Hierarchically porous zeolites synthesized with carbon materials as templates

Huan Wang , Guo Du , Jiaqing Jia , Shaohua Chen , Zhipeng Su , Rui Chen , Tiehong Chen

Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (6) : 1444 -1461.

PDF (2865KB)
Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (6) : 1444 -1461. DOI: 10.1007/s11705-021-2090-6
REVIEW ARTICLE
REVIEW ARTICLE

Hierarchically porous zeolites synthesized with carbon materials as templates

Author information +
History +
PDF (2865KB)

Abstract

Hierarchically porous zeolites are promising candidates in catalytic conversion of relatively bulky molecules, and their syntheses have attracted significant attention. From both industrial and scientific perspectives, different carbon materials have been widely employed as hard templates for the preparation of hierarchically porous zeolites during the past two decades. In this review, the progress in synthetic strategies using carbon materials as templates is comprehensively summarized. Depending on the affinity between the carbon templates and zeolite precursors, the substantial strategies for synthesizing hierarchical zeolites are introduced in direct templates and indirect templates. Direct templates methods, by which the carbon materials are directly mixed with precursors gel as hard templates, are first reviewed. Then, we discuss the indirect templates method (crystallization of carbon-silica composites), by which the carbon is produced by in situ pyrolysis of organic-inorganic precursors. In addition, the technique of encapsulating metal species into zeolites crystals with the assistance of carbon templates is also discussed. In the conclusion part, the factors affecting the synthesis of carbon-templated hierarchically porous zeolites are remarked. This review is expected to attract interest in the synthesis strategies of hierarchically porous zeolites, especially cost-effective and large-scale production methodologies, which are essential to the industrial application of hierarchical zeolites.

Graphical abstract

Keywords

hierarchical zeolites / carbon materials / direct templates / indirect templates / carbon-silica composites

Cite this article

Download citation ▾
Huan Wang, Guo Du, Jiaqing Jia, Shaohua Chen, Zhipeng Su, Rui Chen, Tiehong Chen. Hierarchically porous zeolites synthesized with carbon materials as templates. Front. Chem. Sci. Eng., 2021, 15(6): 1444-1461 DOI:10.1007/s11705-021-2090-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen L H, Sun M H, Wang Z, Yang W M, Xie Z K, Su B L. Hierarchically structured zeolites: from design to application. Chemical Reviews, 2020, 120(20): 11194–11294

[2]

de Jong K P, Zečević J, Friedrich H, de Jongh P E, Bulut M, van Donk S, Kenmogne R, Finiels A, Hulea V, Fajula F. Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts. Angewandte Chemie International Edition, 2010, 49(52): 10074–10078

[3]

Fu T J, Qi R Y, Wan W L, Shao J, Wen J Z, Li Z. Fabrication of hollow mesoporous nanosized ZSM-5 catalyst with superior methanol-to-hydrocarbons performance by controllable desilication. ChemCatChem, 2017, 9(22): 4212–4224

[4]

Fang Y H, Yang F, He X, Zhu X D. Dealumination and desilication for Al-rich HZSM-5 zeolite via steam-alkaline treatment and its application in methanol aromatization. Frontiers of Chemical Science and Engineering, 2019, 13(3): 543–553

[5]

Yang S T, Yu C X, Yu L L, Miao S, Zou M M, Jin C Z, Zhang D Z, Xu L Y, Huang S J. Bridging dealumination and desilication for the synthesis of hierarchical MFI zeolites. Angewandte Chemie International Edition, 2017, 56(41): 12553–12556

[6]

Li Q, Dou T, Zhang Y, Li Y P, Wang S, Sun F M. Synthesis, characterization and catalytic properties of mesoporous MCM-48 containing zeolite secondary building units. Frontiers of Chemical Science and Engineering, 2007, 1(1): 1–5

[7]

Zhang W M, Ming W X, Hu S F, Qin B, Ma J H, Li R F. A feasible one-step synthesis of hierarchical zeolite Beta with uniform nanocrystals via CTAB. Materials (Basel), 2018, 11(5): 651–662

[8]

Du S T, Li F, Sun Q M, Wang N, Jia M J, Yu J H. A green surfactant-assisted synthesis of hierarchical TS-1 zeolites with excellent catalytic properties for oxidative desulfurization. Chemical Communications (Cambridge), 2016, 52(16): 3368–3371

[9]

Xu H, Lei C, Wu Q M, Zhu Q Y, Meng X J, Dai D, Maurer S, Parvulescu A N, Müller U, Xiao F S. Organosilane surfactant-assisted synthesis of mesoporous SSZ-39 zeolite with enhanced catalytic performance in the methanol-to-olefins reaction. Frontiers of Chemical Science and Engineering, 2020, 14(2): 267–274

[10]

Xu S M, Zhang X X, Cheng D G, Chen F Q, Ren X H. Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking. Frontiers of Chemical Science and Engineering, 2018, 12(4): 780–789

[11]

Sun Q M, Wang N, Xi D Y, Yang M, Yu J H. Organosilane surfactant-directed synthesis of hierarchical porous SAPO-34 catalysts with excellent MTO performance. Chemical Communications (Cambridge), 2014, 50(49): 6502–6505

[12]

Liu J Y, Wang J G, Li N, Zhao H, Zhou H J, Sun P C, Chen T H. Polyelectrolyte-surfactant complex as a template for the synthesis of zeolites with intracrystalline mesopores. Langmuir, 2012, 28(23): 8600–8607

[13]

Guo D X, Shi C X, Zhao H, Chen R, Chen S H, Sun P C, Chen T H. Polyacrylic acid as mesoscale template for synthesis of MFI zeolite with plentiful intracrystalline mesopores. Microporous and Mesoporous Materials, 2020, 293: 109821–109828

[14]

Shao Y C, Wang Y C, Liu X F, Li T D, Haydel P R, Tatsumi T, Wang J G. A single-crystalline hierarchical zeolite via an oriented co-growth of nanocrystals based on synergy of polyelectrolytes and hetero-atoms. ChemCatChem, 2020, 12(10): 2702–2707

[15]

Zhu J, Zhu Y H, Zhu L K, Rigutto M, van der Made A, Yang C G, Pan S X, Wang L, Zhu L F, Jin Y Y, Highly mesoporous single-crystalline zeolite Beta synthesized using a nonsurfactant cationic polymer as a dual-function template. Journal of the American Chemical Society, 2014, 136(6): 2503–2510

[16]

Jin D L, Ye G H, Zheng J W, Yang W M, Zhu K, Coppens M O, Zhou X G. Hierarchical silicoaluminophosphate catalysts with enhanced hydroisomerization selectivity by directing the orientated assembly of premanufactured building blocks. ACS Catalysis, 2017, 7(9): 5887–5902

[17]

Schmidt I, Boisen A, Gustavsson E, Ståhl K, Pehrson S, Dahl S, Carlsson A, Jacobsen C J H. Carbon nanotube templated growth of mesoporous zeolite single crystals. Chemistry of Materials, 2001, 13(12): 4416–4418

[18]

Chen H Y, Wydra J, Zhang X Y, Lee P S, Wang Z P, Fan W, Tsapatsis M. Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporous-imprinted structure. Journal of the American Chemical Society, 2011, 133(32): 12390–12393

[19]

Machoke A G, Beltrán A M, Inayat A, Winter B, Weissenberger T, Kruse N, Güttel R, Spiecker E, Schwieger W. Micro/Macroporous system: MFI-type zeolite crystals with embedded macropores. Advanced Materials, 2015, 27(6): 1066–1070

[20]

Weissenberger T, Leonhardt R, Zubiri B A, Pitínová-Štekrová M, Sheppard T L, Reiprich B, Bauer J, Dotzel R, Kahnt M, Schropp A, Synthesis and characterisation of hierarchically structured titanium silicalite-1 zeolites with large intracrystalline macropores. Chemistry, 2019, 25(63): 14430–14440

[21]

Shi Y, Li X, Hu J K, Lu J H, Ma Y C, Zhang Y H, Tang Y. Zeolite microspheres with hierarchical structures: formation, mechanism and catalytic performance. Journal of Materials Chemistry, 2011, 21(40): 16223–16230

[22]

Wang P Q, Li Z B, Wang X T, Tong Y M, Yuan F L, Zhu Y J. One-pot synthesis of Cu/SAPO-34 with hierarchical pore using cupric citrate as a copper source for excellent NH3-SCR of NO performance. ChemCatChem, 2020, 12(19): 4871–4878

[23]

Sun Q M, Wang N, Bai R S, Chen X X, Yu J H. Seeding induced nano-sized hierarchical SAPO-34 zeolites: cost-effective synthesis and superior MTO performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(39): 14978–14982

[24]

Zhang Q, Mayoral A, Terasaki O, Zhang Q, Ma B, Zhao C, Yang G J, Yu J H. Amino acid-assisted construction of single-crystalline hierarchical nanozeolites via oriented-aggregation and intraparticle ripening. Journal of the American Chemical Society, 2019, 141(9): 3772–3776

[25]

Ding K L, Corma A, Maciá-Agulló J A, Hu J G, Krämer S, Stair P C, Stucky G D. Constructing hierarchical porous zeolites via kinetic regulation. Journal of the American Chemical Society, 2015, 137(35): 11238–11241

[26]

Jacobsen C J H, Madsen C, Houzvicka J, Schmidt I, Carlsson A. Mesoporous zeolite single crystals. Journal of the American Chemical Society, 2000, 122(29): 7116–7117

[27]

Fang Y M, Hu H Q, Chen G H. Zeolite with tunable intracrystal mesoporosity synthesized with carbon aerogel as a secondary template. Microporous and Mesoporous Materials, 2008, 113(1–3): 481–489

[28]

Du J, Wang Q H, Wang Y, Guo Y N, Li R F. A hierarchical zeolite Beta with well-connected pores via using graphene oxide. Materials Letters, 2019, 250: 139–142

[29]

Cho H S, Ryoo R. Synthesis of ordered mesoporous MFI zeolite using CMK carbon templates. Microporous and Mesoporous Materials, 2012, 151: 107–112

[30]

Wei X T, Smirniotis P G. Synthesis and characterization of mesoporous ZSM-12 by using carbon particles. Microporous and Mesoporous Materials, 2006, 89(1–3): 170–178

[31]

Schwanke A, Villarroel-Rocha J, Sapag K, Díaz U, Corma A, Pergher S. Dandelion-like microspherical MCM-22 zeolite using BP 2000 as a hard template. ACS Omega, 2018, 3(6): 6217–6622

[32]

Schmidt F, Paasch S, Brunner E, Kaskel S. Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction. Microporous and Mesoporous Materials, 2012, 164: 214–221

[33]

Chen H, Zhang X W, Zhang J F, Wang Q F. Controllable synthesis of hierarchical ZSM-5 for hydroconversion of vegetable oil to aviation fuel like hydrocarbons. RSC Advances, 2017, 7(73): 46109–46117

[34]

Varzaneh A Z, Towfighi J, Sahebdelfarb S, Bahrami H. Carbon nanotube templated synthesis of hierarchical SAPO-34 catalysts with different structure directing agents for catalytic onversion of methanol to light olefins. Journal of Analytical and Applied Pyrolysis, 2016, 121: 11–23

[35]

Manrique C, Guzmán A, Pérez-Pariente J, Márquez-Álvarez C, Echavarrí A. Vacuum gas-oil hydrocracking performance of Beta zeolite obtained by hydrothermal synthesis using carbon nanotubes as mesoporous template. Fuel, 2016, 182: 236–247

[36]

Li M R, Zhou Y P, Fang Y M. Functioned carbon nanotube templated hierarchical silicate-1 synthesis: on the existence of super-micropore. Microporous and Mesoporous Materials, 2016, 225: 392–398

[37]

Tao Y S, Kanoh H, Kaneko K. Uniform mesopore-donated zeolite Y using carbon aerogel templating. Journal of Physical Chemistry B, 2003, 107(40): 10974–10976

[38]

Tao Y S, Kanoh H, Kaneko K. ZSM-5 monolith of uniform mesoporous channels. Journal of the American Chemical Society, 2003, 125(20): 6044–6045

[39]

White R J, Fischer A, Goebel C, Thomas A. A sustainable template for mesoporous zeolite synthesis. Journal of the American Chemical Society, 2014, 136(7): 2715–2718

[40]

de la Iglesia Ó, Sánchez J L, Coronas J. Hierarchical silicalite-1 structures based on pyrolized materials. Materials Letters, 2011, 65(19–20): 3124–3127

[41]

Li D, Qiu L, Wang K, Zeng Y, Li D, Williams T, Huang Y, Tsapatsis M, Wang H T. Growth of zeolite crystals with graphene oxide nanosheets. Chemical Communications, 2012, 48(16): 2249–2251

[42]

Ren Z, Kim E, Pattinson S W, Subrahmanyam K S, Rao C N R, Cheetham A K, Eder D. Hybridizing photoactive zeolites with graphene: a powerful strategy towards superior photocatalytic properties. Chemical Science, 2012, 3(1): 209–216

[43]

Zhang L C, Sun X B, Pan M, Yang X N, Liu Y C, Sun J H, Wang Q H, Zheng J J, Wang Y, Ma J H, Interfacial effects between carbon nanotube templates and precursors on fabricating a wall-crystallized hierarchical pore system in zeolite crystals. Journal of Materials Science, 2020, 55(24): 10412–10426

[44]

Han S Y, Wang Z, Meng L Y, Jiang N Z. Synthesis of uniform mesoporous ZSM-5 using hydrophilic carbon as a hard template. Materials Chemistry and Physics, 2016, 177: 112–117

[45]

Bértolo R, Silva J M, Ribeiroa F, Maldonado-Hódar F J, Fernandes A, Martins A. Effects of oxidant acid treatments on carbon-templated hierarchical SAPO-11 materials: synthesis, characterization and catalytic evaluation in n-decane hydroisomerization. Applied Catalysis A, General, 2014, 485: 230–237

[46]

Zhao S F, Wang W D, Wang L Z, Schwieger W, Wang W, Huang J. Tuning hierarchical ZSM-5 zeolite for both gas- and liquid-phase biorefining. ACS Catalysis, 2020, 10(2): 1185–1194

[47]

Yoo W C, Kumar S, Wang Z Y, Ergang N S, Fan W, Karanikolos G N, McCormick A V, Penn R L, Tsapatsis M, Stein A. Nanoscale reactor engineering: hydrothermal synthesis of uniform zeolite particles in massively parallel reaction chambers. Angewandte Chemie International Edition, 2008, 47(47): 9096–9099

[48]

Yoo W C, Kumar S, Penn R L, Tsapatsis M, Stein A. Growth patterns and shape development of zeolite nanocrystals in confined syntheses. Journal of the American Chemical Society, 2009, 131(34): 12377–12383

[49]

Wang Z P, Dornath P, Chang C C, Chen H Y, Fan W. Confined synthesis of three-dimensionally ordered mesoporous imprinted zeolites with tunable morphology and Si/Al ratio. Microporous and Mesoporous Materials, 2013, 181: 8–16

[50]

Chen H Y, Lee P S, Zhang X Y, Lu D. Structure replication and growth development of three-dimensionally ordered mesoporous-imprinted zeolites during confined growth. Journal of Materials Research, 2013, 28(10): 1356–1364

[51]

Cho H J, Dornath P, Fan W. Synthesis of hierarchical Sn-MFI as Lewis acid catalysts for isomerization of cellulosic sugars. ACS Catalysis, 2014, 4(6): 2029–2037

[52]

Wang J, Yang M F, Shang W J, Su X P, Hao Q Q, Chen H Y, Ma X X. Synthesis, characterization, and catalytic application of hierarchical SAPO-34 zeolite with three-dimensionally ordered mesoporous imprinted structure. Microporous and Mesoporous Materials, 2017, 252: 10–16

[53]

Wang J, Yang M F, Zhang J B, Zhang S P, Wang X X, Fu K, Wang M Y, Sahng W J, Chen H Y, Ma X X. Fabrication of *BEA/MFI zeolite nanocomposites by confined space synthesis. Materials Chemistry and Physics, 2018, 207: 167–174

[54]

Madsen C, Madsen C, Jacobsen C J H. Nanosized zeolite crystals-convenient control of crystal size distribution by confined space synthesis. Chemical Communications, 1999, 8(8): 673–674

[55]

Schmidt I, Madsen C, Jacobsen C J H. Confined space synthesis. A novel route to nanosized zeolites. Inorganic Chemistry, 2000, 39(11): 2279–2283

[56]

Jacobsen C J H, Madsen C, Janssens T V W, Jakobsen H J, Skibsted J. Zeolites by confined space synthesis-characterization of the acid sites in nanosized ZSM-5 by ammonia desorption and 27Al/29Si-MAS NMR spectroscopy. Microporous and Mesoporous Materials, 2000, 39(1–2): 393–401

[57]

Christensen C H, Johannsen K, Schmidt I, Christensen C H. Catalytic benzene alkylation over mesoporous zeolite single crystals: improving activity and selectivity with a new family of porous materials. Journal of the American Chemical Society, 2003, 125(44): 13370–13371

[58]

Schmidt I, Krogh A, Wienberg K, Carlsson A, Brorson M, Jacobsen C J H. Catalytic epoxidation of alkenes with hydrogen peroxide over first mesoporous titanium-containing zeolite. Chemical Communications, 2000, 21(21): 2157–2158

[59]

Kustova M Y, Hasselriis P, Christensen C H. Mesoporous MEL-type zeolite single crystal catalysts. Catalysis Letters, 2004, 96(3–4): 205–211

[60]

Kustova M Y, Rasmussen S B, Kustov A L, Christensen C H. Direct NO decomposition over conventional and mesoporous Cu-ZSM-5 and Cu-ZSM-11 catalysts: improved performance with hierarchically porous zeolites. Applied Catalysis B: Environmental, 2006, 67(1–2): 60–67

[61]

Xin H C, Zhao J, Xu S T, Li J P, Zhang W P, Guo X W, Hensen E J M, Yang Q H, Li C. Enhanced catalytic oxidation by hierarchically structured TS-1 zeolite. Journal of Physical Chemistry, 2010, 114(14): 6553–6559

[62]

Holm M S, Egeblad K, Vennestrøm P N R, Hartmann C G, Kustova M, Christensen C H. Enhancing the porosity of mesoporous carbon-templated ZSM-5 by desilication. European Journal of Inorganic Chemistry, 2008, 33(33): 5185–5189

[63]

Rimaz S, Halladj R, Askari S. Synthesis of hierarchal SAPO-34 nano catalyst with dry gel conversion method in the presence of carbon nanotubes as a hard template. Journal of Colloid and Interface Science, 2016, 464: 137–146

[64]

Deng Z Y, Zhang Y C, Zhu K, Qian G, Zhou X G. Carbon nanotubes as transient inhibitors in steam-assisted crystallization of hierarchical ZSM-5 zeolites. Materials Letters, 2015, 159: 466–469

[65]

Zhu K, Egeblad K, Christensen C H. Mesoporous carbon prepared from carbohydrate as hard template for hierarchically porous zeolites. European Journal of Inorganic Chemistry, 2007, 2007(25): 3955–3960

[66]

Song Y, Hua Z, Zhu Y, Zhou X, Wu W, Zhang L, Shi J. An in situ carbonaceous mesoporous template for the synthesis of hierarchical ZSM-5 zeolites by one-pot steam-assisted crystallization. Chemistry, an Asian Journal, 2012, 7(12): 2772–2776

[67]

Nandan D, Saxena S K, Viswanadham N. Synthesis of hierarchical ZSM-5 using glucose as a templating precursor. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(4): 1054–1059

[68]

Sun M H, Chen L H, Yu S, Li Y, Zhou X G, Hu Z Y, Sun H Y, Xu Y, Su B L. Micron-sized zeolite Beta single crystals featuring intracrystal interconnected ordered macro-meso-microporosity displaying superior catalytic performance. Angewandte Chemie International Edition, 2020, 59(44): 19582–19591

[69]

Sun M H, Zhou J, Hu Z Y, Chen L H, Li L Y, Wang Y D, Xie Z K, Turner S, Tendeloo G V, Hasan T, Hierarchical zeolite single-crystal reactor for excellent catalytic efficiency. Mater, 2020, 3(4): 1226–1245

[70]

Fan W, Snyder M A, Kumar S, Lee P S, Yoo W C, Mccormick A V, Penn R L, Stein A, Tsapaysis M. Hierarchical nanofabrication of microporous crystals with ordered mesoporosity. Nature Materials, 2008, 7(12): 984–991

[71]

Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. Journal of Physical Chemistry B, 1999, 103(37): 7743–7746

[72]

Jun S, Joo S H, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. Journal of the American Chemical Society, 2000, 122(43): 10712–10713

[73]

Zhang Y W, Okubo T, Ogura M. Synthesis of mesoporous aluminosilicate with zeolitic characteristics using vapor phase transport. Chemical Communications, 2005, 1(21): 2719–2720

[74]

Ogura M, Zhang Y W, Elangovan S P, Okubo T. Formation of ZMM-n: the composite materials having both natures of zeolites and mesoporous silica materials. Microporous and Mesoporous Materials, 2007, 101(1–2): 224–230

[75]

Wang J, Vinu A, Coppens M O. Synthesis and structure of silicalite-1/SBA-15 composites prepared by carbon templating and crystallization. Journal of Materials Chemistry, 2007, 17(40): 4265–4273

[76]

Sun C, Du J M, Liu J, Yang Y, Ren N, Shen N, Xu H L, Tang Y. A facile route to synthesize endurable mesopore containing ZSM-5 catalyst for methanol to propylene reaction. Chemical Communications, 2010, 46(15): 2671–2673

[77]

Pei X Y, Liu X X, Liu X Y, Shan J L, Fu H, Xie Y, Yan X M, Meng X Z, Zheng Y C, Li G, Synthesis of hierarchical titanium silicalite-1 using a carbon-silica-titania composite from aerogel mild carbonization. Catalysts, 2019, 9(8): 672–680

[78]

Xue C F, Zhang F, Wu L M, Zhao D Y. Vapor assisted “in situ” transformation of mesoporous carbon-silica composite for hierarchically porous zeolites. Microporous and Mesoporous Materials, 2012, 151: 495–500

[79]

Du J, Wang Y, Wang Y, Ma J H, Li R F. In situ recrystallization of mesoporous carbon-silica composite for the synthesis of hierarchically porous zeolites. Materials (Basel), 2020, 13(7): 1640–1649

[80]

Tanaka S, Yuan C, Miyake Y. Synthesis of silicalite-1 using an interspace of ordered mesoporous carbon-silica nanocomposites: introduction of mesoporosity in zeolite crystals. Microporous and Mesoporous Materials, 2008, 113(1–3): 418–426

[81]

Du J, Wang Y, Wang Y, Ma J H, Li R F. Preparation of hierarchical ZSM-5 zeolites by in-situ crystallization of mesoporous carbon-silica composite. ChemistrySelect, 2020, 5(44): 14130–14135

[82]

Kustova M, Egeblad K, Zhu K, Christensen C H. Versatile route to zeolite single crystals with controlled mesoporosity: in situ sugar decomposition for templating of hierarchically porous zeolites. Chemistry of Materials, 2007, 19(12): 2915–2917

[83]

Wang X, Li G, Wang W, Jin C, Chen Y. Synthesis, characterization and catalytic performance of hierarchical TS-1 with carbon template from sucrose carbonization. Microporous and Mesoporous Materials, 2011, 142(2–3): 494–502

[84]

Liu P, Jin L N, Jin C, Zhang J N, Bian S W. Synthesis of hierarchically porous silicate-1 and ZSM-5 by hydrothermal transformation of SiO2 colloid crystal/carbon composites. Microporous and Mesoporous Materials, 2018, 262: 217–226

[85]

Peng Z, Chen L H, Sun M H, Zhao H, Wang Z, Li Y, Li L Y, Zhou J, Liu Z C, Su B L. A hierarchical zeolitic Murray material with a mass transfer advantage promotes catalytic efficiency improvement. Inorganic Chemistry Frontiers, 2018, 5(11): 2829–2835

[86]

Hou Y X, Li X Y, Sun M H, Li C F, Bakhtiar S H, Lei K, Yu S, Wang Z, Hu Z, Chen L, The effect of hierarchical single-crystal ZSM-5 zeolites with different Si/Al ratios on its pore structure and catalytic performance. Frontiers of Chemical Science and Engineering, 2021, 15(2): 269–278

[87]

Abildstrøm J O, Ali Z N, Mentzel U V, Mielby J, Kegnæs S, Kegnæs M. Mesoporous MEL, BEA, and FAU zeolite crystals obtained by in situ formation of carbon template over metal nanoparticles. New Journal of Chemistry, 2016, 40(5): 4223–4227

[88]

Abildstrøm J O, Kegnæs M, Hytoft G, Mielby J, Kegnæs S. Synthesis of mesoporous zeolite catalysts by in situ formation of carbon template over nickel nanoparticles. Microporous and Mesoporous Materials, 2016, 225: 232–237

[89]

Wattanakit C, Warakulwit C, Pantu P, Sunpetch B, Charoenpanich M, Limtrakul J. The versatile synthesis method for hierarchical micro- and mesoporous zeolite: an embedded nanocarbon cluster approach. Canadian Journal of Chemical Engineering, 2012, 90(4): 873–880

[90]

Imyen T, Wannapakdee W, Limtrakul J, Wattanakit C. Role of hierarchical micro-mesoporous structure of ZSM-5 derived from an embedded nanocarbon cluster synthesis approach in isomerization of alkenes, catalytic cracking and hydrocracking of alkanes. Fuel, 2019, 254: 115593–115605

[91]

Tao H X, Yang H, Zhang Y H, Ren J W, Liu X H, Wang Y Q, Lu G Z. Space-confined synthesis of nanorod oriented assembled hierarchical MFI zeolite microspheres. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(44): 13821–13827

[92]

Yang H, Yang P P, Liu X H, Wang Y Q. Space-confined synthesis of zeolite Beta microspheres via steam-assisted crystallization. Chemical Engineering Journal, 2016, 299: 112–119

[93]

Huang Y, Ho J, Wang Z, Nakashima P, Hill A J, Wang H T. Mesoporous carbon confined conversion of silica nanoparticles into zeolite nanocrystals. Microporous and Mesoporous Materials, 2009, 117(1-2): 490–496

[94]

Cho S I, Choi S D, Kim J H, Kim G J. Synthesis of ZSM-5 films and monoliths with bimodal micro/mesoscopic structures. Advanced Functional Materials, 2004, 14(1): 49–54

[95]

Tong Y C, Zhao T B, Li F Y, Wang Y. Synthesis of monolithic zeolite Beta with hierarchical porosity using carbon as a transitional template. Chemistry of Materials, 2006, 18(18): 4218–4220

[96]

Martini A, Borfecchia E, Lomachenko K A, Pankin I A, Negri C, Berlier G, Beato P, Falsig H, Bordiga S, Lamberti C. Composition-driven Cu-speciation and reducibility in Cu-CHA zeolite catalysts: a multivariate XAS/FTIR approach to complexity. Chemical Science (Cambridge), 2017, 8(10): 6836–6851

[97]

Zhao Z C, Yu R, Zhao R R, Shi C, Gies H, Xiao F S, De Vos D, Yokoi T, Bao X H, Kolb U, Cu-exchanged Al-rich SSZ-13 zeolite from organotemplate-free synthesis as NH3-SCR catalyst: effects of Na+ ions on the activity and hydrothermal stability. Applied Catalysis B: Environmental, 2017, 217: 421–428

[98]

Zhu P F, Yang G H, Sun J, Fan R, Zhang P P, Yoneyama Y, Tsubaki N. A hollow Mo/HZSM-5 zeolite capsule catalyst: preparation and enhanced catalytic properties in methane dehydroaromatization. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(18): 8599–8607

[99]

Gu J, Zhang Z Y, Ding L P, Huang K, Xue N H, Peng L M, Guo X F, Ding W P. Platinum nanoparticles encapsulated in HZSM-5 crystals as an efficient catalyst for green production of p-aminophenol. Catalysis Communications, 2017, 97: 98–101

[100]

Choi M, Wu Z J, Iglesia E. Mercaptosilane-assisted synthesis of metal clusters within zeolites and catalytic consequences of encapsulation. Journal of the American Chemical Society, 2010, 132(26): 9129–9137

[101]

Wang N, Sun Q M, Bai R S, Li X, Guo G Q, Yu J H. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. Journal of the American Chemical Society, 2016, 138(24): 7484–7487

[102]

Sánchez-Sánchez M, Manjón Sanz A, Díaz I, Mayoral Á, Sastre E. Micron-sized single-crystal-like CoAPO-5/carbon composites leading to hierarchical CoAPO-5 with both inter-and intracrystalline mesoporosity. Crystal Growth & Design, 2013, 13(6): 2476–2485

[103]

Varzaneh A Z, Towfighi J, Sahebdelfar S. Carbon nanotube templated synthesis of metal containing hierarchical SAPO-34 catalysts: impact of the preparation method and metal avidities in the MTO reaction. Microporous and Mesoporous Materials, 2016, 236: 1–12

[104]

Flores C, Batalha N, Ordomsky V V, Zholobenko V L, Baaziz W, Marcilio N R, Khodakov A Y. Direct production of iso-paraffins from syngas over hierarchical cobalt-ZSM-5 nanocomposites synthetized by using carbon nanotubes as sacrificial templates. ChemCatChem, 2018, 10(10): 2291–2299

[105]

Flores C, Zholobenko V L, Gu B, Batalha N, Valtchev V, Baaziz W, Ersen O, Marcilio N R, Ordomsky V V, Khodakov A Y. Versatile roles of metal species in carbon nanotube templates for the synthesis of metal-zeolite nanocomposite catalysts. ACS Applied Nano Materials, 2019, 2(7): 4507–4517

[106]

Amoo C C, Li M, Noreen A, Fu Y, Maturura E, Du C, Yang R, Gao X, Xing C, Tsubaki N. Fabricating Fe nanoparticles embedded in zeolite Y microcrystals as active catalysts for Fischer-Tropsch synthesis. ACS Applied Nano Materials, 2020, 3(8): 8096–8103

[107]

Chen Y Y, Chang C J, Lee H V, Juan J C, Lin Y C. Gallium-immobilized carbon nanotubes as solid templates for the synthesis of hierarchical Ga/ZSM-5 in methanol aromatization. Industrial & Engineering Chemistry Research, 2019, 58(19): 7948–7956

[108]

Chang C J, Chen C H, Lee J F, Sooknoi T, Lin Y C. Ga-supported MFI zeolites synthesized using carbon nanotubes containing gallium oxide nanoparticles on exterior walls and in interior channels as hard templates for methanol aromatization. Industrial & Engineering Chemistry Research, 2020, 59(24): 11177–11186

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2865KB)

7594

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/