Hydroxyl radical-involved cancer therapy via Fenton reactions

Mengying Liu , Yun Xu , Yanjun Zhao , Zheng Wang , Dunyun Shi

Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (3) : 345 -363.

PDF (4659KB)
Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (3) : 345 -363. DOI: 10.1007/s11705-021-2077-3
REVIEW ARTICLE
REVIEW ARTICLE

Hydroxyl radical-involved cancer therapy via Fenton reactions

Author information +
History +
PDF (4659KB)

Abstract

The tumor microenvironment features over-expressed hydrogen peroxide (H2O2). Thus, versatile therapeutic strategies based on H2O2 as a reaction substrate to generate hydroxyl radical (•OH) have been used as a prospective therapeutic method to boost anticancer efficiency. However, the limited Fenton catalysts and insufficient endogenous H2O2 content in tumor sites greatly hinder •OH production, failing to achieve the desired therapeutic effect. Therefore, supplying Fenton catalysts and elevating H2O2 levels into cancer cells are effective strategies to improve •OH generation. These therapeutic strategies are systematically discussed in this review. Furthermore, the challenges and future developments of hydroxyl radical-involved cancer therapy are discussed to improve therapeutic efficacy.

Graphical abstract

Keywords

hydroxyl radical / Fenton catalyst / hydrogen peroxide / cancer therapy

Cite this article

Download citation ▾
Mengying Liu, Yun Xu, Yanjun Zhao, Zheng Wang, Dunyun Shi. Hydroxyl radical-involved cancer therapy via Fenton reactions. Front. Chem. Sci. Eng., 2022, 16(3): 345-363 DOI:10.1007/s11705-021-2077-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hanahan D, Weinberg R A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5): 646–674

[2]

Liou G Y, Storz P. Reactive oxygen species in cancer. Free Radical Research, 2010, 44(5): 479–496

[3]

Fridovich I. Superoxide anion radical (O2•−), superoxide dismutases, and related matters. Journal of Biological Chemistry, 1997, 272(30): 18515–18517

[4]

Mi P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics, 2020, 10(10): 4557–4588

[5]

Gligorovski S, Strekowski R, Barbati S, Vione D. Environmental implications of hydroxyl radicals (•OH). Chemical Reviews, 2015, 115(24): 13051–13092

[6]

Yang B, Ding L, Yao H, Chen Y, Shi J. A metal-organic framework (MOF) Fenton nanoagent-enabled nanocatalytic cancer therapy in synergy with autophagy inhibition. Advanced Materials, 2020, 32(12): 1907152–1907164

[7]

Cheng L, Wang C, Feng L, Yang K, Liu Z. Functional nanomaterials for phototherapies of cancer. Chemical Reviews, 2014, 114(21): 10869–10939

[8]

Begg A C, Stewart F A, Vens C. Strategies to improve radiotherapy with targeted drugs. Nature Reviews. Cancer, 2011, 11(4): 239–253

[9]

Pan X, Bai L, Wang H, Wu Q, Wang H, Liu S, Xu B, Shi X, Liu H. Metal-organic-framework-derived carbon nanostructure augmented sonodynamic cancer therapy. Advanced Materials, 2018, 30(23): 1800180–1800189

[10]

Tang Z, Liu Y, He M, Bu W. Chemodynamic therapy: tumour microenvironment-mediated Fenton and Fenton-like reactions. Angewandte Chemie International Edition, 2019, 58(4): 946–956

[11]

Kim J, Cho H C, Jeon H, Kim D, Song C, Lee N, Choi S H, Hyeon T. Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer. Journal of the American Chemical Society, 2017, 139(32): 10992–10995

[12]

Wang J, Zhang Y, Archibong E, Ligler F S, Gu Z. Leveraging H2O2 levels for biomedical applications. Advanced Biosystems, 2017, 1(9): 1700084–1700099

[13]

Devine P J, Perreault S D, Luderer U. Roles of reactive oxygen species and antioxidants in ovarian toxicity. Biology of Reproduction, 2012, 86(2): 27

[14]

Zhang C, Bu W, Ni D, Zhang S, Li Q, Yao Z, Zhang J, Yao H, Wang Z, Shi J. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction. Angewandte Chemie International Edition, 2016, 55(6): 2101–2106

[15]

Liu X, Jin Y, Liu T, Yang S, Zhou M, Wang W, Yu H. Iron-based theranostic nanoplatform for improving chemodynamic therapy of cancer. ACS Biomaterials Science & Engineering, 2020, 6(9): 4834–4845

[16]

Ranji-Burachaloo H, Gurr P A, Dunstan D E, Qiao G G. Cancer treatment through nanoparticle-facilitated Fenton reaction. ACS Nano, 2018, 12(12): 11819–11837

[17]

Gao Z, He T, Zhang P, Li X, Zhang Y, Lin J, Hao J, Huang P, Cui J. Polypeptide-based theranostics with tumor-microenvironment-activatable cascade reaction for chemo-ferroptosis combination therapy. ACS Applied Materials & Interfaces, 2020, 12(18): 20271–20280

[18]

Hentze M W, Muckenthaler M U, Andrews N C. Balancing acts: molecular control of mammalian iron metabolism. Cell, 2004, 30(3): 285–297

[19]

Dong S, Dong Y, Jia T, Zhang F, Wang Z, Feng L, Sun Q, Gai S, Yang P. Sequential catalytic, magnetic targeting nanoplatform for synergistic photothermal and NIR-enhanced chemodynamic therapy. Chemistry of Materials, 2020, 32(23): 9868–9881

[20]

Chen G, Yang Y, Xu Q, Ling M, Lin H, Ma M, Sun R, Xu Y, Liu X, Li N, . Self-amplification of tumor oxidative stress with degradable metallic complexes for synergistic cascade tumor therapy. Nano Letters, 2020, 20(11): 8141–8150

[21]

Hou H, Huang X, Wei G, Xu F, Wang Y, Zhou S. Fenton reaction-assisted photodynamic therapy for cancer with multifunctional magnetic nanoparticles. ACS Applied Materials & Interfaces, 2019, 11(33): 29579–29592

[22]

Zhang Y, Lin L, Liu L, Liu F, Sheng S, Tian H, Chen X. Positive feedback nanoamplifier responded to tumor microenvironments for self-enhanced tumor imaging and therapy. Biomaterials, 2019, 216: 119255–119264

[23]

Wang D, Wu H, Wang C, Gu L, Chen H, Jana D, Feng L, Liu J, Wang X, Xu P, . Self-assembled single-site nanozyme for tumor-specific amplified cascade enzymatic therapy. Angewandte Chemie International Edition, 2021, 60(6): 3001–3007

[24]

Liu X, Jin Y, Liu T, Yang S, Zhou M, Wang W, Yu H. Iron-based theranostic nanoplatform for improving chemodynamic therapy of cancer. ACS Biomaterials Science & Engineering, 2020, 6(9): 4834–4845

[25]

Jiang F, Ding B, Liang S, Zhao Y, Cheng Z, Xing B, Ma P, Lin J. Intelligent MoS2-CuO heterostructures with multiplexed imaging and remarkably enhanced antitumor efficacy via synergetic photothermal therapy/chemodynamic therapy/immunotherapy. Biomaterials, 2021, 268: 120545–120557

[26]

Cao S, Fan J, Sun W, Li F, Li K, Tai X, Peng X. A novel Mn-Cu bimetallic complex for enhanced chemodynamic therapy with simultaneous glutathione depletion. Chemical Communications, 2019, 55(86): 12956–12959

[27]

Wang C, Yang J, Dong C, Shi S. Glucose oxidase-related cancer therapies. Advanced Therapeutics, 2020, 3(10): 2000110–2000139

[28]

Lou-Franco J, Das B, Elliott C, Cao C. Gold nanozymes: from concept to biomedical applications. Nano-Micro Letters, 2021, 13(1): 10–46

[29]

Chen Y, Deng J, Liu F, Dai P, An Y, Wang Z, Zhao Y. Energy-free, singlet oxygen-based chemodynamic therapy for selective tumor treatment without dark toxicity. Advanced Healthcare Materials, 2019, 8(18): 1900366–1900376

[30]

Sullivan L B, Chandel N S. Mitochondrial reactive oxygen species and cancer. Cancer & Metabolism, 2014, 2(1): 17–29

[31]

Hu H, Yu L, Qian X, Chen Y, Chen B, Li Y. Chemoreactive nanotherapeutics by metal peroxide based nanomedicine. Advancement of Science, 2020, 8(1): 2000494–2000511

[32]

Ka H, Park H J, Jung H J, Choi J W, Cho K S, Ha J, Lee K T. Cinnamaldehyde induces apoptosis by ROS-mediated mitochondrial permeability transition in human promyelocytic leukemia HL-60 cells. Cancer Letters, 2003, 196(2): 143–152

[33]

Ahn K J, Lee H S, Bai S K, Song C W. Enhancement of radiation effect using beta-lapachone and underlying mechanism. Radiation Oncology Journal, 2013, 31(2): 57–65

[34]

Huang C, Liao Z, Lu H, Pan W, Wan W, Chen C, Sung H. Cellular organelle-dependent cytotoxicity of iron oxide nanoparticles and its implications for cancer diagnosis and treatment: a mechanistic investigation. Chemistry of Materials, 2016, 28(24): 9017–9025

[35]

Zhang Y, Wan Y, Liao Y, Hu Y, Jiang T, He T, Bi W, Lin J, Gong P, Tang L, . Janus γ-Fe2O3/SiO2-based nanotheranostics for dual-modal imaging and enhanced synergistic cancer starvation/chemodynamic therapy. Science Bulletin, 2020, 65(7): 564–572

[36]

Liu Z, Li T, Han F, Wang Y, Gan Y, Shi J, Wang T, Akhtarc M L, Li Y. A cascade-reaction enabled synergistic cancer starvation/ROS-mediated/chemo-therapy with an enzyme modified Fe-based MOF. Biomaterials Science, 2019, 7(9): 3683–3692

[37]

Wang L, Huo M, Chen Y, Shi J. Iron-engineered mesoporous silica nanocatalyst with biodegradable and catalytic framework for tumor-specific therapy. Biomaterials, 2018, 163: 1–13

[38]

He T, Yuan Y, Jiang C, Blum N T, He J, Huang P, Lin J. Light-triggered transformable ferrous ion delivery system for photothermal primed chemodynamic therapy. Angewandte Chemie International Edition, 2021, 60(11): 6047–6054

[39]

Yu J, Zhao F, Gao W, Yang X, Ju Y, Zhao L, Guo W, Xie J, Liang X, Tao X, . Magnetic reactive oxygen species nanoreactor for switchable magnetic resonance imaging guided cancer therapy based on pH-sensitive Fe5C2@Fe3O4 nanoparticles. ACS Nano, 2019, 13(9): 10002–10014

[40]

Yao Z, Zhang B, Liang T, Ding J, Min Q, Zhu J. Promoting oxidative stress in cancer starvation therapy by site-specific startup of hyaluronic acid-enveloped dual-catalytic nanoreactors. ACS Applied Materials & Interfaces, 2019, 11(21): 18995–19005

[41]

Gao F, Wang F, Nie X, Zhang Z, Chen G, Xia L, Wang L, Wang C, Hao Z, Zhang W, . Mitochondria-targeted delivery and light controlled release of iron prodrug and CO to enhance cancer therapy by ferroptosis. New Journal of Chemistry, 2020, 44(8): 3478–3486

[42]

Nie X, Xia L, Wang H, Chen G, Wu B, Zeng T, Hong C, Wang L, You Y. Photothermal therapy nanomaterials boosting transformation of Fe(III) into Fe(II) in tumor cells for highly improving chemodynamic therapy. ACS Applied Materials & Interfaces, 2019, 11(35): 31735–31742

[43]

Fang C, Deng Z, Cao G, Chu Q, Wu Y, Li X, Peng X, Han G. Co-ferrocene MOF/glucose oxidase as cascade nanozyme for effective tumor therapy. Advanced Functional Materials, 2020, 30(16): 1910085–1910094

[44]

Deng Z, Fang C, Ma X, Li X, Zeng Y J, Peng X. One stone two birds: Zr-Fc metal-organic framework nanosheet for synergistic photothermal and chemodynamic cancer therapy. ACS Applied Materials & Interfaces, 2020, 12(18): 20321–20330

[45]

Na Y, Woo J, Choi W I, Sung D. Novel carboxylated ferrocene polymer nanocapsule with high reactive oxygen species sensitivity and on-demand drug release for effective cancer therapy. Colloids and Surfaces. B, Biointerfaces, 2021, 200: 111566–111572

[46]

Chen Y, Yao Y, Zhou X, Liao C, Dai X, Liu J, Yu Y, Zhang S. Cascade-reaction-based nanodrug for combined chemo/starvation/chemodynamic therapy against multidrug-resistant tumors. ACS Applied Materials & Interfaces, 2019, 11(49): 46112–46123

[47]

Zhang L, Wan S, Li C, Xu L, Cheng H, Zhang X. An adenosine triphosphate-responsive autocatalytic Fenton nanoparticle for tumor ablation with self-supplied H2O2 and acceleration of Fe(III)/Fe(II) conversion. Nano Letters, 2018, 18(12): 7609–7618

[48]

Dong Z, Feng L, Chao Y, Hao Y, Chen M, Gong F, Han X, Zhang R, Cheng L, Liu Z. Amplification of tumor oxidative stresses with liposomal Fenton catalyst and glutathione inhibitor for enhanced cancer chemotherapy and radiotherapy. Nano Letters, 2019, 19(2): 805–815

[49]

Liu T, Liu W, Zhang M, Yu W, Gao F, Li C, Wang S, Feng J, Zhang X. Ferrous-supply-regeneration nanoengineering for cancer-cell-specific ferroptosis in combination with imaging-guided photodynamic therapy. ACS Nano, 2018, 12(12): 12181–12192

[50]

Shan L, Gao G, Wang W, Tang W, Wang Z, Yang Z, Fan W, Zhu G, Zhai K, Jacobson O, . Self-assembled green tea polyphenol-based coordination nanomaterials to improve chemotherapy efficacy by inhibition of carbonyl reductase 1. Biomaterials, 2019, 210: 62–69

[51]

Mu M, Wang Y, Zhao S, Li X, Fan R, Mei L, Wu M, Zou B, Zhao N, Han B, Guo G. Engineering a pH/glutathione-responsive tea polyphenol nanodevice as an apoptosis/ferroptosis-inducing agent. ACS Applied Bio Materials, 2020, 3(7): 4128–4138

[52]

He T, Qin X, Jiang C, Jiang D, Lei S, Lin J, Zhu W G, Qu J, Huang P. Tumor pH-responsive metastable-phase manganese sulfide nanotheranostics for traceable hydrogen sulfide gas therapy primed chemodynamic therapy. Theranostics, 2020, 10(6): 2453–2462

[53]

Fu L H, Hu Y R, Qi C, He T, Jiang S, Jiang C, He J, Qu J, Lin J, Huang P. Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced anti-tumor therapy. ACS Nano, 2019, 13(12): 13985–13994

[54]

He T, Jiang C, He J, Zhang Y, He G, Wu J, Lin J, Zhou X, Huang P. Manganese-dioxide-coating-instructed plasmonic modulation of gold nanorods for activatable duplex-imaging-guided NIR-II photothermal-chemodynamic therapy. Advanced Materials, 2021, 33(13): 2008540–2008550

[55]

Qi C, He J, Fu L H, He T, Blum N T, Yao X, Lin J, Huang P. Tumor-specific activatable nanocarriers with gas-generation and signal amplification capabilities for tumor theranostics. ACS Nano, 2021, 15(1): 1627–1639

[56]

Fu L H, Wan Y, Li C, Qi C, He T, Yang C, Zhang Y, Lin J, Huang P. Biodegradable calcium phosphate nanotheranostics with tumor-specific activatable cascade catalytic reactions-augmented photodynamic therapy. Advanced Functional Materials, 2021, 31(14): 2009848–2009859

[57]

Lin L S, Song J, Song L, Ke K, Liu Y, Zhou Z, Shen Z, Li J, Yang Z, Tang W, . Simultaneous Fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy. Angewandte Chemie International Edition, 2018, 57(18): 4902–4906

[58]

Wang Z, Liu B, Sun Q, Dong S, Kuang Y, Dong Y, He F, Gai S, Yang P. Fusiform-like copper(II)-based metal-organic framework through relief hypoxia and GSH-depletion Co-enhanced starvation and chemodynamic synergetic cancer therapy. ACS Applied Materials & Interfaces, 2020, 12(15): 17254–17267

[59]

Hu R, Fang Y, Huo M, Ya H, Wang C, Chen Y, Wu R. Ultrasmall Cu2–xS nanodots as photothermal-enhanced Fenton nanocatalysts for synergistic tumor therapy at NIR-II biowindow. Biomaterials, 2019, 206: 101–114

[60]

Wang X, Zhong X, Lei H, Geng Y, Zhao Q, Gong F, Yang Z, Dong Z, Liu Z, Cheng L. Hollow Cu2Se nanozymes for tumor photothermal-catalytic therapy. Chemistry of Materials, 2019, 31(16): 6174–6186

[61]

Fu L H, Wan Y, Qi C, He J, Li C, Yang C, Xu H, Lin J, Huang P. Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient cancer therapy. Advanced Materials, 2021, 33(7): 2006892–2006903

[62]

Yang C, Younis M R, Zhang J, Qu J, Lin J, Huang P. Programmable NIR-II photothermal-enhanced starvation-primed chemodynamic therapy using glucose oxidase-functionalized ancient pigment nanosheets. Small, 2020, 16(25): 2001518–2001528

[63]

Ma B, Wang S, Liu F, Zhang S, Duan J, Li Z, Kong Y, Sang Y, Liu H, Bu W, . Self-assembled copper-amino acid nanoparticles for in situ glutathione “and” H2O2 sequentially triggered chemodynamic therapy. Journal of the American Chemical Society, 2019, 141(2): 849–857

[64]

Huo M, Wang L, Chen Y, Shi J. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nature Communications, 2017, 8(1): 357–369

[65]

He T, Xu H, Zhang Y, Yi S, Cui R, Xing S, Wei C, Lin J, Huang P. Glucose oxidase-instructed traceable self-oxygenation/hyperthermia dually enhanced cancer starvation therapy. Theranostics, 2020, 10(4): 1544–1554

[66]

Feng L, Xie R, Wang C, Gai S, He F, Yang D, Yang P, Lin J. Magnetic targeting, tumor microenvironment responsive intelligent nanocatalysts for enhanced tumor ablation. ACS Nano, 2018, 12(11): 11000–11012

[67]

Ding Y, Xu H, Xu C, Tong Z, Zhang S, Bai Y, Chen Y, Xu Q, Zhou L, Ding H, . A nanomedicine fabricated from gold nanoparticles-decorated metal-organic framework for cascade chemo/chemodynamic cancer therapy. Advancement of Science, 2020, 7(17): 2001060–2001070

[68]

Gao S, Lin H, Zhang H, Yao H, Chen Y, Shi J. Nanocatalytic tumor therapy by biomimetic dual inorganic nanozyme-catalyzed cascade reaction. Advancement of Science, 2019, 6(3): 1801733–1801745

[69]

Ma P, Xiao H, Yu C, Liu J, Cheng Z, Song H, Zhang X, Li C, Wang J, Gu Z, . Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species. Nano Letters, 2017, 17(2): 928–937

[70]

Sang Y, Cao F, Li W, Zhang L, You Y, Deng Q, Dong K, Ren J, Qu X. Bioinspired construction of a nanozyme-based H2O2 homeostasis disruptor for intensive chemodynamic therapy. Journal of the American Chemical Society, 2020, 142(11): 5177–5183

[71]

Wang Y, Yin W, Ke W, Chen W, He C, Ge Z. Multifunctional polymeric micelles with amplified Fenton reaction for tumor ablation. Biomacromolecules, 2018, 19(6): 1990–1998

[72]

An Y, Zhu J, Liu F, Deng J, Meng X, Liu G, Wu H, Fan A, Wang Z, Zhao Y. Boosting the ferroptotic antitumor efficacy via site-specific amplification of tailored lipid peroxidation. ACS Applied Materials & Interfaces, 2019, 11(33): 29655–29666

[73]

Han Y, Ouyang J, Li Y, Wang F, Jiang J H. Engineering H2O2 self-supplying nanotheranostic platform for targeted and imaging-guided chemodynamic therapy. ACS Applied Materials & Interfaces, 2020, 12(1): 288–297

[74]

Gao S, Lu X, Zhu P, Lin H, Yu L, Yao H, Wei C, Chen Y, Shi J. Self-evolved hydrogen peroxide boosts photothermal-promoted tumor-specific nanocatalytic therapy. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2019, 7(22): 3599–3609

[75]

Lin L, Huang T, Song J, Ou X, Wang Z, Deng H, Tian R, Liu Y, Wang J, Liu Y, . Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy. Journal of the American Chemical Society, 2019, 141(25): 9937–9945

[76]

Zhang S, Cao C, Lv X, Dai H, Zhong Z, Liang C, Wang W, Huang W, Song X, Dong X A. H2O2 self-sufficient nanoplatform with domino effects for thermal-responsive enhanced chemodynamic therapy. Chemical Science (Cambridge), 2020, 11(7): 1926–1934

[77]

Xu X, Zeng Z, Chen J, Huang B, Guan Z, Huang Y, Huang Z, Zhao C. Tumor-targeted supramolecular catalytic nanoreactor for synergistic chemo/chemodynamic therapy via oxidative stress amplification and cascaded Fenton reaction. Chemical Engineering Journal, 2020, 390: 124628–124644

[78]

Kwon B, Han E, Yang W, Cho W, Yoo W, Hwang J, Kwon B M, Lee D. Nano-Fenton reactors as a new class of oxidative stress amplifying anticancer therapeutic agents. ACS Applied Materials & Interfaces, 2016, 8(9): 5887–5897

[79]

Wang S, Wang Z, Yu G, Zhou Z, Jacobson O, Liu Y, Ma Y, Zhang F, Chen Z Y, Chen X. Tumor-specific drug release and reactive oxygen species generation for cancer chemo/chemodynamic combination therapy. Advancement of Science, 2019, 6(5): 1801986–1801993

[80]

Wang S, Yu G, Wang Z, Jacobson O, Lin L S, Yang W, Deng H, He Z, Liu Y, Chen Z Y, . Enhanced antitumor efficacy by a cascade of reactive oxygen species generation and drug release. Angewandte Chemie International Edition, 2019, 58(41): 14758–14763

[81]

Chen Q, Zhou J, Chen Z, Luo Q, Xu J, Song G. Tumor-specific expansion of oxidative stress by glutathione depletion and use of a Fenton nanoagent for enhanced chemodynamic therapy. ACS Applied Materials & Interfaces, 2019, 11(34): 30551–30565

[82]

Li X, Zhao C, Deng G, Liu W, Shao J, Zhou Z, Liu F, Yang H, Yang S. Nanozyme-augmented tumor catalytic therapy by self-supplied H2O2 generation. ACS Applied Bio Materials, 2020, 3(3): 1769–1778

[83]

Attia M F, Anton N, Wallyn J, Omran Z, Vandamme T F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. Journal of Pharmacy and Pharmacology, 2019, 71(8): 1185–1198

[84]

Din F U, Aman W, Ullah I, Qureshi O S, Mustapha O, Shafique S, Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. International Journal of Nanomedicine, 2017, 12: 7291–7309

[85]

Khodabandehloo H, Zahednasab H, Hafez A A. Nanocarriers usage for drug delivery in cancer therapy. Iranian Journal of Cancer Prevention, 2016, 9(2): 3966–3973

[86]

Sutrisno L, Hu Y, Hou Y, Cai K, Li M, Luo Z. Progress of iron-based nanozymes for antitumor therapy. Frontiers in Chemistry, 2020, 8: 680–689

[87]

Hagen H, Marzenell P, Jentzsch E, Wenz F, Veldwijk M R, Mokhir A. Aminoferrocene-based prodrugs activated by reactive oxygen species. Journal of Medicinal Chemistry, 2012, 55(2): 924–934

[88]

Hu M, Ju Y, Liang K, Suma T, Cui J, Caruso F. Void engineering in metal-organic frameworks via synergistic etching and surface functionalization. Advanced Functional Materials, 2016, 26(32): 5827–5834

[89]

Yang W, Sousa A M M, Thomas-Gahring A, Fan X, Jin T, Li X, Tomasula P M, Liu L. Electrospun polymer nanofibers reinforced by tannic acid/Fe+++ complex. Materials (Basel), 2016, 9(9): 757–769

[90]

Lu S C. Regulation of glutathione synthesis. Molecular Aspects of Medicine, 2009, 30(1-2): 42–59

[91]

Wan S S, Cheng Q, Zeng X, Zhang X Z A. Mn(III)-sealed metal-organic-framework nanosystem for redox-unlocked tumor theranostics. ACS Nano, 2019, 13(6): 6561–6571

[92]

Zhao H, Wang Y, Wang Y, Cao T, Zhao G. Electro-Fenton oxidation of pesticides with a novel Fe3O4@Fe2O3/activated carbon aerogel cathode: high activity, wide pH range and catalytic mechanism. Applied Catalysis B: Environmental, 2012, 125: 120–127

[93]

Masomboon N, Ratanatamskul C, Lu M C. Chemical oxidation of 2, 6-dimethylaniline in the Fenton process. Environmental Science & Technology, 2009, 43(22): 8629–8634

[94]

Brillas E, Banos M A, Camps S, Arias C, Cabot P L, Garrido J A, Rodriguez R M. Catalytic effect of Fe2+, Cu2+ and UVA light on the electrochemical degradation of nitrobenzene using an oxygen-diffusion cathode. New Journal of Chemistry, 2004, 28(2): 314–322

[95]

Li T, Zhou J, Wang L, Zhang H, Song C, Fuente J M, Pan Y, Song J, Zhang C, Cui D. Photo-Fenton-like metal-protein self-assemblies as multifunctional tumor theranostic agent. Advanced Healthcare Materials, 2019, 8(15): 1900192–1900204

[96]

Zhang W, Lu J, Gao X, Li P, Zhang W, Ma Y, Wang H, Tang B. Enhanced photodynamic therapy by reduced levels of intracellular glutathione obtained by employing a nano-MOF with Cu(II) as the active center. Angewandte Chemie International Edition, 2018, 57(18): 4891–4896

[97]

Fu L H, Qi C, Hu Y R, Lin J, Huang P. Glucose oxidase-instructed multimodal synergistic cancer therapy. Advanced Materials, 2019, 31(21): 1808325–1808339

[98]

Zheng X, Liu Q, Jing C, Li Y, Li D, Luo W, Wen Y, He Y, Huang Q, Long Y T, . Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization. Angewandte Chemie International Edition, 2011, 50(50): 12200–12204

[99]

Zhang J, Mou L, Jiang X. Surface chemistry of gold nanoparticles for healthrelated applications. Chemical Science (Cambridge), 2020, 11(4): 923–936

[100]

Ighodaro O M, Akinloye O A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 2018, 54(4): 287–293

[101]

Singh S. Nanomaterials exhibiting enzyme-like properties (nanozymes): current advances and future perspectives. Frontiers in Chemistry, 2019, 7: 46–56

[102]

Kim Y S, Vallur P G, Phaëton R, Mythreye K, Hempel N. Insights into the dichotomous regulation of SOD2 in cancer. Antioxidants, 2017, 6(4): 86–111

[103]

Wang X, Chen N, Liu X, Shi Y, Ling C, Zhang L. Ascorbate guided conversion of hydrogen peroxide to hydroxyl radical on goethite. Applied Catalysis B: Environmental, 2021, 282: 119558–119565

[104]

Gao S, Jin Y, Ge K, Li Z, Liu H, Dai X, Zhang Y, Chen S, Liang X, Zhang J. Self-supply of O2 and H2O2 by a nanocatalytic medicine to enhance combined chemo/chemodynamic therapy. Advancement of Science, 2019, 6(24): 1902137–1902146

[105]

He C, Zhang X, Xiang G. Nanoparticle facilitated delivery of peroxides for effective cancer treatments. Biomaterials Science, 2020, 8(20): 5574–5582

[106]

Golikova E P, Lakina N V, Grebennikova O V, Matveeva V G, Sulman E M. A study of biocatalysts based on glucose oxidase. Faraday Discussions, 2017, 202: 303–314

[107]

Bankar S B, Bule M V, Singhal R S, Ananthanarayan L. Glucose oxidase—an overview. Biotechnology Advances, 2009, 27(4): 489–501

[108]

Zhao L, Wang L, Zhang Y, Xiao S, Bi F, Zhao J, Gai G, Ding J. Glucose oxidase-based glucose-sensitive drug delivery for diabetes treatment. Polymers, 2017, 9(7): 255–276

[109]

Karunwi O, Guiseppi-Elie A. Supramolecular glucose oxidase-SWNT conjugates formed by ultrasonication: effect of tube length, functionalization and processing time. Journal of Nanobiotechnology, 2013, 11(1): 6–22

[110]

Zeng L, Huang K, Wan Y, Zhang J, Yao X, Jiang C, Lin J, Huang P. Programmable starving-photodynamic synergistic cancer therapy. Science China Materials, 2020, 63(4): 611–619

[111]

Zhang Y, Yang Y, Jiang S, Li F, Lin J, Wang T, Huang P. Degradable silver-based nanoplatform for synergistic cancer starving-like/metal ion therapy. Materials Horizons, 2019, 6(1): 169–175

[112]

Fu L H, Qi C, Lin J, Huang P. Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment. Chemical Society Reviews, 2018, 47(17): 6454–6472

[113]

Fan W, Lu N, Huang P, Liu Y, Yang Z, Wang S, Yu G, Liu Y, Hu J, He Q, . Glucose-responsive sequential generation of hydrogen peroxide and nitric oxide for synergistic cancer starving-like/gas therapy. Angewandte Chemie International Edition, 2017, 56(5): 1229–1233

[114]

Comotti M, Pina C D, Matarrese R, Rossi M. The catalytic activity of “naked” gold particles. Angewandte Chemie International Edition, 2004, 43(43): 5812–5815

[115]

Comotti M, Pina C D, Falletta E, Rossi M. Aerobic oxidation of glucose with gold catalyst: hydrogen peroxide as intermediate and reagent. Advanced Synthesis & Catalysis, 2006, 348(3): 313–316

[116]

Mu J, He L, Fan W, Tang W, Wang Z, Jiang C, Zhang D, Liu Y, Deng H, Zou J, . Cascade reactions catalyzed by planar metal-organic framework hybrid architecture for combined cancer therapy. Small, 2020, 16(42): 2004016–2004024

[117]

Jiang D, Ni D, Rosenkrans Z T, Huang P, Yan X, Cai W. Nanozyme: new horizons for responsive biomedical applications. Chemical Society Reviews, 2019, 48(14): 3683–3704

[118]

Malik A, Sultana M, Qazi A, Qazi M H, Parveen G, Waquar S, Ashraf A B, Rasool M. Role of natural radiosensitizers and cancer cell radioresistance: an update. Analytical Cellular Pathology, 2016, 2016: 2016–2021

[119]

Nedeljkovic Z S, Gokce N, Loscalzo J. Mechanisms of oxidative stress and vascular dysfunction. Postgraduate Medical Journal, 2003, 79(930): 195–200

[120]

Pandey K B, Rizvi S I. Markers of oxidative stress in erythrocytes and plasma during aging in humans. Oxidative Medicine and Cellular Longevity, 2010, 3(1): 2–12

[121]

Ohno S, Ohno Y, Suzuki N, Soma G I, Inoue M. High-dose vitamin C (ascorbic acid) therapy in the treatment of patients with advanced cancer. Anticancer Research, 2009, 29(3): 809–815

[122]

Chen Q, Espey M G, Sun A Y, Lee J H, Krishna M C, Shacter E, Choyke P L, Pooput C, Kirk K L, Buettner G R, . Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(21): 8749–8754

[123]

Chen Q, Espey M G, Krishna M C, Mitchell J B, Corpe C P, Buettner G R, Shacter E, Levine M. Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(38): 13604–13609

[124]

Chen Q, Espey M G, Sun A Y, Pooput C, Kirk K L, Krishna M C, Khosh D B, Drisko J, Levine M. Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(32): 11105–11109

[125]

Ma Y, Chapman J, Levine M, Polireddy K, Drisko J, Chen Q. High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy. Science Translational Medicine, 2014, 6(222): 222ra18

[126]

Yun J, Mullarky E, Lu C, Bosch K N, Kavalier A, Rivera K, Roper J, Chio I I C, Giannopoulou E G, Rago C, . Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science, 2015, 350(6266): 1391–1396

[127]

Li X, Du Y, Wang H, Ma H, Wu D, Ren X, Wei Q, Xu J J. Self-supply of H2O2 and O2 by hydrolyzing CaO2 to enhance the electrochemiluminescence of luminol based on a closed bipolar electrode. Analytical Chemistry, 2020, 92(18): 12693–12699

[128]

Huang C C, Chia W T, Chung M F, Lin K J, Hsiao C W, Jin C, Lim W H, Chen C C, Sung H W. An implantable depot that can generate oxygen in situ for overcoming hypoxia-induced resistance to anticancer drugs in chemotherapy. Journal of the American Chemical Society, 2016, 138(16): 5222–5225

[129]

Lin L S, Wang J F, Song J, Liu Y, Zhu G, Dai Y, Shen Z, Tian R, Song J, Wang Z, . Cooperation of endogenous and exogenous reactive oxygen species induced by zinc peroxide nanoparticles to enhance oxidative stress-based cancer therapy. Theranostics, 2019, 9(24): 7200–7209

[130]

Yan Z, Bing W, Ding C, Dong K, Ren J, Qu X A. H2O2-free depot for treating bacterial infection: localized cascade reactions to eradicate biofilms in vivo. Nanoscale, 2018, 10(37): 17656–17662

[131]

Kim B, Lee E, Kim Y, Park S, Khang G, Lee D. Dual acid-responsive micelle-forming anticancer polymers as new anticancer therapeutics. Advanced Functional Materials, 2013, 23(40): 5091–5097

[132]

Noh J, Kwon B, Han E, Park M, Yang W, Cho W, Yoo W, Khang G, Lee D. Amplification of oxidative stress by a dual stimuli-responsive hybrid drug enhances cancer cell death. Nature Communications, 2015, 20(6): 6907–6916

[133]

Cionti C, Taroni T, Sabatini V, Meroni D. Nanostructured oxide-based systems for the pH-triggered release of cinnamaldehyde. Materials (Basel), 2021, 14(6): 1536–1548

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4659KB)

5873

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/