Near-infrared benzodiazoles as small molecule environmentally-sensitive fluorophores
Fabio de Moliner, Ina Biazruchka, Karolina Konsewicz, Sam Benson, Suraj Singh, Jun-Seok Lee, Marc Vendrell
Near-infrared benzodiazoles as small molecule environmentally-sensitive fluorophores
The development of fluorophores emitting in the near-infrared spectral window has gained increased attention given their suitable features for biological imaging. In this work, we have optimised a general and straightforward synthetic approach to prepare a small library of near-infrared-emitting C-bridged nitrobenzodiazoles using commercial precursors. C-bridged benzodiazoles have low molecular weight and neutral character as important features that are not common in most near-infrared dyes. We have investigated their fluorescence response in the presence of a wide array of 60 different biomolecules and identified compound 3i as a potential chemosensor to discriminate between Fe2+ and Fe3+ ions in aqueous media.
fluorescence / probes / iron / screening / library
[1] |
Park S J, Yeo H C, Kang N Y, Kim H, Lin J, Ha H H, Vendrell M, Lee J S, Chandran Y, Lee D Y,
CrossRef
Google scholar
|
[2] |
Carter K P, Young A M, Palmer A E. Fluorescent sensors for measuring metal ions in living systems. Chemical Reviews, 2014, 114(8): 4564–4601
CrossRef
Google scholar
|
[3] |
Jiao X Y, Li Y, Niu J Y, Xie X L, Wang X, Tang B. Small-molecule fluorescent probes for imaging and detection of reactive oxygen, nitrogen, and sulfur species in biological systems. Analitycal Chemistry, 2018, 90(1): 533–555
CrossRef
Google scholar
|
[4] |
Han J Y, Burgess K. Fluorescent indicators for intracellular pH. Chemical Reviews, 2010, 110(5): 2709–2728
CrossRef
Google scholar
|
[5] |
Dedecker P, De Schryver F C, Hofkens J. Fluorescent proteins: shine on, you crazy diamond. Journal of the American Chemical Society, 2013, 135(7): 2387–2402
CrossRef
Google scholar
|
[6] |
Gong J, Liu C, Jiao X J, He S, Zhao L C, Zeng X S. A novel near-infrared fluorescent probe with an improved Stokes shift for specific detection of Hg2+ in mitochondria. Organic & Biomolecular Chemistry, 2020, 18(27): 5238–5244
CrossRef
Google scholar
|
[7] |
Kwon H Y, Liu X, Choi E G, Lee J Y, Choi S Y, Kim J Y, Wang L, Park S J, Kim B, Lee Y A,
CrossRef
Google scholar
|
[8] |
Devaraj N K, Weissleder R. Biomedical applications of tetrazine cycloadditions. Accounts of Chemical Research, 2011, 44(9): 816–827
CrossRef
Google scholar
|
[9] |
Chen G Q, Guo Z, Zeng G M, Tang L. Fluorescent and colorimetric sensors for environmental mercury detection. Analyst (London), 2015, 140(16): 5400–5443
CrossRef
Google scholar
|
[10] |
Chan J, Dodani S C, Chang C J. Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. Nature Chemistry, 2012, 4(12): 973–984
CrossRef
Google scholar
|
[11] |
Duong T Q, Kim J S. Fluoro- and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens. Chemical Reviews, 2010, 110(10): 6280–6301
CrossRef
Google scholar
|
[12] |
Yraola F, Ventura R, Vendrell M, Colombo A, Fernandez J C, de la Figuera N, Fernandez-Forner D, Royo M, Forns P, Albericio F. A re-evaluation of the use of rink, BAL, and PAL resins and linkers. QSAR & Combinatorial Science, 2004, 23(2–3): 145–152
CrossRef
Google scholar
|
[13] |
Sainlos M, Iskenderian W S, Imperiali B. A general screening strategy for peptide-based fluorogenic ligands: probes for dynamic studies of PDZ domain-mediated interactions. Journal of the American Chemical Society, 2009, 131(19): 6680–6682
CrossRef
Google scholar
|
[14] |
Kalstrup T, Blunck R. Dynamics of internal pore opening in K(V) channels probed by a fluorescent unnatural amino acid. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(20): 8272–8277
CrossRef
Google scholar
|
[15] |
Sachdeva A, Wang K H, Elliott T, Chin J W. Concerted, rapid, quantitative, and site-specific dual labeling of proteins. Journal of the American Chemical Society, 2014, 136(22): 7785–7788
CrossRef
Google scholar
|
[16] |
Lampkowski J S, Uthappa D M, Young D D. Site-specific incorporation of a fluorescent terphenyl unnatural amino acid. Bioorganic & Medicinal Chemistry Letters, 2015, 25(22): 5277–5280
CrossRef
Google scholar
|
[17] |
FitzGerald L I, Aurelio L, Chen M, Yuen D, Rennick J J, Graham B, Johnston A P R. A molecular sensor to quantify the localization of proteins, DNA and nanoparticles in cells. Nature Communications, 2020, 11(1): 1–13
CrossRef
Google scholar
|
[18] |
Fernandez A, Vermeren M, Humphries D, Subiros-Funosas R, Barth N, Campana L, MacKinnon A, Feng Y, Vendrell M. Chemical modulation of in vivo macrophage function with subpopulation-specific fluorescent prodrug conjugates. ACS Central Science, 2017, 3(9): 995–1005
CrossRef
Google scholar
|
[19] |
Subiros-Funosas R, Mendive-Tapia L, Sot J, Pound J D, Barth N, Varela Y, Goni F M, Paterson M, Gregory C D, Albericio F,
CrossRef
Google scholar
|
[20] |
Barth N D, Subiros-Funosas R, Mendive-Tapia L, Duffin R, Shields M A, Cartwright J A, Henriques S T, Sot J, Goni F M, Lavilla R,
CrossRef
Google scholar
|
[21] |
Osseiran S, Austin L A, Cannon T M, Yan C, Langenau D M, Evans C L. Longitudinal monitoring of cancer cell subpopulations in monolayers, 3D spheroids, and xenografts using the photoconvertible dye DiR. Scientific Reports, 2019, 9(1): 1–10
CrossRef
Google scholar
|
[22] |
Anorma C, Hedhli J, Bearrood T E, Pino N W, Gardner S H, Inaba H, Zhang P, Li Y F, Feng D, Dibrell S E,
CrossRef
Google scholar
|
[23] |
Barth N D, Marwick J A, Vendrell M, Rossi A G, Dransfield I. The “Phagocytic synapse” and clearance of apoptotic cells. Frontiers in Immunology, 2017, 8: 1708–1717
CrossRef
Google scholar
|
[24] |
Yi Z, Luo Z, Barth N D, Meng X, Liu H, Bu W, All A, Vendrell M, Liu X. In vivo tumor visualization through MRI off-on switching of NaGdF4-CaCO3 nanoconjugates. Advanced Materials, 2019, 31(37): e1901851
CrossRef
Google scholar
|
[25] |
Samanta A, Vendrell M, Yun S W, Guan Z, Xu Q H, Chang Y T. A photostable near-infrared protein labeling dye for in vivo imaging. Chemistry, an Asian Journal, 2011, 6(6): 1353–1357
CrossRef
Google scholar
|
[26] |
Chen C, Tian R, Zeng Y, Chu C C, Liu G. Activatable fluorescence probes for “turn-on” and ratiometric biosensing and bioimaging: from NIR-I to NIR-II. Bioconjugate Chemistry, 2020, 31(2): 276–292
CrossRef
Google scholar
|
[27] |
Wang P Y, Fan Y, Lu L F, Liu L, Fan L L, Zhao M Y, Xie Y, Xu C J, Zhang F. NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer. Nature Communications, 2018, 9(1): 1–10
CrossRef
Google scholar
|
[28] |
Vahrmeijer A L, Hutteman M, van der Vorst J R, van de Velde C J H, Frangioni J V. Image-guided cancer surgery using near-infrared fluorescence. Nature Reviews. Clinical Oncology, 2013, 10(9): 507–518
CrossRef
Google scholar
|
[29] |
Guo Z Q, Park S, Yoon J, Shin I. Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chemical Society Reviews, 2014, 43(1): 16–29
CrossRef
Google scholar
|
[30] |
Wirth R, Gao P, Nienhaus G U, Sunbul M, Jaschke A. SiRA: a silicon rhodamine-binding aptamer for live-cell super-resolution RNA imaging. Journal of the American Chemical Society, 2019, 141(18): 7562–7571
CrossRef
Google scholar
|
[31] |
Koide Y, Urano Y, Hanaoka K, Piao W, Kusakabe M, Saito N, Terai T, Okabe T, Nagano T. Development of NIR fluorescent dyes based on Si-rhodamine for in vivo imaging. Journal of the American Chemical Society, 2012, 134(11): 5029–5031
CrossRef
Google scholar
|
[32] |
Ramos A A, Nascimento F B, de Souza T F M, Omori A T, Manieri T M, Cerchiaro G, Ribeiro A O. Photochemical and photophysical properties of phthalocyanines modified with optically active alcohols. Molecules (Basel, Switzerland), 2015, 20(8): 13575–13590
CrossRef
Google scholar
|
[33] |
Pal A K, Varghese S, Cordes D B, Slawin A M Z, Samuel I D W, Zysman-Colman E. Near-infrared fluorescence of silicon phthalocyanine carboxylate esters. Scientific Reports, 2017, 7(1): 1–14
CrossRef
Google scholar
|
[34] |
Wong R C H, Lo P C, Ng D K P. Stimuli responsive phthalocyanine-based fluorescent probes and photosensitizers. Coordination Chemistry Reviews, 2019, 379: 30–46
CrossRef
Google scholar
|
[35] |
Ilina K, MacCuaig W M, Laramie M, Jeouty J N, McNally L R, Henary M. Squaraine dyes: molecular design for different applications and remaining challenges. Bioconjugate Chemistry, 2020, 31(2): 194–213
CrossRef
Google scholar
|
[36] |
Xia G M, Wang H M. Squaraine dyes: the hierarchical synthesis and its application in optical detection. Journal of Photochemistry and Photobiology A Chemistry, 2017, 31: 84–113
CrossRef
Google scholar
|
[37] |
Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod B F E, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin M K, Gratzel M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry, 2014, 6(3): 242–247
CrossRef
Google scholar
|
[38] |
Mellanby R J, Scott J I, Mair I, Fernandez A, Saul L, Arlt J, Moral M, Vendrell M. Tricarbocyanine N-triazoles: the scaffold-of-choice for long-term near-infrared imaging of immune cells in vivo. Chemical Science (Cambridge), 2018, 9(36): 7261–7270
CrossRef
Google scholar
|
[39] |
Okuda K, Okabe Y, Kadonosono T, Ueno T, Youssif B G M, Kizaka-Kondoh S, Nagasawa H. 2-Nitroimidazole-tricarbocyanine conjugate as a near-infrared fluorescent probe for in vivo imaging of tumor hypoxia. Bioconjugate Chemistry, 2012, 23(3): 324–329
CrossRef
Google scholar
|
[40] |
Cosco E D, Caram J R, Bruns O T, Franke D, Day R A, Farr E P, Bawendi M G, Sletten E M. Flavylium polymethine fluorophores for near- and shortwave infrared imaging. Angewandte Chemie International Edition, 2017, 56(42): 13126–13129
CrossRef
Google scholar
|
[41] |
Benson S, Fernandez A, Barth N D, de Moliner F, Horrocks M H, Herrington C S, Abad J L, Delgado A, Kelly L, Chang Z,
CrossRef
Google scholar
|
[42] |
Yun S W, Kang N Y, Park S J, Ha H H, Kim Y K, Lee J S, Chang Y T. Diversity oriented fluorescence library approach (DOFLA) for live cell imaging probe development. Accounts of Chemical Research, 2014, 47(4): 1277–1286
CrossRef
Google scholar
|
[43] |
Lee J S, Vendrell M, Chang Y T. Diversity-oriented optical imaging probe development. Current Opinion in Chemical Biology, 2011, 15(6): 760–767
CrossRef
Google scholar
|
[44] |
Luo X, Qian L J, Xiao Y S, Tang Y, Zhao Y, Wang X, Gu L Y, Lei Z H, Bao J M, Wu J H,
CrossRef
Google scholar
|
[45] |
Burchak O N, Mugherli L, Ostuni M, Lacapere J J, Balakirev M Y. Combinatorial discovery of fluorescent pharmacophores by multicomponent reactions in droplet arrays. Journal of the American Chemical Society, 2011, 133(26): 10058–10061
CrossRef
Google scholar
|
[46] |
Kaplan J, Ward D M. The essential nature of iron usage and regulation. Current Biology, 2013, 23(15): R642–R646
CrossRef
Google scholar
|
[47] |
Dev S, Babitt J L. Overview of iron metabolism in health and disease. Hemodialysis International. International Symposium on Home Hemodialysis, 2017, 21: S6–S20
CrossRef
Google scholar
|
[48] |
Trivedi P C, Bartlett J J, Pulinilkunnil T. Lysosomal biology and function: modern view of cellular debris bin. Cells, 2020, 9(5): 1131–1166
CrossRef
Google scholar
|
[49] |
Xu H, Ren D. Lysosomal physiology. Annual Review of Physiology, 2015, 77(1): 57–80
CrossRef
Google scholar
|
/
〈 | 〉 |