Thermoresponsive block copolymer supported Pt nanocatalysts for base-free aerobic oxidation of 5-hydroxymethyl-2-furfural

Huaxin Qu , Jie Deng , Bei Wang , Lezi Ouyang , Yong Tang , Kai Yu , Lan-Lan Lou , Shuangxi Liu

Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (6) : 1514 -1523.

PDF (1129KB)
Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (6) : 1514 -1523. DOI: 10.1007/s11705-021-2092-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Thermoresponsive block copolymer supported Pt nanocatalysts for base-free aerobic oxidation of 5-hydroxymethyl-2-furfural

Author information +
History +
PDF (1129KB)

Abstract

A base-free catalytic system for the aerobic oxidation of 5-hydroxymethyl-2-furfural was exploited by using Pt nanoparticles immobilized onto a thermoresponsive poly(acrylamide-co-acrylonitrile)-b-poly(N-vinylimidazole) block copolymer, with an upper critical solution temperature of about 45 °C. The Pt nanocatalysts were well-dispersed and highly active for the base-free oxidation of 5-hydroxymethyl-2-furfural by molecular oxygen in water, affording high yields of 2,5-furandicarboxylic acid (up to>99.9%). The imidazole groups in the block copolymer were conducive to the improvement of catalytic performance. Moreover, the catalysts could be easily separated and recovered based on their thermosensitivity by cooling the reaction system below the upper critical solution temperature. Good stability and reusability were observed over these copolymer-immobilized catalysts with no obvious decrease in catalytic activity in the five consecutive cycles.

Graphical abstract

Keywords

aerobic oxidation / base-free / 5-hydroxymethyl-2-furfural / Pt nanoparticle / thermoresponsive block copolymer

Cite this article

Download citation ▾
Huaxin Qu, Jie Deng, Bei Wang, Lezi Ouyang, Yong Tang, Kai Yu, Lan-Lan Lou, Shuangxi Liu. Thermoresponsive block copolymer supported Pt nanocatalysts for base-free aerobic oxidation of 5-hydroxymethyl-2-furfural. Front. Chem. Sci. Eng., 2021, 15(6): 1514-1523 DOI:10.1007/s11705-021-2092-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Besson M, Gallezot P, Pinel C. Conversion of biomass into chemicals over metal catalysts. Chemical Reviews, 2014, 114(3): 1827–1870

[2]

Li C, Zhao X, Wang A, Huber G W, Zhang T. Catalytic transformation of lignin for the production of chemicals and fuels. Chemical Reviews, 2015, 115(21): 11559–11624

[3]

Liu B, Zhang Z. Catalytic conversion of biomass into chemicals and fuels over magnetic catalysts. ACS Catalysis, 2016, 6(1): 326–338

[4]

Zhang Z, Song J, Han B. Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids. Chemical Reviews, 2017, 117(10): 6834–6880

[5]

Zhang Z, Huber G W. Catalytic oxidation of carbohydrates into organic acids and furan chemicals. Chemical Society Reviews, 2018, 47(4): 1351–1390

[6]

van Putten R J, van der Waal J C, de Jong E, Rasrendra C B, Heeres H J, de Vries J G. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chemical Reviews, 2013, 113(3): 1499–1597

[7]

Xu C, Paone E, Rodríguez-Padrón D, Luque R, Mauriello F. Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chemical Society Reviews, 2020, 49(13): 4273–4306

[8]

Tong X, Ma Y, Li Y. Biomass into chemicals: conversion of sugars to furan derivatives by catalytic processes. Applied Catalysis A, General, 2010, 385(1–2): 1–13

[9]

Werpy T, Petersen G. Top Value Added Chemicals from Biomass: Volume I—Results of Screening for Potential Candidates from Sugars and Synthesis Gas. US DOE Report, 2004

[10]

Eerhart A J J E, Faaij A P C, Patel M K. Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance. Energy & Environmental Science, 2012, 5(4): 6407–6422

[11]

Sajid M, Zhao X, Liu D. Production of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF): recent progress focusing on the chemical-catalytic routes. Green Chemistry, 2018, 20(24): 5427–5453

[12]

Chen C, Wang L, Zhu B, Zhou Z, El-Hout S I, Yang J, Zhang J. 2,5-Furandicarboxylic acid production via catalytic oxidation of 5-hydroxymethylfurfural: catalysts, processes and reaction mechanism. Journal of Energy Chemistry, 2021, 54: 528–554

[13]

Albonetti S, Lolli A, Morandi V, Migliori A, Lucarelli C, Cavani F. Conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylicacid over Au-based catalysts: optimization of active phase and metal-support interaction. Applied Catalysis B: Environmental, 2015, 163: 520–530

[14]

Cai J, Ma H, Zhang J, Song Q, Du Z, Huang Y, Xu J. Gold nanoclusters confined in a supercage of Y zeolite for aerobic oxidation of HMF under mild conditions. Chemistry-A European Journal, 2013, 19(42): 14215–14223

[15]

Liu Y, Ma H Y, Lei D, Lou L L, Liu S, Zhou W, Wang G C, Yu K. Active oxygen species promoted catalytic oxidation of 5-hydroxymethyl-2-furfural on facet-specific Pt nanocrystals. ACS Catalysis, 2019, 9(9): 8306–8315

[16]

Yu K, Lei D, Feng Y, Yu H, Chang Y, Wang Y, Liu Y, Wang G C, Lou L L, Liu S, Zhou W. The role of Bi-doping in promoting electron transfer and catalytic performance of Pt/3DOM-Ce1−xBixO2−δ. Journal of Catalysis, 2018, 365: 292–302

[17]

Rass H A, Essayem N, Besson M. Selective aerobic oxidation of 5-HMF into 2,5-furandicarboxylic acid with Pt catalysts supported on TiO2- and ZrO2-based supports. ChemSusChem, 2015, 8(7): 1206–1217

[18]

Yang J, Yu H, Wang Y, Qi F, Liu H, Lou L L, Yu K, Zhou W, Liu S. Effect of the oxygen coordination environment of Ca-Mn oxides on the catalytic performance of Pd supported catalysts for aerobic oxidation of 5-hydroxymethyl-2-furfural. Catalysis Science & Technology, 2019, 9(23): 6659–6668

[19]

Lei D, Yu K, Li M R, Wang Y, Wang Q, Liu T, Liu P, Lou L L, Wang G, Liu S. Facet effect of single-crystalline Pd nanocrystals for aerobic oxidation of 5-hydroxymethyl-2-furfural. ACS Catalysis, 2017, 7(1): 421–432

[20]

Zhang Z, Zhen J, Liu B, Lv K, Deng K. Selective aerobic oxidation of the biomass-derived precursor 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under mild conditions over a magnetic palladium nanocatalyst. Green Chemistry, 2015, 17(2): 1308–1317

[21]

Xie J, Nie J, Liu H. Aqueous-phase selective aerobic oxidation of 5-hydroxymethylfurfural on Ru/C in the presence of base. Chinese Journal of Catalysis, 2014, 35(6): 937–944

[22]

Villa A, Schiavoni M, Campisi S, Veith G M, Prati L. Pd-modified Au on carbon as an effective and durable catalyst for the direct oxidation of HMF to 2,5-furandicarboxylic acid. ChemSusChem, 2013, 6(4): 609–612

[23]

Gui Z, Cao W, Saravanamurugan S, Riisager A, Chen L, Qi Z. Efficient aerobic oxidation of 5-hydroxymethylfurfural in aqueous media with Au-Pd supported on zinc hydroxycarbonate. ChemCatChem, 2016, 8(23): 3636–3643

[24]

Gupta N K, Nishimura S, Takagaki A, Ebitani K. Hydrotalcite-supported gold-nanoparticle-catalyzed highly efficient base-free aqueous oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid under atmospheric oxygen pressure. Green Chemistry, 2011, 13(4): 824–827

[25]

Gao T, Gao T, Fang W, Cao Q. Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid in water by hydrotalcite-activated carbon composite supported gold catalyst. Molecular Catalysis, 2017, 439: 171–179

[26]

Ferraz C P, Zieliński M, Pietrowski M, Heyte S, Dumeignil F, Rossi L M, Wojcieszak R. Influence of support basic sites in green oxidation of biobased substrates using Au-promoted catalysts. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 16332–16340

[27]

Wang Y, Yu K, Lei D, Si W, Feng Y, Lou L L, Liu S. Basicity-tuned hydrotalcite-supported Pd catalysts for aerobic oxidation of 5-hydroxymethyl-2-furfural under mild conditions. ACS Sustainable Chemistry & Engineering, 2016, 4(9): 4752–4761

[28]

Gao Z, Xie R, Fan G, Yang L, Li F. Highly efficient and stable bimetallic AuPd over La-doped Ca-Mg-Al layered double hydroxide for base-free aerobic oxidation of 5-hydroxymethylfurfural in water. ACS Sustainable Chemistry & Engineering, 2017, 5(7): 5852–5861

[29]

Bonincontro D, Lolli A, Villa A, Prati L, Dimitratos N, Veith G M, Chinchilla L E, Botton G A, Cavani F, Albonetti S. AuPd-nNiO as an effective catalyst for the base-free oxidation of HMF under mild reaction conditions. Green Chemistry, 2019, 21(15): 4090–4099

[30]

Wan X, Zhou C, Chen J, Deng W, Zhang Q, Yang Y, Wang Y. Base-free aerobic oxidation of 5-hydroxymethyl-furfural to 2,5-furandicarboxylic acid in water catalyzed by functionalized carbon nanotube-supported Au-Pd alloy nanoparticles. ACS Catalysis, 2014, 4(7): 2175–2185

[31]

Zhou C, Deng W, Wan X, Zhang Q, Yang Y, Wang Y. Functionalized carbon nanotubes for biomass conversion: the base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over platinum supported on a carbon nanotube catalyst. ChemCatChem, 2015, 7(18): 2853–2863

[32]

Yi G, Teong S P, Zhang Y. Base-free conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Ru/C catalyst. Green Chemistry, 2016, 18(4): 979–983

[33]

Guan W, Zhang Y, Wei Y, Li B, Feng Y, Yan C, Huo P, Yan Y. Pickering HIPEs derived hierarchical porous nitrogen-doped carbon supported bimetallic AuPd catalyst for base-free aerobic oxidation of HMF to FDCA in water. Fuel, 2020, 278: 118362

[34]

Han X, Li C, Guo Y, Liu X, Zhang Y, Wang Y. N-doped carbon supported Pt catalyst for base-free oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Applied Catalysis A, General, 2016, 526: 1–8

[35]

Artz J, Palkovits R. Base-free aqueous-phase oxidation of 5-hydroxymethylfurfural over ruthenium catalysts supported on covalent triazine frameworks. ChemSusChem, 2015, 8(22): 3832–3838

[36]

Gao T, Chen J, Fang W, Cao Q, Su W, Dumeignil F. Ru/MnxCe1Oy catalysts with enhanced oxygen mobility and strong metal-support interaction: exceptional performances in 5-hydroxymethylfurfural base-free aerobic oxidation. Journal of Catalysis, 2018, 368: 53–68

[37]

Mishra D K, Lee H J, Kim J, Lee H S, Cho J K, Suh Y W, Yi Y, Kim Y J. MnCo2O4 spinel supported ruthenium catalyst for air-oxidation of HMF to FDCA under aqueous phase and base-free conditions. Green Chemistry, 2017, 19(7): 1619–1623

[38]

Han X, Geng L, Guo Y, Jia R, Liu X, Zhang Y, Wang Y. Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Pt/C–O–Mg catalyst. Green Chemistry, 2016, 18(6): 1597–1604

[39]

Ke C, Li M, Fan G, Yang L, Li F. Pt nanoparticles supported on nitrogen-doped-carbon-decorated CeO2 for base-free aerobic oxidation of 5-hydroxymethylfurfural. Chemistry, an Asian Journal, 2018, 13(18): 2714–2722

[40]

Siankevich S, Savoglidis G, Fei Z, Laurenczy G, Alexander D T L, Yan N, Dyson P J. A novel platinum nanocatalyst for the oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid under mild conditions. Journal of Catalysis, 2014, 315: 67–74

[41]

Liguori F, Barbaro P, Calisi N. Continuous-flow oxidation of HMF to FDCA by resin-supported platinum catalysts in neat water. ChemSusChem, 2019, 12(12): 2558–2563

[42]

Bawa P, Pillay V, Choonara Y E, du Toit L C. Stimuli-responsive polymers and their applications in drug delivery. Biomedical Materials, 2009, 4(2): 022001

[43]

Cheng W, Gu L, Ren W, Liu Y. Stimuli-responsive polymers for anti-cancer drug delivery. Materials Science and Engineering C, 2015, 45: 600–608

[44]

Trzebicka B, Szweda R, Kosowski D, Szweda D, Otulakowski Ł, Haladjova E, Dworak A. Thermoresponsive polymer-peptide/protein conjugates. Progress in Polymer Science, 2017, 68: 35–76

[45]

Mackenzie K J, Francis M B. Recyclable thermoresponsive polymer-cellulase bioconjugates for biomass depolymerization. Journal of the American Chemical Society, 2013, 135(1): 293–300

[46]

Lou L L, Qu H, Yu W, Wang B, Ouyang L, Liu S, Zhou W. Covalently immobilized lipase on a thermoresponsive polymer with an upper critical solution temperature as an efficient and recyclable asymmetric catalyst in aqueous media. ChemCatChem, 2018, 10(5): 1166–1172

[47]

Zhang J, Zhang M, Tang K, Verpoort F, Sun T. Polymer-based stimuli-responsive recyclable catalytic systems for organic synthesis. Small, 2014, 10(1): 32–46

[48]

Tan R, Dong Y, Peng M, Zheng W, Yin D. Thermoresponsive chiral salen Mn(III) complexes as efficient and reusable catalysts for the oxidative kinetic resolution of secondary alcohols in water. Applied Catalysis A, General, 2013, 458: 1–10

[49]

Yu W, Lou L L, Yu K, Li S, Shi Y, Liu S. Pt nanoparticles stabilized by thermosensitive polymer as effective and recyclable catalysts for asymmetric hydrogenation of ethyl pyruvate. RSC Advances, 2016, 6(57): 52500–52508

[50]

Kong L, Zhao J, Cheng T, Lin J, Liu G. A polymer-coated rhodium/diamine-functionalized silica for controllable reaction switching in enantioselective tandem reduction-actonization of ethyl 2-acylarylcarboxylates. ACS Catalysis, 2016, 6(4): 2244–2249

[51]

Hou L, Wu P. Understanding the UCST-type transition of P(AAm-co-AN) in H2O and D2O: dramatic effects of solvent isotopes. Soft Matter, 2015, 11(35): 7059–7065

[52]

Davis S E, Zope B N, Davis R J. On the mechanism of selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over supported Pt and Au catalysts. Green Chemistry, 2012, 14(1): 143–147

[53]

Davis S E, Ide M S, Davis R J. Selective oxidation of alcohols and aldehydes over supported metal nanoparticles. Green Chemistry, 2013, 15(1): 17–45

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1129KB)

Supplementary files

FCE-21026-OF-QH_suppl_1

8075

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/