Novel lysosome-targeted anticancer fluorescent agents used in zebrafish and nude mouse tumour imaging

Xiuli Chen , Feng Liu , Bin Chen , Haiying Wu , Kun Li , Yongmei Xie , Weihong Kuang , Zhihui Li

Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (1) : 112 -120.

PDF (4102KB)
Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (1) : 112 -120. DOI: 10.1007/s11705-021-2075-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Novel lysosome-targeted anticancer fluorescent agents used in zebrafish and nude mouse tumour imaging

Author information +
History +
PDF (4102KB)

Abstract

The design of three novel fatty nitrogen mustard-based anticancer agents with fluorophores incorporated into the alkene structure (CXL 118, CXL121, and CXL122) is described in this report. The results indicated that these compounds are selectively located in lysosomes and exhibit effective antitumour activity. Notably, these compounds can directly serve as both reporting and imaging agents in vitro and in vivo without the need to add other fluorescent tagging agents.

Graphical abstract

Keywords

fluorescent drug / lysosomal / anticancer / zebrafish / nude-mouse tumour imaging

Cite this article

Download citation ▾
Xiuli Chen, Feng Liu, Bin Chen, Haiying Wu, Kun Li, Yongmei Xie, Weihong Kuang, Zhihui Li. Novel lysosome-targeted anticancer fluorescent agents used in zebrafish and nude mouse tumour imaging. Front. Chem. Sci. Eng., 2022, 16(1): 112-120 DOI:10.1007/s11705-021-2075-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu Y, Zhou J, Wang L, Hu X, Liu X, Liu M, Cao Z, Shangguan D, Tan W. A cyanine dye to probe mitophagy: simultaneous detection of mitochondria and autolysosomes in live cells. Journal of the American Chemical Society, 2016, 138(38): 12368–12374

[2]

Luzio J P, Pryor P R, Bright N A. Lysosomes: fusion and function. Nature Reviews. Molecular Cell Biology, 2007, 8(8): 622–632

[3]

Zhang H, Liu J, Liu C, Yu P, Sun M, Yan X, Guo J P, Guo W. Imaging lysosomal highly reactive oxygen species and lighting up cancer cells and tumors enabled by a Si-rhodamine-based near-infrared fluorescent probe. Biomaterials, 2017, 133: 60–69

[4]

Li M, Fan J, Li H, Du J, Long S, Peng X. A ratiometric fluorescence probe for lysosomal polarity. Biomaterials, 2018, 164: 98–105

[5]

Maiuri M, Tasdemir E, Criollo A, Morselli E, Vicencio J, Carnuccio R, Kroemer G. Control of autophagy by oncogenes and tumor suppressor genes. Cell Death and Differentiation, 2009, 16(1): 87–93

[6]

Mohamed M M, Sloane B F. Cysteine cathepsins: multifunctional enzymes in cancer. Nature Reviews. Cancer, 2006, 6(10): 764–775

[7]

Soreghan B, Thomas S N, Yang A J. Aberrant sphingomyelin/ceramide metabolic-induced neuronal endosomal/lysosomal dysfunction: potential pathological consequences in age-related neurodegeneration. Advanced Drug Delivery Reviews, 2003, 55(11): 1515–1524

[8]

Mizukami H, Mi Y, Wada R, Kono M, Yamashita T, Liu Y, Werth N, Sandhoff R, Sandhoff K, Proia R L. Systemic inflammation in glucocerebrosidase-deficient mice with minimal glucosylceramide storage. Journal of Clinical Investigation, 2002, 109(9): 1215–1221

[9]

Reiser J, Adair B, Reinheckel T. Specialized roles for cysteine cathepsins in health and disease. Journal of Clinical Investigation, 2010, 120(10): 3421–3431

[10]

Vasiljeva O, Reinheckel T, Peters C, Turk D, Turk V, Turk B. Emerging roles of cysteine cathepsins in disease and their potential as drug targets. Current Pharmaceutical Design, 2007, 13(4): 387–403

[11]

Miao R, Li M, Zhang Q, Yang C, Wang X. An ECM-to-nucleus signalling pathway activates lysosomes for C. elegans larval development. Developmental Cell, 2020, 52(1): 21–37

[12]

Fujimaki K, Li R, Chen H, Croce K D, Zhang H H, Xing J, Bai F, Yao G. Graded regulation of cellular quiescence depth between proliferation and senescence by a lysosomal dimmer switch. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(45): 22624–22634

[13]

Hu R, Chen B, Wang Z, Qin A, Zhao Z, Lou X, Tang B Z. Intriguing “chameleon” fluorescent bioprobes for the visualization of lipid droplet-lysosome interplay. Biomaterials, 2019, 203: 43–51

[14]

Fan J, Dong H, Hu M, Wang J, Zhang H, Zhu H, Sun W, Peng X. Fluorescence imaging lysosomal changes during cell division and apoptosis observed using Nile blue based near-infrared emission. Chemical Communications, 2013, 50(7): 882–884

[15]

Kroemer G, Jäättelä M. Lysosomes and autophagy in cell death control. Nature Reviews. Cancer, 2005, 5(11): 886–897

[16]

Chen J W, Pan W, D’souza M P, August J T. Lysosome-associated membrane proteins: characterization of LAMP-1 of macrophage P388 and mouse embryo 3T3 cultured cells. Archives of Biochemistry and Biophysics, 1985, 239(2): 574–586

[17]

Werneburg N W, Guicciardi M E, Bronk S F, Kaufmann S H, Gores G J. Tumor necrosis factor-related apoptosis-inducing ligand activates a lysosomal pathway of apoptosis that is regulated by bcl-2 proteins. Journal of Biological Chemistry, 2007, 282(39): 28960–28970

[18]

Hu Q, Bally M B, Madden T D. Subcellular trafficking of antisense oligonucleotides and down-regulation of bcl-2 gene expression in human melanoma cells using a fusogenic liposome delivery system. Nucleic Acids Research, 2002, 30(16): 3632–3641

[19]

Hanaki K, Momo A, Oku T, Komoto A, Maenosono S, Yamaguchi Y, Yamamoto K. Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochemical and Biophysical Research Communications, 2003, 302(3): 496–501

[20]

Hotchkiss R S, Strasser A, McDunn J E, Swanson P E. Cell death. New England Journal of Medicine, 2009, 361(16): 1570–1583

[21]

Kroemer G, El-Deiry W S, Golstein P, Peter M E, Vaux D, Vandenabeele P, Zhivotovsky B, Blagosklonny M V, Malorni W, Knight R A, . Classification of cell death: recommendations of the nomenclature committee on cell death. Cell Death and Differentiation, 2005, 12(S2): 1463–1467

[22]

Galluzzi L, Maiuri M, Vitale I, Zischka H, Castedo M, Zitvogel L, Kroemer G. Cell death modalities: classification and pathophysiological implications. Cell Death and Differentiation, 2007, 14(7): 1237–1243

[23]

Walls K C, Ghosh A P, Franklin A V, Klocke B J, Ballestas M, Shacka J J, Zhang J, Roth K A. Lysosome dysfunction triggers Atg7-dependent neural apoptosis. Journal of Biological Chemistry, 2010, 285(14): 10497–10507

[24]

Codogno P, Meijer A J. Atg5: more than an autophagy factor. Nature Cell Biology, 2006, 8(10): 1045–1047

[25]

Yu T, Guo F, Yu Y, Sun T, Ma D, Han J, Qian Y, Kryczek I, Sun D, Nagarsheth N, . Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell, 2017, 170(3): 548–563

[26]

Amaravadi R K, Thompson C B. The roles of therapy-induced autophagy and necrosis in cancer treatment. Clinical Cancer Research, 2007, 13(24): 7271–7279

[27]

Marx J. Autophagy: is it cancer’s friend or foe? Science, 2006, 312(5777): 1160–1161

[28]

Giralt S, Thall P F, Khouri I, Wang X, Braunschweig I, Ippolitti C, Claxton D, Donato M, Bruton J, Cohen A, . Melphalan and purine analog-containing preparative regimens: reduced-intensity conditioning for patients with hematologic malignancies undergoing allogeneic progenitor cell transplantation. Blood, 2001, 97(3): 631–637

[29]

Pedersen P J, Christensen M S, Ruysschaert T, Linderoth L, Andresen T L, Melander F, Mouritsen O G, Madsen R, Clausen M H. Synthesis and biophysical characterization of chlorambucil anticancer ether lipid prodrugs. Journal of Medicinal Chemistry, 2009, 52(10): 3408–3415

[30]

Li W, Nie S, Chen Y, Wang Y, Li C, Xie M. Enhancement of cyclophosphamide-induced antitumor effect by a novel polysaccharide from Ganoderma atrum in sarcoma 180-bearing mice. Journal of Agricultural and Food Chemistry, 2011, 59(8): 3707–3716

[31]

Chen W, Balakrishnan K, Kuang Y, Han Y, Fu M, Gandhi V, Peng X. Reactive oxygen species (ROS) inducible DNA cross-linking agents and their effect on cancer cells and normal lymphocytes. Journal of Medicinal Chemistry, 2014, 57(11): 4498–4510

[32]

Verwilst P, Han J, Lee J, Mun S, Kang H G, Kim J S. Reconsidering azobenzene as a component of small-molecule hypoxia-mediated cancer drugs: a theranostic case study. Biomaterials, 2017, 115: 104–114

[33]

Detroja D, Chen T L, Lin Y W, Yen T Y, Wu M H, Tsai T H, Mehariya K, Kakadiya R, Lee T C, Shah A. Novel N-mustard-benzimidazoles/benzothiazoles, synthesis and anticancer evaluation. Anti-cancer Agents in Medicinal Chemistry, 2017, 17: 1741–1755

[34]

Diethelm-Varela B, Ai Y, Liang D, Xue F. Nitrogen mustards as anticancer chemotherapies: historic perspective, current developments and future trends. Current Topics in Medicinal Chemistry, 2019, 19(9): 691–712

[35]

Singh R K, Prasad D N, Bhardwaj T R. Hybrid pharmacophore-based drug design, synthesis, and antiproliferative activity of 1,4-dihydropyridines-linked alkylating anticancer agents. Medicinal Chemistry Research, 2015, 24(4): 1534–1545

[36]

Chen X, Chen H, Lu C, Yang C, Yu X, Li K, Xie Y. Novel mitochondria-targeted, nitrogen mustard-based DNA alkylation agents with near infrared fluorescence emission. Talanta, 2016, 161: 888–893

[37]

Chen X, Peng W, Huang S, Yang C, Hu M, Yang S, Yang S, Xie Y, Chen H, Lei N, Luo Y, Li K. Novel mitochondria-targeted and fluorescent DNA alkylation agents with highly selective activity against cancer cells. Dyes and Pigments, 2019, 170: 107610

[38]

Tang L, He P, Yan X, Sun J, Zhong K, Hou S, Bian Y. A mitochondria-targetable fluorescent probe for ratiometric detection of SO2 derivatives and its application in live cell imaging. Sensors and Actuators. B, Chemical, 2017, 247: 421–427

[39]

Zhou Q, Li K, Liu Y H, Li L L, Yu K K, Zhang H, Yu X Q. Fluorescent Wittig reagent as a novel ratiometric probe for the quantification of 5-formyluracil and its application in cell imaging. Chemical Communications, 2018, 54(97): 13722–13725

[40]

Wu M Y, Li K, Li C Y, Hou J T, Yu X Q. A water-soluble near-infrared probe for colorimetric and ratiometric sensing of SO2 derivatives in living cells. Chemical Communications, 2014, 50(2): 183–185

[41]

Liu Y, Li K, Wu M Y, Liu Y H, Xie Y M, Yu X Q. A mitochondria-targeted colorimetric and ratiometric fluorescent probe for biological SO2 derivatives in living cells. Chemical Communications, 2015, 51(50): 10236–10239

[42]

Li D P, Wang Z Y, Cao X J, Cui J, Wang X, Cui H Z, Miao J Y, Zhao B X. A mitochondria-targeted fluorescent probe for ratiometric detection of endogenous sulfur dioxide derivatives in cancer cells. Chemical Communications, 2016, 52(13): 2760–2763

[43]

Puckett C A, Barton J K. Methods to explore cellular uptake of ruthenium complexes. Journal of the American Chemical Society, 2007, 129(1): 46–47

[44]

Li Y, Tao L, Zuo Z, Zhou Y, Qian X, Lin Y, Jie H, Liu C, Li Z, Zhang H, . ZY0511, a novel, potent and selective LSD1 inhibitor, exhibits anticancer activity against solid tumors via the DDIT4/mTOR pathway. Cancer Letters, 2019, 454: 179–190

[45]

Ko S K, Chen X, Yoon J, Shin I. Zebrafish as a good vertebrate model for molecular imaging using fluorescent probes. Chemical Society Reviews, 2011, 40(5): 2120–2130

[46]

Deniz Koç N, Yüce R. A light-and electron microscopic study of primordial germ cells in the zebra fish (Danio rerio). Biological Research, 2012, 45(4): 331–336

[47]

Kang Y F, Li Y H, Fang Y W, Xu Y, Wei X M, Yin X B. Carbon quantum dots for zebrafish fluorescence imaging. Scientific Reports, 2005, 5(1): 11835

[48]

Liang D, Zhang Y, Wu Z, Chen Y J, Yang X, Sun M, Ni R, Bian J, Huang D. A near infrared singlet oxygen probe and its applications in in vivo imaging and measurement of singlet oxygen quenching activity of flavonoids. Sensors and Actuators. B, Chemical, 2018, 266: 645–654

[49]

Ding F, Zhan Y, Lu X, Sun Y. Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging. Chemical Science (Cambridge), 2018, 9(19): 4370–4380

[50]

Han X, Wang R, Song X, Yu F, Chen L. Evaluation selenocysteine protective effect in carbon disulfide induced hepatitis with a mitochondrial targeting ratiometric near-infrared fluorescent probe. Analytical Chemistry, 2018, 90(13): 8108–8115

[51]

Hu M, Yang C, Luo Y, Chen F, Yang F, Yang S, Chen H, Cheng Z, Li K, Xie Y. A hypoxia-specific and mitochondria-targeted anticancer theranostic agent with high selectivity for cancer cells. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2018, 6(16): 2413–2416

[52]

Qu X, Yuan F, He Z, Mai Y, Gao J, Li X, Yang D, Cao Y, Li X, Yuan Z. A rhodamine-based single-molecular theranostic agent for multiple-functionality tumor therapy. Dyes and Pigments, 2019, 166: 72–83

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4102KB)

Supplementary files

supplementary material

3590

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/