Development of a dual temperature control system for isoprene biosynthesis in Saccharomyces cerevisiae
Jiaxi Lin, Zhen Yao, Xiaomei Lyu, Lidan Ye, Hongwei Yu
Development of a dual temperature control system for isoprene biosynthesis in Saccharomyces cerevisiae
Conflict between cell growth and product accumulation is frequently encountered in the biosynthesis of secondary metabolites. To address the growth-production conflict in yeast strains harboring the isoprene synthetic pathway in the mitochondria, the dynamic control of isoprene biosynthesis was explored. A dual temperature regulation system was developed through engineering and expression regulation of the transcriptional activator Gal4p. A cold-sensitive mutant, Gal4ep19, was created by directed evolution of Gal4p based on an internally developed growth-based high-throughput screening method and expressed under the heat-shock promoter PSSA4 to control the expression of PGAL-driven pathway genes in the mitochondria. Compared to the control strain with constitutively expressed wild-type Gal4p, the dual temperature regulation strategy led to 34.5% and 72% improvements in cell growth and isoprene production, respectively. This study reports the creation of the first cold-sensitive variants of Gal4p by directed evolution and provides a dual temperature control system for yeast engineering that may also be conducive to the biosynthesis of other high-value natural products.
transcriptional activator / directed evolution / dynamic control / heat-shock / isoprene
[1] |
Vickers C E, Suriana S. Isoprene. Advances in Biochemical Engineering/Biotechnology, 2015, 148(9): 289–317
CrossRef
Google scholar
|
[2] |
Lv X M, Wang F, Zhou P P, Ye L D, Xie W P, Xu H M, Yu H W. Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae. Nature Communications, 2016, 7(1): 12851
CrossRef
Google scholar
|
[3] |
Yao Z, Zhou P P, Su B M, Su S S, Ye L D, Yu H W. Enhanced isoprene production by reconstruction of metabolic balance between strengthened precursor supply and improved isoprene synthase in Saccharomyces cerevisiae. ACS Synthetic Biology, 2018, 7(9): 2308–2316
CrossRef
Google scholar
|
[4] |
Wang F, Lv X M, Xie W P, Zhou P P, Zhu Y Q, Yao Z, Yang C C, Yang X H, Ye L D, Yu H W. Combining Gal4p-mediated expression enhancement and directed evolution of isoprene synthase to improve isoprene production in Saccharomyces cerevisiae. Metabolic Engineering, 2017, 39: 257–266
CrossRef
Google scholar
|
[5] |
Cao X, Yang S, Cao C, Zhou Y J. Harnessing sub-organelle metabolism for biosynthesis of isoprenoids in yeast. Synthetic and Systems Biotechnology, 2020, 5(3): 179–186
CrossRef
Google scholar
|
[6] |
Traven A, Jelicic B, Sopta M. Yeast Gal4: a transcriptional paradigm revisited. EMBO Reports, 2006, 7(5): 496–499
CrossRef
Google scholar
|
[7] |
Da Silva N A, Srikrishnan S. Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae. FEMS Yeast Research, 2012, 12(2): 197–214
CrossRef
Google scholar
|
[8] |
Xie W P, Liu M, Lv X M, Lu W Q, Gu J L, Yu H W. Construction of a controllable β-carotene biosynthetic pathway by decentralized assembly strategy in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 2014, 111(1): 125–133
CrossRef
Google scholar
|
[9] |
Tan G H, Chen M, Foote C, Tan C. Temperature-sensitive mutations made easy: generating conditional mutations by using temperature-sensitive inteins that function within different temperature ranges. Genetics, 2009, 183(1): 13–22
CrossRef
Google scholar
|
[10] |
Zeidler M P, Tan C, Bellaiche Y, Cherry S, Häder S, Gayko U, Perrimon N. Temperature-sensitive control of protein activity by conditionally splicing inteins. Nature Biotechnology, 2004, 22(7): 871–876
CrossRef
Google scholar
|
[11] |
Chakshusmathi G, Mondal K, Lakshmi G S, Singh G, Roy A, Babu Ch R, Madhusudhanan S, Varadarajan R. Design of temperature-sensitive mutants solely from amino acid sequence. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(21): 7925–7930
CrossRef
Google scholar
|
[12] |
Mondal K, Dastidar A G, Singh G, Madhusudhanan S, Gande S L, VijayRaghavan K, Varadarajan R. Design and isolation of temperature-sensitive mutants of Gal4 in yeast and Drosophila. Journal of Molecular Biology, 2007, 370(5): 939–950
CrossRef
Google scholar
|
[13] |
Zhou P P, Xie W P, Yao Z, Zhu Y Q, Ye L D, Yu H W. Development of a temperature-responsive yeast cell factory using engineered Gal4 as a protein switch. Biotechnology and Bioengineering, 2018, 115(5): 1321–1330
CrossRef
Google scholar
|
[14] |
Mondal K, VijayRaghavan K, Varadarajan R. Design and utility of temperature-sensitive Gal4 mutants for conditional gene expression in Drosophila. Fly, 2007, 1(5): 282–286
CrossRef
Google scholar
|
[15] |
Boeke J D, LaCroute F, Fink G R. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast 5-fluoro-orotic acid resistance. Molecular Genetics and Genomics, 1984, 197(2): 345–346
CrossRef
Google scholar
|
[16] |
Sikorski R, Boeke J D. In vitro mutagenesis and plasmid shuffling: from cloned gene to mutant yeast. Methods in Enzymology, 1991, 194: 302–318
CrossRef
Google scholar
|
[17] |
Meng X D, Smith R M, Giesecke A V, Joung J K, Wolfe S A. Counter-selectable marker for bacterial-based interaction trap systems. BioTechniques, 2006, 40(2): 179–184
CrossRef
Google scholar
|
[18] |
Baliga C, Majhi S, Mondal K, Bhattacharjee A, VijayRaghavan K, Varadarajan R. Rational elicitation of cold-sensitive phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(18): E2506–E2515
CrossRef
Google scholar
|
[19] |
Brachmann C B, Davies A, Cost G J, Caputo E, Li J, Hieter P, Boeke J D. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast (Chichester, England), 1998, 14(2): 115–132
CrossRef
Google scholar
|
[20] |
Gietz R D, Schiestl R H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nature Protocols, 2007, 2(1): 31–34
CrossRef
Google scholar
|
[21] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method. Methods (San Diego, Calif.), 2001, 25(4): 402–408
CrossRef
Google scholar
|
[22] |
van Hoek P, de Hulster E, van Dijken J P, Pronk J T. Fermentative capacity in high-cell-density fed-batch cultures of baker’s yeast. Biotechnology and Bioengineering, 2000, 68(5): 517–523
CrossRef
Google scholar
|
[23] |
Meng X, Smith R M, Giesecke A V, Keith Joung J, Wolfe S A. Counter-selectable marker for bacterial-based interaction trap systems. BioTechniques, 2006, 40(2): 179–184
CrossRef
Google scholar
|
[24] |
Hong M Q, Fitzgerald M X, Harper S, Luo C, Speicher D W, Marmorstein R. Structural basis for dimerization in DNA recognition by Gal4. Structure (London, England), 2008, 16(7): 1019–1026
CrossRef
Google scholar
|
[25] |
Schjerling P, Holmberg S. Comparative amino acid sequence analysis of the C6 zinc cluster family of transcriptional regulators. Nucleic Acids Research, 1996, 24(23): 4599–4607
CrossRef
Google scholar
|
[26] |
Ma J, Ptashne M. Deletion analysis of GAL4 defines two transcriptional activating segments. Cell, 1987, 48(5): 847–853
CrossRef
Google scholar
|
[27] |
Johnston M, Dover J. Mutational analysis of the Gal4-encoded transcriptional activator protein of Saccharomyces cerevisiae. Genetics, 1988, 120(1): 63–74
CrossRef
Google scholar
|
[28] |
Zhou P P, Xu N N, Yang Z F, Du Y, Yue C L, Xu N, Ye L D. Directed evolution of the transcription factor Gal4 for development of an improved transcriptional regulation system in Saccharomyces cerevisiae. Enzyme and Microbial Technology, 2020, 142: 109675
CrossRef
Google scholar
|
[29] |
Boorstein W R, Craig E A. Structure and regulation of the SSA4 HSP70 gene of Saccharomyces cerevisiae. Journal of Biological Chemistry, 1990, 265(31): 18912–18921
CrossRef
Google scholar
|
[30] |
Chen Y, Daviet L, Schalk M, Siewers V, Nielsen J. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metabolic Engineering, 2013, 15: 48–54
CrossRef
Google scholar
|
[31] |
Gill G, Ptashne M. Negative effect of the transcriptional activator GAL4. Nature, 1988, 334(6184): 721–724
CrossRef
Google scholar
|
/
〈 | 〉 |