z Y. The size-dependent morphology of Pd nanoclusters formed by gas condensation. Nanoscale, 2015, 7(46): 19647–19652

[46]

Krishnan G, Verheijen M A, ten Brink G H, Palasantzas G, Kooi B J. Tuning structural motifs and alloying of bulk immiscible Mo-Cu bimetallic nanoparticles by gas-phase synthesis. Nanoscale, 2013, 5(12): 5375–5383

[47]

Aktaş S, Thornton S C, Binns C, Lari L, Pratt A, Kröger R, Horsfield M A. Control of gas phase nanoparticle shape and its effect on MRI relaxivity. Materials Research Express, 2015, 2(3): 035002

[48]

Martínez L, Díaz M, Román E, Ruano M, Llamosa P D, Huttel Y. Generation of nanoparticles with adjustable size and controlled stoichiometry: recent advances. Langmuir, 2012, 28(30): 11241–11249

[49]

Llamosa D, Ruano M, Martínez L, Mayoral A, Roman E, García-Hernández M, Huttel Y. The ultimate step towards a tailored engineering of core@shell and core@shell@shell nanoparticles. Nanoscale, 2014, 6(22): 13483–13486

[50]

Ruano M, Martínez L, Huttel Y. Investigation of the working parameters of a single magnetron of a multiple ion cluster source: determination of the relative influence of the parameters on the size and density of nanoparticles. Dataset Papers in Science, 2013, 2013: 597023

[51]

Gudmundsson J T, Brenning N, Lundin D, Helmersson U. High power impulse magnetron sputtering discharge. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 2012, 30(3): 030801

[52]

Anders A. Discharge physics of high power impulse magnetron sputtering. Surface and Coatings Technology, 2011, 205: S1–S9

[53]

Lundin D, Sarakinos K. An introduction to thin film processing using high-power impulse magnetron sputtering. Journal of Materials Research, 2012, 27(5): 780–792

[54]

Polonskyi O, Peter T, Mohammad Ahadi A, Hinz A, Strunskus T, Zaporojtchenko V, Biederman H, Faupel F. Huge increase in gas phase nanoparticle generation by pulsed direct current sputtering in a reactive gas admixture. Applied Physics Letters, 2013, 103(3): 033118

[55]

Zhang C, Tsunoyama H, Akatsuka H, Sekiya H, Nagase T, Nakajima A. Advanced nanocluster ion source based on high-power impulse magnetron sputtering and time-resolved measurements of nanocluster formation. Journal of Physical Chemistry A, 2013, 117(40): 10211–10217

[56]

Straňák V, Block S, Drache S, Hubička Z, Helm C A, Jastrabík L, Tichý M, Hippler R. Size-controlled formation of Cu nanoclusters in pulsed magnetron sputtering system. Surface and Coatings Technology, 2011, 205(8): 2755–2762

[57]

Pilch I, Söderström D, Brenning N, Helmersson U. Size-controlled growth of nanoparticles in a highly ionized pulsed plasma. Applied Physics Letters, 2013, 102(3): 033108

[58]

Pilch I, Söderström D, Hasan M I, Helmersson U, Brenning N. Fast growth of nanoparticles in a hollow cathode plasma through orbit motion limited ion collection. Applied Physics Letters, 2013, 103(19): 193108

[59]

Arslanbekov R R, Kudryavtsev A A, Tobin R C. On the hollow-cathode effect: conventional and modified geometry. Plasma Sources Science & Technology, 1998, 7(3): 310–322

[60]

Milani P, Ferretti M, Piseri P, Bottani C E, Ferrari A, Li Bassi A, Guizzetti G, Patrini M. Synthesis and characterization of cluster-assembled carbon thin films. Journal of Applied Physics, 1997, 82(11): 5793–5798

[61]

Tafreshi H V, Benedek G, Piseri P, Vinati S, Barborini E, Milani P. A simple nozzle configuration for the production of low divergence supersonic cluster beam by aerodynamic focusing. Aerosol Science and Technology, 2002, 36(5): 593–606

[62]

Ganteför G, Siekmann H R, Lutz H O, Meiwes-Broer K H. Pure metal and metal-doped rare-gas clusters grown in a pulsed ARC cluster ion source. Chemical Physics Letters, 1990, 165(4): 293–296

[63]

Siekmann H R, Lüder C, Faehrmann J, Lutz H O, Meiwes-Broer K H. The pulsed arc cluster ion source (PACIS). Zeitschrift für Physik D, Atoms, Molecules and Clusters, 1991, 20(1): 417–420

[64]

Cha C, Ganteför G, Eberhardt W. New experimental setup for photoelectron spectroscopy on cluster anions. Review of Scientific Instruments, 1992, 63(12): 5661–5666

[65]

Lu W, Huang R, Ding J, Yang S. Generation of fullerenes and metal-carbon clusters in a pulsed arc cluster ion source (PACIS). Journal of Chemical Physics, 1996, 104(17): 6577–6581

[66]

Blessing N, Burkart S, Ganteför G. Production of large metallocarbohedrene clusters using a pulsed arc cluster ion source. The European Physical Journal D—Atomic, Molecular. Optical and Plasma Physics, 2001, 17(1): 37–41

[67]

Wang H, Zhang X, Ko Y J, Grubisic A, Li X, Ganteför G, Schnöckel H, Eichhorn B W, Lee M S, Jena P, Aluminum Zintl anion moieties within sodium aluminum clusters. Journal of Chemical Physics, 2014, 140(5): 054301

[68]

Bettac A, Köller L, Rank V, Meiwes-Broer K H. Scanning tunneling spectroscopy on deposited platinum clusters. Surface Science, 1998, 402–404: 475–479

[69]

Klipp B, Grass M, Müller J, Stolcic D, Lutz U, Ganteför G, Schlenker T, Boneberg J, Leiderer P. Deposition of mass-selected cluster ions using a pulsed arc cluster-ion source. Applied Physics. A, Materials Science & Processing, 2001, 73(5): 547–554

[70]

Pietsch S, Dollinger A, Strobel C H, Park E J, Ganteför G, Seo H O, Kim Y D, Idrobo J C, Pennycook S J. The quest for inorganic fullerenes. Journal of Applied Physics, 2015, 118(13): 134302

[71]

Barborini E, Piseri P, Milani P. A pulsed microplasma source of high intensity supersonic carbon cluster beams. Journal of Physics. D, Applied Physics, 1999, 32(21): L105–L109

[72]

Schmidt-Ott A. Spark Ablation. 1st ed. Singapore: Jenny Stanford Publishing, 2020, 245–271

[73]

Vahedi Tafreshi H, Piseri P, Benedek G, Milani P. The role of gas dynamics in operation conditions of a pulsed microplasma cluster source for nanostructured thin films deposition. Journal of Nanoscience and Nanotechnology, 2006, 6(4): 1140–1149

[74]

Wegner K, Piseri P, Tafreshi H V, Milani P. Cluster beam deposition: a tool for nanoscale science and technology. Journal of Physics. D, Applied Physics, 2006, 39(22): R439–R459

[75]

Piazzoni C, Buttery M, Hampson M R, Roberts E W, Ducati C, Lenardi C, Cavaliere F, Piseri P, Milani P. Tribological coatings for complex mechanical elements produced by supersonic cluster beam deposition of metal dichalcogenide nanoparticles. Journal of Physics. D, Applied Physics, 2015, 48(26): 265302

[76]

Piseri P, Podestà A, Barborini E, Milani P. Production and characterization of highly intense and collimated cluster beams by inertial focusing in supersonic expansions. Review of Scientific Instruments, 2001, 72(5): 2261–2267

[77]

Fernandez de la Mora J, Rosell-Llompart J. Aerodynamic focusing of heavy molecules in seeded supersonic jets. Journal of Chemical Physics, 1989, 91(4): 2603–2615

[78]

Vahedi Tafreshi H, Piseri P, Barborini E, Benedek G, Milani P. Simulation on the effect of Brownian motion on nanoparticle trajectories in a pulsed microplasma cluster source. Journal of Nanoparticle Research, 2002, 4(6): 511–524

[79]

Hagena O F, Obert W. Cluster formation in expanding supersonic jets: effect of pressure, temperature, nozzle size, and test gas. Journal of Chemical Physics, 1972, 56(5): 1793–1802

[80]

De La Mora J F, Riesco-Chueca P. Aerodynamic focusing of particles in a carrier gas. Journal of Fluid Mechanics, 1988, 195(1): 1–21

[81]

Di Fonzo F, Gidwani A, Fan M H, Neumann D, Iordanoglou D I, Heberlein J V R, McMurry P H, Girshick S L, Tymiak N, Gerberich W W, Focused nanoparticle-beam deposition of patterned microstructures. Applied Physics Letters, 2000, 77(6): 910–912

[82]

Palmer R E, Cao L, Yin F. Note: proof of principle of a new type of cluster beam source with potential for scale-up. Review of Scientific Instruments, 2016, 87(4): 046103

[83]

Spadaro M C, Cao L, Terry W, Balog R, Yin F, Palmer R E. Size control of Au nanoparticles from the scalable and solvent-free matrix assembly cluster source. Journal of Nanoparticle Research, 2020, 22(6): 139

[84]

Zhao J, Cao L, Palmer R E, Nordlund K, Djurabekova F. Formation and emission mechanisms of Ag nanoclusters in the Ar matrix assembly cluster source. Physical Review Materials, 2017, 1(6): 66002

[85]

Ilinov A, Kuronen A, Nordlund K, Greaves G, Hinks J A, Busby P, Mellors N J, Donnelly S E. Sputtering yields exceeding 1000 by 80 keV Xe irradiation of Au nanorods. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 2014, 341: 17–21

[86]

Spadaro M C, Zhao J, Terry W D, Liu J, Yin F, Djurabekova F, Palmer R E. Angular dependence of nanoparticle generation in the matrix assembly cluster source. Nano Research, 2019, 12(12): 3069–3074

[87]

Cai R, Cao L, Griffin R, Chansai S, Hardacre C, Palmer R E. Scale-up of cluster beam deposition to the gram scale with the matrix assembly cluster source for heterogeneous catalysis (propylene combustion). AIP Advances, 2020, 10(2): 025314

[88]

Cai R, Martelli F, Vernieres J, Albonetti S, Dimitratos N, Tizaoui C, Palmer R E. Scale-up of cluster beam deposition to the gram scale with the matrix assembly cluster source for heterogeneous catalysis (catalytic ozonation of nitrophenol in aqueous solution). ACS Applied Materials & Interfaces, 2020, 12(22): 24877–24882

RIGHTS & PERMISSIONS

The Author(s) 2021. This article is published with open access at link.springer.com and journal.hep.com.cn

AI Summary AI Mindmap
PDF (7254KB)

6068

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/