Superior performance in visible-light-driven hydrogen evolution reaction of three-dimensionally ordered macroporous SrTiO3 decorated with ZnxCd1−xS

Huiying Quan , Kejiang Qian , Ying Xuan , Lan-Lan Lou , Kai Yu , Shuangxi Liu

Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (6) : 1561 -1571.

PDF (1761KB)
Front. Chem. Sci. Eng. ›› 2021, Vol. 15 ›› Issue (6) : 1561 -1571. DOI: 10.1007/s11705-021-2089-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Superior performance in visible-light-driven hydrogen evolution reaction of three-dimensionally ordered macroporous SrTiO3 decorated with ZnxCd1−xS

Author information +
History +
PDF (1761KB)

Abstract

It is of broad interest to develop emerging photocatalysts with excellent light-harvesting capacity and high charge carrier separation efficiency for visible light photocatalytic hydrogen evolution reaction. However, achieving satisfying hydrogen evolution efficiency under noble metal-free conditions remains challenging. In this study, we demonstrate the fabrication of three-dimensionally ordered macroporous SrTiO3 decorated with ZnxCd1−xS nanoparticles for hydrogen production under visible light irradiation (λ>420 nm). Synergetic enhancement of photocatalytic activity is achieved by the slow photon effect and improved separation efficiency of photogenerated charge carriers. The obtained composites could afford very high hydrogen production efficiencies up to 19.67 mmol·g−1·h−1, with an apparent quantum efficiency of 35.9% at 420 nm, which is 4.2 and 23.9 times higher than those of pure Zn0.5Cd0.5S (4.67 mmol·g−1·h−1) and CdS (0.82 mmol·g−1·h−1), respectively. In particular, under Pt-free conditions, an attractive hydrogen production rate (3.23 mmol·g−1·h−1) was achieved, providing a low-cost and high-efficiency strategy to produce hydrogen from water splitting. Moreover, the composites showed excellent stability, and no obvious loss in activity was observed after five cycling tests.

Graphical abstract

Keywords

three-dimensionally ordered macroporous SrTiO3 / ZnxCd1–xS / visible light / hydrogen production / promotion mechanism

Cite this article

Download citation ▾
Huiying Quan, Kejiang Qian, Ying Xuan, Lan-Lan Lou, Kai Yu, Shuangxi Liu. Superior performance in visible-light-driven hydrogen evolution reaction of three-dimensionally ordered macroporous SrTiO3 decorated with ZnxCd1−xS. Front. Chem. Sci. Eng., 2021, 15(6): 1561-1571 DOI:10.1007/s11705-021-2089-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hisatomi T, Domen K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nature Catalysis, 2019, 2(5): 387–399

[2]

Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J H. Nano-photocatalytic materials: possibilities and challenges. Advanced Materials, 2012, 24(2): 229–251

[3]

Cui Y, Zeng Z, Zheng J, Huang Z, Yang J. Efficient photodegradation of phenol assisted by persulfate under visible light irradiation via a nitrogen-doped titanium-carbon composite. Frontiers of Chemical Science and Engineering, 2021, (in press)

[4]

Chen S, Qi Y, Li C, Domen K, Zhang F. Surface strategies for particulate photocatalysts toward artificial photosynthesis. Joule, 2018, 2(11): 2260–2288

[5]

Yang J, Liu X, Cao H, Shi Y, Xie Y, Xiao J. Dendritic BiVO4 decorated with MnOx co-catalyst as an efficient hierarchical catalyst for photocatalytic ozonation. Frontiers of Chemical Science and Engineering, 2019, 13(1): 185–191

[6]

Kundu S, Patra A. Nanoscale strategies for light harvesting. Chemical Reviews, 2017, 117(2): 712–757

[7]

Lu J, Lan L, Liu X T, Wang N, Fan X. Plasmonic Au nanoparticles supported on both sides of TiO2 hollow spheres for maximising photocatalytic activity under visible light. Frontiers of Chemical Science and Engineering, 2019, 13(4): 665–671

[8]

Yang Y L, Tang Y, Jiang H M, Chen Y M, Wan P Y, Fan M H, Zhang R R, Ullah S, Pan L, Zou J J, . 2020 Roadmap on gas-involved photo-and electro-catalysis. Chinese Chemical Letters, 2019, 30(12): 2089–2109

[9]

Liu J, Zhao H, Wu M, van der Schueren B, Li Y, Deparis O, Ye J, Ozin G A, Hasan T, Su B L. Slow photons for photocatalysis and photovoltaics. Advanced Materials, 2017, 29(17): 1605349

[10]

Chen J I L, von Freymann G, Choi S Y, Kitaev V, Ozin G A. Amplified photochemistry with slow photons. Advanced Materials, 2006, 18(14): 1915–1919

[11]

Arandiyan H, Wang Y, Sun H, Rezaei M, Dai H. Ordered meso- and macroporous perovskite oxide catalysts for emerging applications. Chemical Communications, 2018, 54(50): 6484–6502

[12]

Chen X, Ye J, Ouyang S, Kako T, Li Z, Zou Z. Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design. ACS Nano, 2011, 5(6): 4310–4318

[13]

Chang Y, Yu K, Zhang C, Li R, Zhao P, Lou L L, Liu S. Three-dimensionally ordered macroporous WO3 supported Ag3PO4 with enhanced photocatalytic activity and durability. Applied Catalysis B: Environmental, 2015, 176: 363–373

[14]

Chang Y, Xuan Y, Quan H, Zhang H, Liu S, Li Z, Yu K, Cao J. Hydrogen treated Au/3DOM-TiO2 with promoted photocatalytic efficiency for hydrogen evolution from water splitting. Chemical Engineering Journal, 2020, 382: 122869

[15]

Zalfani M, Van Der Schueren B, Hu Z, Rooke J C, Bourguiga R, Wu M, Li Y, Tendeloo G V, Su B L. Novel 3DOM BiVO4/TiO2 nanocomposites for highly enhanced photocatalytic activity. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(42): 21244–21256

[16]

Lin B, Li J, Xu B, Yan X, Yang B, Wei J, Yang G. Spatial positioning effect of dual cocatalysts accelerating charge transfer in three dimensionally ordered macroporous g-C3N4 for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 243: 94–105

[17]

Ji K, Dai H, Deng J, Zang H, Arandiyan H, Xie S, Yang H. 3DOM BiVO4 supported silver bromide and noble metals: high-performance photocatalysts for the visible-light-driven degradation of 4-chlorophenol. Applied Catalysis B: Environmental, 2015, 168: 274–282

[18]

Ji K, Deng J, Zang H, Han J, Arandiyan H, Dai H. Fabrication and high photocatalytic performance of noble metal nanoparticles supported on 3DOM InVO4-BiVO4 for the visible-light-driven degradation of rhodamine B and methylene blue. Applied Catalysis B: Environmental, 2015, 165: 285–295

[19]

Song Y, Li N, Chen D, Xu Q, Li H, He J, Lu J. 3D ordered MoP inverse opals deposited with CdS quantum dots for enhanced visible light photocatalytic activity. Applied Catalysis B: Environmental, 2018, 238: 255–262

[20]

Zhang C, Zhao P, Liu S, Yu K. Three-dimensionally ordered macroporous perovskite materials for environmental applications. Chinese Journal of Catalysis, 2019, 40(9): 1324–1338

[21]

Zhang G, Liu G, Wang L, Irvine J T S. Inorganic perovskite photocatalysts for solar energy utilization. Chemical Society Reviews, 2016, 45(21): 5951–5984

[22]

Yu K, Zhang C, Chang Y, Feng Y, Yang Z, Yang T, Lou L L, Liu S. Novel three-dimensionally ordered macroporous SrTiO3 photocatalysts with remarkably enhanced hydrogen production performance. Applied Catalysis B: Environmental, 2017, 200: 514–520

[23]

Chang Y, Yu K, Zhang C, Yang Z, Feng Y, Hao H, Jiang Y, Lou L L, Zhou W, Liu S. Ternary CdS/Au/3DOM-SrTiO3 composites with synergistic enhancement for hydrogen production from visible-light photocatalytic water splitting. Applied Catalysis B: Environmental, 2017, 215: 74–84

[24]

Wu X, Wang C, Wei Y, Xiong J, Zhao Y, Zhao Z, Liu J, Li J. Multifunctional photocatalysts of Pt-decorated 3DOM perovskite-type SrTiO3 with enhanced CO2 adsorption and photoelectron enrichment for selective CO2 reduction with H2O to CH4. Journal of Catalysis, 2019, 377: 309–321

[25]

Zhang C, Yu K, Feng Y, Chang Y, Yang T, Xuan Y, Lei D, Lou L L, Liu S. Novel 3DOM-SrTiO3/Ag/Ag3PO4 ternary Z-scheme photocatalysts with remarkably improved activity and durability for contaminant degradation. Applied Catalysis B: Environmental, 2017, 210: 77–87

[26]

Cheng L, Xiang Q, Liao Y, Zhang H. CdS-based photocatalysts. Energy & Environmental Science, 2018, 11(6): 1362–1391

[27]

Wang F, Kan Z G, Cao F, Guo Q, Xu Y L, Qi C Y, Li C L. Synergistic effects of CdS in sodium titanate based nanostructures for hydrogen evolution. Chinese Chemical Letters, 2018, 29(9): 1417–1420

[28]

Zhang D P, Wang P F, Chen F Y, Mu K L, Li Y, Wang H T, Ren Z J, Zhan S H. In situ integration of efficient photocatalyst Cu1.8S/ZnxCd1–xS heterojunction derived from a metal-organic framework. Chinese Chemical Letters, 2020, 31(10): 2795–2798

[29]

Li H, Chen Z H, Zhao L, Yang G D. Synthesis of TiO2@ZnIn2S4 hollow nanospheres with enhanced photocatalytic hydrogen evolution. Rare Metals, 2019, 38(5): 420–427

[30]

Li Q, Meng H, Zhou P, Zheng Y, Wang J, Yu J, Gong J. Zn1–xCdxS solid solutions with controlled bandgap and enhanced visible-light photocatalytic H2-production activity. ACS Catalysis, 2013, 3(5): 882–889

[31]

Zhong J, Zhang Y, Hu C, Hou R, Yin H, Li H, Huo Y. Supercritical solvothermal preparation of a ZnxCd1–xS visible photocatalyst with enhanced activity. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(46): 19641–19647

[32]

Zhu X, Yu S, Gong X, Xue C. In situ decoration of ZnxCd1–xS with FeP for efficient photocatalytic generation of hydrogen under irradiation with visible light. ChemPlusChem, 2018, 83(9): 825–830

[33]

Dai D, Xu H, Ge L, Han C, Gao Y, Li S, Lu Y. In situ synthesis of CoP co-catalyst decorated Zn0.5Cd0.5S photocatalysts with enhanced photocatalytic hydrogen production activity under visible light irradiation. Applied Catalysis B: Environmental, 2017, 217: 429–436

[34]

Zhang X, Zhao Z, Zhang W, Zhang G, Qu D, Miao X, Sun S, Sun Z. Surface defects enhanced visible light photocatalytic H2 production for Zn-Cd-S solid solution. Small, 2016, 12(6): 793–801

[35]

Zhao X, Feng J, Liu J, Shi W, Yang G, Wang G C, Cheng P. An efficient, visible-light-driven, hydrogen evolution catalyst NiS/ZnxCd1–xS nanocrystal derived from a metal-organic framework. Angewandte Chemie International Edition, 2018, 130(31): 9938–9942

[36]

Xue C, Li H, An H, Yang B, Wei J, Yang G. NiSx quantum dots accelerate electron transfer in Cd0.8Zn0.2S photocatalytic system via an rGO nanosheet “Bridge” toward visible-light-driven hydrogen evolution. ACS Catalysis, 2018, 8(2): 1532–1545

[37]

Sharma M, Singh S, Pandey O P. Excitation induced tunable emission in biocompatible chitosan capped ZnS nanophosphors. Journal of Applied Physics, 2010, 107(10): 104319

[38]

Zhao H, Liu H, Sun R, Chen Y, Li X A. Zn0.5Cd0.5S photocatalyst modified by 2D black phosphorus for efficient hydrogen evolution from water. ChemCatChem, 2018, 10(19): 4395–4405

[39]

Xuan Y, Quan H, Shen Z, Zhang C, Yang X, Lou L L, Liu S, Yu K. Band-gap and charge transfer engineering in red phosphorus-based composites for enhanced visible-light-driven H2 evolution. Chemistry (Weinheim an der Bergstrasse, Germany), 2020, 26(10): 2285–2292

[40]

Ning X, Zhen W, Wu Y, Lu G. Inhibition of CdS photocorrosion by Al2O3 shell for highly stable photocatalytic overall water splitting under visible light irradiation. Applied Catalysis B: Environmental, 2018, 226: 373–383

[41]

Yu K, Lei D, Feng Y, Yu H, Chang Y, Wang Y, Liu Y, Wang G C, Lou L L, Liu S, Zhou W. The role of Bi-doping in promoting electron transfer and catalytic performance of Pt/3DOM-Ce1–xBixO2–δ. Journal of Catalysis, 2018, 365: 292–302

[42]

Chang Y, Xuan Y, Zhang C, Hao H, Yu K, Liu S. Z-Scheme Pt@CdS/3DOM-SrTiO3 composite with enhanced photocatalytic hydrogen evolution from water splitting. Catalysis Today, 2019, 327: 315–322

[43]

Li B, Tian Z, Li H, Yang Z, Wang Y, Wang X. Self-supporting graphene aerogel electrode intensified by NiCo2S4 nanoparticles for asymmetric supercapacitor. Electrochimica Acta, 2019, 314: 32–39

[44]

Wang Z, Hisatomi T, Li R, Sayama K, Liu G, Domen K, Li C, Wang L. Efficiency accreditation and testing protocols for particulate photocatalysts toward solar fuel production. Joule, 2021, 5(2): 344–359

[45]

Yu T, Lv Z, Wang K, Sun K, Liu X, Wang G, Jiang L, Xie G. Constructing SrTiO3-T/CdZnS heterostructure with tunable oxygen vacancies for solar-light-driven photocatalytic hydrogen evolution. Journal of Power Sources, 2019, 438: 227014

[46]

Ren M, Ravikrishna R, Valsaraj K T. Photocatalytic degradation of gaseous organic species on photonic band-gap titania. Environmental Science & Technology, 2006, 40(22): 7029–7033

[47]

Zhang K, Liu Y, Deng J, Xie S, Lin H, Zhao X, Yang J, Han Z, Dai H. Fe2O3/3DOM BiVO4: high-performance photocatalysts for the visible light-driven degradation of 4-nitrophenol. Applied Catalysis B: Environmental, 2017, 202: 569–579

[48]

Zhao H, Hu Z, Liu J, Li Y, Wu M, Van Tendeloo G, Su B L. Blue-edge slow photons promoting visible-light hydrogen production on gradient ternary 3DOM TiO2-Au-CdS photonic crystals. Nano Energy, 2018, 47: 266–274

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1761KB)

Supplementary files

FCE-21023-OF-QH_suppl_1

5972

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/