Hierarchically porous zeolites synthesized with carbon materials as templates
Huan Wang, Guo Du, Jiaqing Jia, Shaohua Chen, Zhipeng Su, Rui Chen, Tiehong Chen
Hierarchically porous zeolites synthesized with carbon materials as templates
Hierarchically porous zeolites are promising candidates in catalytic conversion of relatively bulky molecules, and their syntheses have attracted significant attention. From both industrial and scientific perspectives, different carbon materials have been widely employed as hard templates for the preparation of hierarchically porous zeolites during the past two decades. In this review, the progress in synthetic strategies using carbon materials as templates is comprehensively summarized. Depending on the affinity between the carbon templates and zeolite precursors, the substantial strategies for synthesizing hierarchical zeolites are introduced in direct templates and indirect templates. Direct templates methods, by which the carbon materials are directly mixed with precursors gel as hard templates, are first reviewed. Then, we discuss the indirect templates method (crystallization of carbon-silica composites), by which the carbon is produced by in situ pyrolysis of organic-inorganic precursors. In addition, the technique of encapsulating metal species into zeolites crystals with the assistance of carbon templates is also discussed. In the conclusion part, the factors affecting the synthesis of carbon-templated hierarchically porous zeolites are remarked. This review is expected to attract interest in the synthesis strategies of hierarchically porous zeolites, especially cost-effective and large-scale production methodologies, which are essential to the industrial application of hierarchical zeolites.
hierarchical zeolites / carbon materials / direct templates / indirect templates / carbon-silica composites
[1] |
Chen L H, Sun M H, Wang Z, Yang W M, Xie Z K, Su B L. Hierarchically structured zeolites: from design to application. Chemical Reviews, 2020, 120(20): 11194–11294
CrossRef
Google scholar
|
[2] |
de Jong K P, Zečević J, Friedrich H, de Jongh P E, Bulut M, van Donk S, Kenmogne R, Finiels A, Hulea V, Fajula F. Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts. Angewandte Chemie International Edition, 2010, 49(52): 10074–10078
CrossRef
Google scholar
|
[3] |
Fu T J, Qi R Y, Wan W L, Shao J, Wen J Z, Li Z. Fabrication of hollow mesoporous nanosized ZSM-5 catalyst with superior methanol-to-hydrocarbons performance by controllable desilication. ChemCatChem, 2017, 9(22): 4212–4224
CrossRef
Google scholar
|
[4] |
Fang Y H, Yang F, He X, Zhu X D. Dealumination and desilication for Al-rich HZSM-5 zeolite via steam-alkaline treatment and its application in methanol aromatization. Frontiers of Chemical Science and Engineering, 2019, 13(3): 543–553
CrossRef
Google scholar
|
[5] |
Yang S T, Yu C X, Yu L L, Miao S, Zou M M, Jin C Z, Zhang D Z, Xu L Y, Huang S J. Bridging dealumination and desilication for the synthesis of hierarchical MFI zeolites. Angewandte Chemie International Edition, 2017, 56(41): 12553–12556
CrossRef
Google scholar
|
[6] |
Li Q, Dou T, Zhang Y, Li Y P, Wang S, Sun F M. Synthesis, characterization and catalytic properties of mesoporous MCM-48 containing zeolite secondary building units. Frontiers of Chemical Science and Engineering, 2007, 1(1): 1–5
|
[7] |
Zhang W M, Ming W X, Hu S F, Qin B, Ma J H, Li R F. A feasible one-step synthesis of hierarchical zeolite Beta with uniform nanocrystals via CTAB. Materials (Basel), 2018, 11(5): 651–662
CrossRef
Google scholar
|
[8] |
Du S T, Li F, Sun Q M, Wang N, Jia M J, Yu J H. A green surfactant-assisted synthesis of hierarchical TS-1 zeolites with excellent catalytic properties for oxidative desulfurization. Chemical Communications (Cambridge), 2016, 52(16): 3368–3371
CrossRef
Google scholar
|
[9] |
Xu H, Lei C, Wu Q M, Zhu Q Y, Meng X J, Dai D, Maurer S, Parvulescu A N, Müller U, Xiao F S. Organosilane surfactant-assisted synthesis of mesoporous SSZ-39 zeolite with enhanced catalytic performance in the methanol-to-olefins reaction. Frontiers of Chemical Science and Engineering, 2020, 14(2): 267–274
CrossRef
Google scholar
|
[10] |
Xu S M, Zhang X X, Cheng D G, Chen F Q, Ren X H. Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking. Frontiers of Chemical Science and Engineering, 2018, 12(4): 780–789
CrossRef
Google scholar
|
[11] |
Sun Q M, Wang N, Xi D Y, Yang M, Yu J H. Organosilane surfactant-directed synthesis of hierarchical porous SAPO-34 catalysts with excellent MTO performance. Chemical Communications (Cambridge), 2014, 50(49): 6502–6505
CrossRef
Google scholar
|
[12] |
Liu J Y, Wang J G, Li N, Zhao H, Zhou H J, Sun P C, Chen T H. Polyelectrolyte-surfactant complex as a template for the synthesis of zeolites with intracrystalline mesopores. Langmuir, 2012, 28(23): 8600–8607
CrossRef
Google scholar
|
[13] |
Guo D X, Shi C X, Zhao H, Chen R, Chen S H, Sun P C, Chen T H. Polyacrylic acid as mesoscale template for synthesis of MFI zeolite with plentiful intracrystalline mesopores. Microporous and Mesoporous Materials, 2020, 293: 109821–109828
CrossRef
Google scholar
|
[14] |
Shao Y C, Wang Y C, Liu X F, Li T D, Haydel P R, Tatsumi T, Wang J G. A single-crystalline hierarchical zeolite via an oriented co-growth of nanocrystals based on synergy of polyelectrolytes and hetero-atoms. ChemCatChem, 2020, 12(10): 2702–2707
CrossRef
Google scholar
|
[15] |
Zhu J, Zhu Y H, Zhu L K, Rigutto M, van der Made A, Yang C G, Pan S X, Wang L, Zhu L F, Jin Y Y,
CrossRef
Google scholar
|
[16] |
Jin D L, Ye G H, Zheng J W, Yang W M, Zhu K, Coppens M O, Zhou X G. Hierarchical silicoaluminophosphate catalysts with enhanced hydroisomerization selectivity by directing the orientated assembly of premanufactured building blocks. ACS Catalysis, 2017, 7(9): 5887–5902
CrossRef
Google scholar
|
[17] |
Schmidt I, Boisen A, Gustavsson E, Ståhl K, Pehrson S, Dahl S, Carlsson A, Jacobsen C J H. Carbon nanotube templated growth of mesoporous zeolite single crystals. Chemistry of Materials, 2001, 13(12): 4416–4418
CrossRef
Google scholar
|
[18] |
Chen H Y, Wydra J, Zhang X Y, Lee P S, Wang Z P, Fan W, Tsapatsis M. Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporous-imprinted structure. Journal of the American Chemical Society, 2011, 133(32): 12390–12393
CrossRef
Google scholar
|
[19] |
Machoke A G, Beltrán A M, Inayat A, Winter B, Weissenberger T, Kruse N, Güttel R, Spiecker E, Schwieger W. Micro/Macroporous system: MFI-type zeolite crystals with embedded macropores. Advanced Materials, 2015, 27(6): 1066–1070
CrossRef
Google scholar
|
[20] |
Weissenberger T, Leonhardt R, Zubiri B A, Pitínová-Štekrová M, Sheppard T L, Reiprich B, Bauer J, Dotzel R, Kahnt M, Schropp A,
CrossRef
Google scholar
|
[21] |
Shi Y, Li X, Hu J K, Lu J H, Ma Y C, Zhang Y H, Tang Y. Zeolite microspheres with hierarchical structures: formation, mechanism and catalytic performance. Journal of Materials Chemistry, 2011, 21(40): 16223–16230
CrossRef
Google scholar
|
[22] |
Wang P Q, Li Z B, Wang X T, Tong Y M, Yuan F L, Zhu Y J. One-pot synthesis of Cu/SAPO-34 with hierarchical pore using cupric citrate as a copper source for excellent NH3-SCR of NO performance. ChemCatChem, 2020, 12(19): 4871–4878
CrossRef
Google scholar
|
[23] |
Sun Q M, Wang N, Bai R S, Chen X X, Yu J H. Seeding induced nano-sized hierarchical SAPO-34 zeolites: cost-effective synthesis and superior MTO performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(39): 14978–14982
CrossRef
Google scholar
|
[24] |
Zhang Q, Mayoral A, Terasaki O, Zhang Q, Ma B, Zhao C, Yang G J, Yu J H. Amino acid-assisted construction of single-crystalline hierarchical nanozeolites via oriented-aggregation and intraparticle ripening. Journal of the American Chemical Society, 2019, 141(9): 3772–3776
CrossRef
Google scholar
|
[25] |
Ding K L, Corma A, Maciá-Agulló J A, Hu J G, Krämer S, Stair P C, Stucky G D. Constructing hierarchical porous zeolites via kinetic regulation. Journal of the American Chemical Society, 2015, 137(35): 11238–11241
CrossRef
Google scholar
|
[26] |
Jacobsen C J H, Madsen C, Houzvicka J, Schmidt I, Carlsson A. Mesoporous zeolite single crystals. Journal of the American Chemical Society, 2000, 122(29): 7116–7117
CrossRef
Google scholar
|
[27] |
Fang Y M, Hu H Q, Chen G H. Zeolite with tunable intracrystal mesoporosity synthesized with carbon aerogel as a secondary template. Microporous and Mesoporous Materials, 2008, 113(1–3): 481–489
CrossRef
Google scholar
|
[28] |
Du J, Wang Q H, Wang Y, Guo Y N, Li R F. A hierarchical zeolite Beta with well-connected pores via using graphene oxide. Materials Letters, 2019, 250: 139–142
CrossRef
Google scholar
|
[29] |
Cho H S, Ryoo R. Synthesis of ordered mesoporous MFI zeolite using CMK carbon templates. Microporous and Mesoporous Materials, 2012, 151: 107–112
CrossRef
Google scholar
|
[30] |
Wei X T, Smirniotis P G. Synthesis and characterization of mesoporous ZSM-12 by using carbon particles. Microporous and Mesoporous Materials, 2006, 89(1–3): 170–178
CrossRef
Google scholar
|
[31] |
Schwanke A, Villarroel-Rocha J, Sapag K, Díaz U, Corma A, Pergher S. Dandelion-like microspherical MCM-22 zeolite using BP 2000 as a hard template. ACS Omega, 2018, 3(6): 6217–6622
CrossRef
Google scholar
|
[32] |
Schmidt F, Paasch S, Brunner E, Kaskel S. Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction. Microporous and Mesoporous Materials, 2012, 164: 214–221
CrossRef
Google scholar
|
[33] |
Chen H, Zhang X W, Zhang J F, Wang Q F. Controllable synthesis of hierarchical ZSM-5 for hydroconversion of vegetable oil to aviation fuel like hydrocarbons. RSC Advances, 2017, 7(73): 46109–46117
CrossRef
Google scholar
|
[34] |
Varzaneh A Z, Towfighi J, Sahebdelfarb S, Bahrami H. Carbon nanotube templated synthesis of hierarchical SAPO-34 catalysts with different structure directing agents for catalytic onversion of methanol to light olefins. Journal of Analytical and Applied Pyrolysis, 2016, 121: 11–23
CrossRef
Google scholar
|
[35] |
Manrique C, Guzmán A, Pérez-Pariente J, Márquez-Álvarez C, Echavarrí A. Vacuum gas-oil hydrocracking performance of Beta zeolite obtained by hydrothermal synthesis using carbon nanotubes as mesoporous template. Fuel, 2016, 182: 236–247
CrossRef
Google scholar
|
[36] |
Li M R, Zhou Y P, Fang Y M. Functioned carbon nanotube templated hierarchical silicate-1 synthesis: on the existence of super-micropore. Microporous and Mesoporous Materials, 2016, 225: 392–398
CrossRef
Google scholar
|
[37] |
Tao Y S, Kanoh H, Kaneko K. Uniform mesopore-donated zeolite Y using carbon aerogel templating. Journal of Physical Chemistry B, 2003, 107(40): 10974–10976
CrossRef
Google scholar
|
[38] |
Tao Y S, Kanoh H, Kaneko K. ZSM-5 monolith of uniform mesoporous channels. Journal of the American Chemical Society, 2003, 125(20): 6044–6045
CrossRef
Google scholar
|
[39] |
White R J, Fischer A, Goebel C, Thomas A. A sustainable template for mesoporous zeolite synthesis. Journal of the American Chemical Society, 2014, 136(7): 2715–2718
CrossRef
Google scholar
|
[40] |
de la Iglesia Ó, Sánchez J L, Coronas J. Hierarchical silicalite-1 structures based on pyrolized materials. Materials Letters, 2011, 65(19–20): 3124–3127
CrossRef
Google scholar
|
[41] |
Li D, Qiu L, Wang K, Zeng Y, Li D, Williams T, Huang Y, Tsapatsis M, Wang H T. Growth of zeolite crystals with graphene oxide nanosheets. Chemical Communications, 2012, 48(16): 2249–2251
CrossRef
Google scholar
|
[42] |
Ren Z, Kim E, Pattinson S W, Subrahmanyam K S, Rao C N R, Cheetham A K, Eder D. Hybridizing photoactive zeolites with graphene: a powerful strategy towards superior photocatalytic properties. Chemical Science, 2012, 3(1): 209–216
CrossRef
Google scholar
|
[43] |
Zhang L C, Sun X B, Pan M, Yang X N, Liu Y C, Sun J H, Wang Q H, Zheng J J, Wang Y, Ma J H,
CrossRef
Google scholar
|
[44] |
Han S Y, Wang Z, Meng L Y, Jiang N Z. Synthesis of uniform mesoporous ZSM-5 using hydrophilic carbon as a hard template. Materials Chemistry and Physics, 2016, 177: 112–117
CrossRef
Google scholar
|
[45] |
Bértolo R, Silva J M, Ribeiroa F, Maldonado-Hódar F J, Fernandes A, Martins A. Effects of oxidant acid treatments on carbon-templated hierarchical SAPO-11 materials: synthesis, characterization and catalytic evaluation in n-decane hydroisomerization. Applied Catalysis A, General, 2014, 485: 230–237
CrossRef
Google scholar
|
[46] |
Zhao S F, Wang W D, Wang L Z, Schwieger W, Wang W, Huang J. Tuning hierarchical ZSM-5 zeolite for both gas- and liquid-phase biorefining. ACS Catalysis, 2020, 10(2): 1185–1194
CrossRef
Google scholar
|
[47] |
Yoo W C, Kumar S, Wang Z Y, Ergang N S, Fan W, Karanikolos G N, McCormick A V, Penn R L, Tsapatsis M, Stein A. Nanoscale reactor engineering: hydrothermal synthesis of uniform zeolite particles in massively parallel reaction chambers. Angewandte Chemie International Edition, 2008, 47(47): 9096–9099
CrossRef
Google scholar
|
[48] |
Yoo W C, Kumar S, Penn R L, Tsapatsis M, Stein A. Growth patterns and shape development of zeolite nanocrystals in confined syntheses. Journal of the American Chemical Society, 2009, 131(34): 12377–12383
CrossRef
Google scholar
|
[49] |
Wang Z P, Dornath P, Chang C C, Chen H Y, Fan W. Confined synthesis of three-dimensionally ordered mesoporous imprinted zeolites with tunable morphology and Si/Al ratio. Microporous and Mesoporous Materials, 2013, 181: 8–16
CrossRef
Google scholar
|
[50] |
Chen H Y, Lee P S, Zhang X Y, Lu D. Structure replication and growth development of three-dimensionally ordered mesoporous-imprinted zeolites during confined growth. Journal of Materials Research, 2013, 28(10): 1356–1364
CrossRef
Google scholar
|
[51] |
Cho H J, Dornath P, Fan W. Synthesis of hierarchical Sn-MFI as Lewis acid catalysts for isomerization of cellulosic sugars. ACS Catalysis, 2014, 4(6): 2029–2037
CrossRef
Google scholar
|
[52] |
Wang J, Yang M F, Shang W J, Su X P, Hao Q Q, Chen H Y, Ma X X. Synthesis, characterization, and catalytic application of hierarchical SAPO-34 zeolite with three-dimensionally ordered mesoporous imprinted structure. Microporous and Mesoporous Materials, 2017, 252: 10–16
CrossRef
Google scholar
|
[53] |
Wang J, Yang M F, Zhang J B, Zhang S P, Wang X X, Fu K, Wang M Y, Sahng W J, Chen H Y, Ma X X. Fabrication of *BEA/MFI zeolite nanocomposites by confined space synthesis. Materials Chemistry and Physics, 2018, 207: 167–174
CrossRef
Google scholar
|
[54] |
Madsen C, Madsen C, Jacobsen C J H. Nanosized zeolite crystals-convenient control of crystal size distribution by confined space synthesis. Chemical Communications, 1999, 8(8): 673–674
CrossRef
Google scholar
|
[55] |
Schmidt I, Madsen C, Jacobsen C J H. Confined space synthesis. A novel route to nanosized zeolites. Inorganic Chemistry, 2000, 39(11): 2279–2283
CrossRef
Google scholar
|
[56] |
Jacobsen C J H, Madsen C, Janssens T V W, Jakobsen H J, Skibsted J. Zeolites by confined space synthesis-characterization of the acid sites in nanosized ZSM-5 by ammonia desorption and 27Al/29Si-MAS NMR spectroscopy. Microporous and Mesoporous Materials, 2000, 39(1–2): 393–401
CrossRef
Google scholar
|
[57] |
Christensen C H, Johannsen K, Schmidt I, Christensen C H. Catalytic benzene alkylation over mesoporous zeolite single crystals: improving activity and selectivity with a new family of porous materials. Journal of the American Chemical Society, 2003, 125(44): 13370–13371
CrossRef
Google scholar
|
[58] |
Schmidt I, Krogh A, Wienberg K, Carlsson A, Brorson M, Jacobsen C J H. Catalytic epoxidation of alkenes with hydrogen peroxide over first mesoporous titanium-containing zeolite. Chemical Communications, 2000, 21(21): 2157–2158
CrossRef
Google scholar
|
[59] |
Kustova M Y, Hasselriis P, Christensen C H. Mesoporous MEL-type zeolite single crystal catalysts. Catalysis Letters, 2004, 96(3–4): 205–211
CrossRef
Google scholar
|
[60] |
Kustova M Y, Rasmussen S B, Kustov A L, Christensen C H. Direct NO decomposition over conventional and mesoporous Cu-ZSM-5 and Cu-ZSM-11 catalysts: improved performance with hierarchically porous zeolites. Applied Catalysis B: Environmental, 2006, 67(1–2): 60–67
CrossRef
Google scholar
|
[61] |
Xin H C, Zhao J, Xu S T, Li J P, Zhang W P, Guo X W, Hensen E J M, Yang Q H, Li C. Enhanced catalytic oxidation by hierarchically structured TS-1 zeolite. Journal of Physical Chemistry, 2010, 114(14): 6553–6559
|
[62] |
Holm M S, Egeblad K, Vennestrøm P N R, Hartmann C G, Kustova M, Christensen C H. Enhancing the porosity of mesoporous carbon-templated ZSM-5 by desilication. European Journal of Inorganic Chemistry, 2008, 33(33): 5185–5189
CrossRef
Google scholar
|
[63] |
Rimaz S, Halladj R, Askari S. Synthesis of hierarchal SAPO-34 nano catalyst with dry gel conversion method in the presence of carbon nanotubes as a hard template. Journal of Colloid and Interface Science, 2016, 464: 137–146
CrossRef
Google scholar
|
[64] |
Deng Z Y, Zhang Y C, Zhu K, Qian G, Zhou X G. Carbon nanotubes as transient inhibitors in steam-assisted crystallization of hierarchical ZSM-5 zeolites. Materials Letters, 2015, 159: 466–469
CrossRef
Google scholar
|
[65] |
Zhu K, Egeblad K, Christensen C H. Mesoporous carbon prepared from carbohydrate as hard template for hierarchically porous zeolites. European Journal of Inorganic Chemistry, 2007, 2007(25): 3955–3960
CrossRef
Google scholar
|
[66] |
Song Y, Hua Z, Zhu Y, Zhou X, Wu W, Zhang L, Shi J. An in situ carbonaceous mesoporous template for the synthesis of hierarchical ZSM-5 zeolites by one-pot steam-assisted crystallization. Chemistry, an Asian Journal, 2012, 7(12): 2772–2776
CrossRef
Google scholar
|
[67] |
Nandan D, Saxena S K, Viswanadham N. Synthesis of hierarchical ZSM-5 using glucose as a templating precursor. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(4): 1054–1059
CrossRef
Google scholar
|
[68] |
Sun M H, Chen L H, Yu S, Li Y, Zhou X G, Hu Z Y, Sun H Y, Xu Y, Su B L. Micron-sized zeolite Beta single crystals featuring intracrystal interconnected ordered macro-meso-microporosity displaying superior catalytic performance. Angewandte Chemie International Edition, 2020, 59(44): 19582–19591
CrossRef
Google scholar
|
[69] |
Sun M H, Zhou J, Hu Z Y, Chen L H, Li L Y, Wang Y D, Xie Z K, Turner S, Tendeloo G V, Hasan T,
CrossRef
Google scholar
|
[70] |
Fan W, Snyder M A, Kumar S, Lee P S, Yoo W C, Mccormick A V, Penn R L, Stein A, Tsapaysis M. Hierarchical nanofabrication of microporous crystals with ordered mesoporosity. Nature Materials, 2008, 7(12): 984–991
CrossRef
Google scholar
|
[71] |
Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. Journal of Physical Chemistry B, 1999, 103(37): 7743–7746
CrossRef
Google scholar
|
[72] |
Jun S, Joo S H, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. Journal of the American Chemical Society, 2000, 122(43): 10712–10713
CrossRef
Google scholar
|
[73] |
Zhang Y W, Okubo T, Ogura M. Synthesis of mesoporous aluminosilicate with zeolitic characteristics using vapor phase transport. Chemical Communications, 2005, 1(21): 2719–2720
CrossRef
Google scholar
|
[74] |
Ogura M, Zhang Y W, Elangovan S P, Okubo T. Formation of ZMM-n: the composite materials having both natures of zeolites and mesoporous silica materials. Microporous and Mesoporous Materials, 2007, 101(1–2): 224–230
CrossRef
Google scholar
|
[75] |
Wang J, Vinu A, Coppens M O. Synthesis and structure of silicalite-1/SBA-15 composites prepared by carbon templating and crystallization. Journal of Materials Chemistry, 2007, 17(40): 4265–4273
CrossRef
Google scholar
|
[76] |
Sun C, Du J M, Liu J, Yang Y, Ren N, Shen N, Xu H L, Tang Y. A facile route to synthesize endurable mesopore containing ZSM-5 catalyst for methanol to propylene reaction. Chemical Communications, 2010, 46(15): 2671–2673
CrossRef
Google scholar
|
[77] |
Pei X Y, Liu X X, Liu X Y, Shan J L, Fu H, Xie Y, Yan X M, Meng X Z, Zheng Y C, Li G,
CrossRef
Google scholar
|
[78] |
Xue C F, Zhang F, Wu L M, Zhao D Y. Vapor assisted “in situ” transformation of mesoporous carbon-silica composite for hierarchically porous zeolites. Microporous and Mesoporous Materials, 2012, 151: 495–500
CrossRef
Google scholar
|
[79] |
Du J, Wang Y, Wang Y, Ma J H, Li R F. In situ recrystallization of mesoporous carbon-silica composite for the synthesis of hierarchically porous zeolites. Materials (Basel), 2020, 13(7): 1640–1649
CrossRef
Google scholar
|
[80] |
Tanaka S, Yuan C, Miyake Y. Synthesis of silicalite-1 using an interspace of ordered mesoporous carbon-silica nanocomposites: introduction of mesoporosity in zeolite crystals. Microporous and Mesoporous Materials, 2008, 113(1–3): 418–426
CrossRef
Google scholar
|
[81] |
Du J, Wang Y, Wang Y, Ma J H, Li R F. Preparation of hierarchical ZSM-5 zeolites by in-situ crystallization of mesoporous carbon-silica composite. ChemistrySelect, 2020, 5(44): 14130–14135
CrossRef
Google scholar
|
[82] |
Kustova M, Egeblad K, Zhu K, Christensen C H. Versatile route to zeolite single crystals with controlled mesoporosity: in situ sugar decomposition for templating of hierarchically porous zeolites. Chemistry of Materials, 2007, 19(12): 2915–2917
CrossRef
Google scholar
|
[83] |
Wang X, Li G, Wang W, Jin C, Chen Y. Synthesis, characterization and catalytic performance of hierarchical TS-1 with carbon template from sucrose carbonization. Microporous and Mesoporous Materials, 2011, 142(2–3): 494–502
CrossRef
Google scholar
|
[84] |
Liu P, Jin L N, Jin C, Zhang J N, Bian S W. Synthesis of hierarchically porous silicate-1 and ZSM-5 by hydrothermal transformation of SiO2 colloid crystal/carbon composites. Microporous and Mesoporous Materials, 2018, 262: 217–226
CrossRef
Google scholar
|
[85] |
Peng Z, Chen L H, Sun M H, Zhao H, Wang Z, Li Y, Li L Y, Zhou J, Liu Z C, Su B L. A hierarchical zeolitic Murray material with a mass transfer advantage promotes catalytic efficiency improvement. Inorganic Chemistry Frontiers, 2018, 5(11): 2829–2835
CrossRef
Google scholar
|
[86] |
Hou Y X, Li X Y, Sun M H, Li C F, Bakhtiar S H, Lei K, Yu S, Wang Z, Hu Z, Chen L,
CrossRef
Google scholar
|
[87] |
Abildstrøm J O, Ali Z N, Mentzel U V, Mielby J, Kegnæs S, Kegnæs M. Mesoporous MEL, BEA, and FAU zeolite crystals obtained by in situ formation of carbon template over metal nanoparticles. New Journal of Chemistry, 2016, 40(5): 4223–4227
CrossRef
Google scholar
|
[88] |
Abildstrøm J O, Kegnæs M, Hytoft G, Mielby J, Kegnæs S. Synthesis of mesoporous zeolite catalysts by in situ formation of carbon template over nickel nanoparticles. Microporous and Mesoporous Materials, 2016, 225: 232–237
CrossRef
Google scholar
|
[89] |
Wattanakit C, Warakulwit C, Pantu P, Sunpetch B, Charoenpanich M, Limtrakul J. The versatile synthesis method for hierarchical micro- and mesoporous zeolite: an embedded nanocarbon cluster approach. Canadian Journal of Chemical Engineering, 2012, 90(4): 873–880
CrossRef
Google scholar
|
[90] |
Imyen T, Wannapakdee W, Limtrakul J, Wattanakit C. Role of hierarchical micro-mesoporous structure of ZSM-5 derived from an embedded nanocarbon cluster synthesis approach in isomerization of alkenes, catalytic cracking and hydrocracking of alkanes. Fuel, 2019, 254: 115593–115605
CrossRef
Google scholar
|
[91] |
Tao H X, Yang H, Zhang Y H, Ren J W, Liu X H, Wang Y Q, Lu G Z. Space-confined synthesis of nanorod oriented assembled hierarchical MFI zeolite microspheres. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(44): 13821–13827
CrossRef
Google scholar
|
[92] |
Yang H, Yang P P, Liu X H, Wang Y Q. Space-confined synthesis of zeolite Beta microspheres via steam-assisted crystallization. Chemical Engineering Journal, 2016, 299: 112–119
CrossRef
Google scholar
|
[93] |
Huang Y, Ho J, Wang Z, Nakashima P, Hill A J, Wang H T. Mesoporous carbon confined conversion of silica nanoparticles into zeolite nanocrystals. Microporous and Mesoporous Materials, 2009, 117(1-2): 490–496
CrossRef
Google scholar
|
[94] |
Cho S I, Choi S D, Kim J H, Kim G J. Synthesis of ZSM-5 films and monoliths with bimodal micro/mesoscopic structures. Advanced Functional Materials, 2004, 14(1): 49–54
CrossRef
Google scholar
|
[95] |
Tong Y C, Zhao T B, Li F Y, Wang Y. Synthesis of monolithic zeolite Beta with hierarchical porosity using carbon as a transitional template. Chemistry of Materials, 2006, 18(18): 4218–4220
CrossRef
Google scholar
|
[96] |
Martini A, Borfecchia E, Lomachenko K A, Pankin I A, Negri C, Berlier G, Beato P, Falsig H, Bordiga S, Lamberti C. Composition-driven Cu-speciation and reducibility in Cu-CHA zeolite catalysts: a multivariate XAS/FTIR approach to complexity. Chemical Science (Cambridge), 2017, 8(10): 6836–6851
CrossRef
Google scholar
|
[97] |
Zhao Z C, Yu R, Zhao R R, Shi C, Gies H, Xiao F S, De Vos D, Yokoi T, Bao X H, Kolb U,
CrossRef
Google scholar
|
[98] |
Zhu P F, Yang G H, Sun J, Fan R, Zhang P P, Yoneyama Y, Tsubaki N. A hollow Mo/HZSM-5 zeolite capsule catalyst: preparation and enhanced catalytic properties in methane dehydroaromatization. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(18): 8599–8607
CrossRef
Google scholar
|
[99] |
Gu J, Zhang Z Y, Ding L P, Huang K, Xue N H, Peng L M, Guo X F, Ding W P. Platinum nanoparticles encapsulated in HZSM-5 crystals as an efficient catalyst for green production of p-aminophenol. Catalysis Communications, 2017, 97: 98–101
CrossRef
Google scholar
|
[100] |
Choi M, Wu Z J, Iglesia E. Mercaptosilane-assisted synthesis of metal clusters within zeolites and catalytic consequences of encapsulation. Journal of the American Chemical Society, 2010, 132(26): 9129–9137
CrossRef
Google scholar
|
[101] |
Wang N, Sun Q M, Bai R S, Li X, Guo G Q, Yu J H. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. Journal of the American Chemical Society, 2016, 138(24): 7484–7487
CrossRef
Google scholar
|
[102] |
Sánchez-Sánchez M, Manjón Sanz A, Díaz I, Mayoral Á, Sastre E. Micron-sized single-crystal-like CoAPO-5/carbon composites leading to hierarchical CoAPO-5 with both inter-and intracrystalline mesoporosity. Crystal Growth & Design, 2013, 13(6): 2476–2485
CrossRef
Google scholar
|
[103] |
Varzaneh A Z, Towfighi J, Sahebdelfar S. Carbon nanotube templated synthesis of metal containing hierarchical SAPO-34 catalysts: impact of the preparation method and metal avidities in the MTO reaction. Microporous and Mesoporous Materials, 2016, 236: 1–12
CrossRef
Google scholar
|
[104] |
Flores C, Batalha N, Ordomsky V V, Zholobenko V L, Baaziz W, Marcilio N R, Khodakov A Y. Direct production of iso-paraffins from syngas over hierarchical cobalt-ZSM-5 nanocomposites synthetized by using carbon nanotubes as sacrificial templates. ChemCatChem, 2018, 10(10): 2291–2299
CrossRef
Google scholar
|
[105] |
Flores C, Zholobenko V L, Gu B, Batalha N, Valtchev V, Baaziz W, Ersen O, Marcilio N R, Ordomsky V V, Khodakov A Y. Versatile roles of metal species in carbon nanotube templates for the synthesis of metal-zeolite nanocomposite catalysts. ACS Applied Nano Materials, 2019, 2(7): 4507–4517
CrossRef
Google scholar
|
[106] |
Amoo C C, Li M, Noreen A, Fu Y, Maturura E, Du C, Yang R, Gao X, Xing C, Tsubaki N. Fabricating Fe nanoparticles embedded in zeolite Y microcrystals as active catalysts for Fischer-Tropsch synthesis. ACS Applied Nano Materials, 2020, 3(8): 8096–8103
CrossRef
Google scholar
|
[107] |
Chen Y Y, Chang C J, Lee H V, Juan J C, Lin Y C. Gallium-immobilized carbon nanotubes as solid templates for the synthesis of hierarchical Ga/ZSM-5 in methanol aromatization. Industrial & Engineering Chemistry Research, 2019, 58(19): 7948–7956
CrossRef
Google scholar
|
[108] |
Chang C J, Chen C H, Lee J F, Sooknoi T, Lin Y C. Ga-supported MFI zeolites synthesized using carbon nanotubes containing gallium oxide nanoparticles on exterior walls and in interior channels as hard templates for methanol aromatization. Industrial & Engineering Chemistry Research, 2020, 59(24): 11177–11186
CrossRef
Google scholar
|
/
〈 | 〉 |