Immunological effects of nano-enabled hyperthermia for solid tumors: opportunity and challenge
Xiangsheng Liu, Hui Sun, Xueqing Wang, Huan Meng
Immunological effects of nano-enabled hyperthermia for solid tumors: opportunity and challenge
Compared to conventional hyperthermia that is limited by low selectivity and severe side effects, nano-enabled hyperthermia yields great potentials to tackle these limitations for cancer treatment. Another major advance is the observation of immunological responses associated with nano-enabled hyperthermia, which introduces a new avenue, allowing a potential paradigm shift from the acutely effective and cytotoxicity-centric response to the next-phase discovery, i.e., long-lasting and/or systemic anti-tumor immunity. This perspective first discusses the temperature-gradient and the spatially-structured immunological landscape in solid tumors receiving nano-enabled hyperthermia. This includes the discussion about underlying mechanism such as immunogenic cell death, which initiates a profound immunological chain reaction. In order to propagate the immune activation as a viable therapeutic principle, we further discussed the tumor type-specific complexity in the immunological tumor microenvironment, including the creative design of nano-enabled combination therapy to synergize with nano-enabled hyperthermia.
nano-enabled hyperthermia / immunogenic cell death / heterogeneous immunological landscape / tumor microenvironment
[1] |
Chu K F, Dupuy D E. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nature Reviews. Cancer, 2014, 14(3): 199–208
CrossRef
Google scholar
|
[2] |
Falk M H, Issels R D. Hyperthermia in oncology. International Journal of Hyperthermia, 2001, 17(1): 1–18
CrossRef
Google scholar
|
[3] |
Field S B, Bleehen N M. Hyperthermia in the treatment of cancer. Cancer Treatment Reviews, 1979, 6(2): 63–94
CrossRef
Google scholar
|
[4] |
Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R, Schlag P M. Hyperthermia in combined treatment of cancer. Lancet. Oncology, 2002, 3(8): 487–497
CrossRef
Google scholar
|
[5] |
Cherukuri P, Glazer E S, Curley S A. Targeted hyperthermia using metal nanoparticles. Advanced Drug Delivery Reviews, 2010, 62(3): 339–345
CrossRef
Google scholar
|
[6] |
Thiesen B, Jordan A. Clinical applications of magnetic nanoparticles for hyperthermia. International Journal of Hyperthermia, 2008, 24(6): 467–474
CrossRef
Google scholar
|
[7] |
Beik J, Abed Z, Ghoreishi F S, Hosseini-Nami S, Mehrzadi S, Shakeri-Zadeh A, Kamrava S K. Nanotechnology in hyperthermia cancer therapy: from fundamental principles to advanced applications. Journal of Controlled Release, 2016, 235: 205–221
CrossRef
Google scholar
|
[8] |
Huang X, Jain P K, El-Sayed I H, El-Sayed M A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers in Medical Science, 2008, 23(3): 217–228
CrossRef
Google scholar
|
[9] |
Jaque D, Maestro L M, Del Rosal B, Haro Gonzalez P, Benayas A, Plaza J, Rodriguez E M, Sole J. Nanoparticles for photothermal therapies. Nanoscale, 2014, 6(16): 9494–9530
CrossRef
Google scholar
|
[10] |
Liu X, Huang N, Li H, Wang H, Jin Q, Ji J. Multidentate polyethylene glycol modified gold nanorods for in vivo near-infrared photothermal cancer therapy. ACS Applied Materials & Interfaces, 2014, 6(8): 5657–5668
CrossRef
Google scholar
|
[11] |
Kim H C, Kim E, Jeong S W, Ha T L, Park S I, Lee S G, Lee S J, Lee S W. Magnetic nanoparticle-conjugated polymeric micelles for combined hyperthermia and chemotherapy. Nanoscale, 2015, 7(39): 16470–16480
CrossRef
Google scholar
|
[12] |
Tamarov K P, Osminkina L A, Zinovyev S V, Maximova K A, Kargina J V, Gongalsky M B, Ryabchikov Y, Al Kattan A, Sviridov A P, Sentis M. Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy. Scientific Reports, 2014, 4(1): 1–7
|
[13] |
Kumar R, Chauhan A, Jha S K, Kuanr B K. Localized cancer treatment by radio-frequency hyperthermia using magnetic nanoparticles immobilized on graphene oxide: from novel synthesis to in vitro studies. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2018, 6(33): 5385–5399
CrossRef
Google scholar
|
[14] |
Cardinal J, Klune J R, Chory E, Jeyabalan G, Kanzius J S, Nalesnik M, Geller D A. Noninvasive radiofrequency ablation of cancer targeted by gold nanoparticles. Surgery, 2008, 144(2): 125–132
CrossRef
Google scholar
|
[15] |
Kaczmarek K, Hornowski T, Kubovcikova M, Timko M, Koralewski M, Jozefczak A. Heating induced by therapeutic ultrasound in the presence of magnetic nanoparticles. ACS Applied Materials & Interfaces, 2018, 10(14): 11554–11564
CrossRef
Google scholar
|
[16] |
Beik J, Abed Z, Shakeri-Zadeh A, Nourbakhsh M, Shiran M B. Evaluation of the sonosensitizing properties of nano-graphene oxide in comparison with iron oxide and gold nanoparticles. Physica E, Low-Dimensional Systems and Nanostructures, 2016, 81: 308–314
CrossRef
Google scholar
|
[17] |
Devarakonda S B, Myers M R, Lanier M, Dumoulin C, Banerjee R K. Assessment of gold nanoparticle-mediated-enhanced hyperthermia using MR-guided high-intensity focused ultrasound ablation procedure. Nano Letters, 2017, 17(4): 2532–2538
CrossRef
Google scholar
|
[18] |
Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, Felix R, Riess H. The cellular and molecular basis of hyperthermia. Critical Reviews in Oncology/Hematology, 2002, 43(1): 33–56
CrossRef
Google scholar
|
[19] |
Lepock J R. Cellular effects of hyperthermia: relevance to the minimum dose for thermal damage. International Journal of Hyperthermia, 2003, 19(3): 252–266
CrossRef
Google scholar
|
[20] |
Roti J L. Cellular responses to hyperthermia (40 °C–46 °C): cell killing and molecular events. International Journal of Hyperthermia, 2008, 24(1): 3–15
CrossRef
Google scholar
|
[21] |
Fairchild K D, Viscardi R M, Hester L, Singh I S, Hasday J D. Effects of hypothermia and hyperthermia on cytokine production by cultured human mononuclear phagocytes from adults and newborns. Journal of Interferon & Cytokine Research, 2000, 20(12): 1049–1055
CrossRef
Google scholar
|
[22] |
Ito A, Honda H, Kobayashi T. Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of “heat-controlled necrosis” with heat shock protein expression. Cancer Immunology, Immunotherapy, 2006, 55(3): 320–328
CrossRef
Google scholar
|
[23] |
Ito A, Shinkai M, Honda H, Yoshikawa K, Saga S, Wakabayashi T, Yoshida J, Kobayashi T. Heat shock protein 70 expression induces antitumor immunity during intracellular hyperthermia using magnetite nanoparticles. Cancer Immunology, Immunotherapy, 2003, 52(2): 80–88
CrossRef
Google scholar
|
[24] |
Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. Nature Reviews. Immunology, 2017, 17(2): 97–111
CrossRef
Google scholar
|
[25] |
Todryk S, Melcher A, Dalgleish A, Vile R G. Heat shock proteins refine the danger theory. Immunology, 2000, 99(3): 334–337
CrossRef
Google scholar
|
[26] |
Zhang Z, Wang J, Chen C. Gold nanorods based platforms for light-mediated theranostics. Theranostics, 2013, 3(3): 223–238
CrossRef
Google scholar
|
[27] |
Dickerson E B, Dreaden E C, Huang X, El Sayed I H, Chu H, Pushpanketh S, McDonald J F, El Sayed M A. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Letters, 2008, 269(1): 57–66
CrossRef
Google scholar
|
[28] |
Yang K, Feng L, Shi X, Liu Z. Nano-graphene in biomedicine: theranostic applications. Chemical Society Reviews, 2013, 42(2): 530–547
CrossRef
Google scholar
|
[29] |
Guo L, Yan D D, Yang D, Li Y, Wang X, Zalewski O, Yan B, Lu W. Combinatorial photothermal and immuno cancer therapy using chitosan-coated hollow copper sulfide nanoparticles. ACS Nano, 2014, 8(6): 5670–5681
CrossRef
Google scholar
|
[30] |
Wang C, Xu L, Liang C, Xiang J, Peng R, Liu Z. Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis. Advanced Materials, 2014, 26(48): 8154–8162
CrossRef
Google scholar
|
[31] |
Tao Y, Ju E, Ren J, Qu X. Immunostimulatory oligonucleotides-loaded cationic graphene oxide with photothermally enhanced immunogenicity for photothermal/immune cancer therapy. Biomaterials, 2014, 35(37): 9963–9971
CrossRef
Google scholar
|
[32] |
Chen Q, Xu L, Liang C, Wang C, Peng R, Liu Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nature Communications, 2016, 7(1): 1–13
CrossRef
Google scholar
|
[33] |
Liu Y, Maccarini P, Palmer G M, Etienne W, Zhao Y, Lee C T, Ma X, Inman B A, Vo-Dinh T. Synergistic immuno photothermal nanotherapy (SYMPHONY) for the treatment of unresectable and metastatic cancers. Scientific Reports, 2017, 7(1): 8606
CrossRef
Google scholar
|
[34] |
Nam J, Son S, Ochyl L J, Kuai R, Schwendeman A, Moon J J. Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nature Communications, 2018, 9(1): 1074
CrossRef
Google scholar
|
[35] |
Yu G T, Rao L, Wu H, Yang L L, Bu L L, Deng W W, Wu L, Nan X, Zhang W F, Zhao X Z, Liu W, Sun Z J. Myeloid-derived suppressor cell membrane-coated magnetic nanoparticles for cancer theranostics by Inducing macrophage polarization and synergizing immunogenic cell death. Advanced Functional Materials, 2018, 28(37): 1801389
CrossRef
Google scholar
|
[36] |
Dong X, Liang J, Yang A, Qian Z, Kong D, Lv F. Fluorescence imaging guided CpG nanoparticles-loaded IR820-hydrogel for synergistic photothermal immunotherapy. Biomaterials, 2019, 209: 111–125
CrossRef
Google scholar
|
[37] |
Zhang D, Wu T, Qin X, Qiao Q, Shang L, Song Q, Yang C, Zhang Z. Intracellularly generated immunological gold nanoparticles for combinatorial photothermal therapy and immunotherapy against tumor. Nano Letters, 2019, 19(9): 6635–6646
CrossRef
Google scholar
|
[38] |
Chao Y, Chen G, Liang C, Xu J, Dong Z, Han X, Wang C, Liu Z. Iron nanoparticles for low-power local magnetic hyperthermia in combination with immune checkpoint blockade for systemic antitumor therapy. Nano Letters, 2019, 19(7): 4287–4296
CrossRef
Google scholar
|
[39] |
Ong C, Cha B G, Kim J. Mesoporous silica nanoparticles doped with gold nanoparticles for combined cancer immunotherapy and photothermal therapy. ACS Applied Bio Materials, 2019, 2(8): 3630–3638
CrossRef
Google scholar
|
[40] |
Ma Y, Zhang Y, Li X, Zhao Y, Li M, Jiang W, Tang X, Dou J, Lu L, Wang F, Wang Y. Near-infrared II phototherapy induces deep tissue immunogenic cell death and potentiates cancer immunotherapy. ACS Nano, 2019, 13(10): 11967–11980
CrossRef
Google scholar
|
[41] |
Wang Z, Guo B, Middha E, Huang Z, Hu Q, Fu Z, Liu B. Microfluidics-prepared uniform conjugated polymer nanoparticles for photo-triggered immune microenvironment modulation and cancer therapy. ACS Applied Materials & Interfaces, 2019, 11(12): 11167–11176
CrossRef
Google scholar
|
[42] |
Li Y, Liu X, Pan W, Li N, Tang B. Photothermal therapy-induced immunogenic cell death based on natural melanin nanoparticles against breast cancer. Chemical Communications, 2020, 56(9): 1389–1392
CrossRef
Google scholar
|
[43] |
Bezu L, Gomes-da-Silva L C, Dewitte H, Breckpot K, Fucikova J, Spisek R, Galluzzi L, Kepp O, Kroemer G. Combinatorial strategies for the induction of immunogenic cell death. Frontiers in Immunology, 2015, 6: 187
CrossRef
Google scholar
|
[44] |
Duan X, Chan C, Lin W. Nanoparticle-mediated immunogenic cell death enables and potentiates cancer immunotherapy. Angewandte Chemie International Edition, 2019, 58(3): 670–680
CrossRef
Google scholar
|
[45] |
Rodallec A, Sicard G, Fanciullino R, Benzekry S, Lacarelle B, Milano G, Ciccolini J. Turning cold tumors into hot tumors: harnessing the potential of tumor immunity using nanoparticles. Expert Opinion on Drug Metabolism & Toxicology, 2018, 14(11): 1139–1147
CrossRef
Google scholar
|
[46] |
Wang S, Riedinger A, Li H, Fu C, Liu H, Li L, Liu T, Tan L, Barthel M J, Pugliese G, De Donato F, Scotto D’Abbusco M, Meng X, Manna L, Meng H, Pellegrino T. Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects. ACS Nano, 2015, 9(2): 1788–1800
CrossRef
Google scholar
|
[47] |
Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annual Review of Immunology, 2013, 31(1): 51–72
CrossRef
Google scholar
|
[48] |
Garg A D, Dudek-Peric A M, Romano E, Agostinis P. Immunogenic cell death. International Journal of Developmental Biology, 2015, 59(1-3): 131–140
CrossRef
Google scholar
|
[49] |
Liu X, Jiang J, Liao Y P, Tang I, Zheng E, Qiu W, Lin M, Wang X, Ji Y, Mei K C,
|
[50] |
Wong D Y, Ong W W, Ang W H. Induction of immunogenic cell death by chemotherapeutic platinum complexes. Angewandte Chemie International Edition in English, 2015, 54(22): 6483–6487
CrossRef
Google scholar
|
[51] |
Verfaillie T, Rubio N, Garg A D, Bultynck G, Rizzuto R, Decuypere J P, Piette J, Linehan C, Gupta S, Samali A, Agostinis P. PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death and Differentiation, 2012, 19(11): 1880–1891
CrossRef
Google scholar
|
[52] |
Garg A D, Krysko D V, Verfaillie T, Kaczmarek A, Ferreira G B, Marysael T, Rubio N, Firczuk M, Mathieu C, Roebroek A J, Annaert W, Golab J, de Witte P, Vandenabeele P, Agostinis P. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO Journal, 2012, 31(5): 1062–1079
CrossRef
Google scholar
|
[53] |
Radogna F, Diederich M. Stress-induced cellular responses in immunogenic cell death: implications for cancer immunotherapy. Biochemical Pharmacology, 2018, 153: 12–23
CrossRef
Google scholar
|
[54] |
Krysko D V, Garg A D, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nature Reviews. Cancer, 2012, 12(12): 860–875
CrossRef
Google scholar
|
[55] |
Li W, Yang J, Luo L, Jiang M, Qin B, Yin H, Zhu C, Yuan X, Zhang J, Luo Z, Du Y, Li Q, Lou Y, Qiu Y, You J. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nature Communications, 2019, 10(1): 3349
CrossRef
Google scholar
|
[56] |
Dimou A, Syrigos K N, Saif M W. Overcoming the stromal barrier: technologies to optimize drug delivery in pancreatic cancer. Therapeutic Advances in Medical Oncology, 2012, 4(5): 271–279
CrossRef
Google scholar
|
[57] |
Meng H, Zhao Y, Dong J, Xue M, Lin Y S, Ji Z, Mai W X, Zhang H, Chang C H, Brinker C J, Zink J I, Nel A E. Two-wave nanotherapy to target the stroma and optimize gemcitabine delivery to a human pancreatic cancer model in mice. ACS Nano, 2013, 7(11): 10048–10065
CrossRef
Google scholar
|
[58] |
Miao L, Lin C M, Huang L. Stromal barriers and strategies for the delivery of nanomedicine to desmoplastic tumors. Journal of Controlled Release, 2015, 219: 192–204
CrossRef
Google scholar
|
[59] |
Meng H, Nel A E. Use of nano engineered approaches to overcome the stromal barrier in pancreatic cancer. Advanced Drug Delivery Reviews, 2018, 130: 50–57
CrossRef
Google scholar
|
[60] |
Rosenberg A, Mahalingam D. Immunotherapy in pancreatic adenocarcinoma-overcoming barriers to response. Journal of Gastrointestinal Oncology, 2018, 9(1): 143–159
CrossRef
Google scholar
|
[61] |
Torphy R J, Zhu Y, Schulick R D. Immunotherapy for pancreatic cancer: barriers and breakthroughs. Annals of Gastroenterological Surgery, 2018, 2(4): 274–281
CrossRef
Google scholar
|
[62] |
Issels R D. Hyperthermia adds to chemotherapy. European Journal of Cancer, 2008, 44(17): 2546–2554
CrossRef
Google scholar
|
[63] |
Nam J, Son S, Park K S, Zou W P, Shea L D, Moon J J. Cancer nanomedicine for combination cancer immunotherapy. Nature Reviews. Materials, 2019, 4(6): 398–414
CrossRef
Google scholar
|
[64] |
Peng J, Xiao Y, Li W, Yang Q, Tan L, Jia Y, Qu Y, Qian Z. Photosensitizer micelles together with IDO inhibitor enhance cancer photothermal therapy and immunotherapy. Advancement of Science, 2018, 5(5): 1700891
CrossRef
Google scholar
|
[65] |
Li Y, Li X, Zhou F, Doughty A, Hoover A R, Nordquist R E, Chen W R. Nanotechnology-based photoimmunological therapies for cancer. Cancer Letters, 2019, 442: 429–438
CrossRef
Google scholar
|
[66] |
Liu X, Zhang Y, Wang Y, Zhu W, Li G, Ma X, Zhang Y, Chen S, Tiwari S, Shi K, Zhang S, Fan H M, Zhao Y X, Liang X J. Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy. Theranostics, 2020, 10(8): 3793–3815
CrossRef
Google scholar
|
[67] |
Mei K C, Liao Y P, Jiang J, Chiang M, Khazaieli M, Liu X, Wang X, Liu Q, Chang C H, Zhang X, Li J, Ji Y, Melano B, Telesca D, Xia T, Meng H, Nel A E. Liposomal delivery of mitoxantrone and a cholesteryl indoximod prodrug provides effective chemo-immunotherapy in multiple solid tumors. ACS Nano, 2020, 14(10): 13343–13366
CrossRef
Google scholar
|
[68] |
Stephen Z R, Zhang M. Recent progress in the synergistic combination of nanoparticle-mediated hyperthermia and immunotherapy for treatment of cancer. Advanced Healthcare Materials, 2020, 10(2): 2001415
|
[69] |
Wang S, Sun Z, Hou Y. Engineering nanoparticles toward the modulation of emerging cancer immunotherapy. Advanced Healthcare Materials, 2020, 10(5): e2000845
CrossRef
Google scholar
|
[70] |
Mortezaee K, Narmani A, Salehi M, Bagheri H, Farhood B, Haghi-Aminjan H, Najafi M. Synergic effects of nanoparticles-mediated hyperthermia in radiotherapy/chemotherapy of cancer. Life Sciences, 2021, 269: 119020
CrossRef
Google scholar
|
[71] |
Liu X S, Jiang J H, Chang C H, Liao Y P, Jared J L, Tang I, Zheng E, Qiu W, Lin M, Wang X,
CrossRef
Google scholar
|
[72] |
Chen J, Lin L, Yan N, Hu Y, Fang H, Guo Z, Sun P, Tian H, Chen X. Macrophages loaded CpG and GNR-PEI for combination of tumor photothermal therapy and immunotherapy. Science China Materials, 2018, 61(11): 1484–1494
CrossRef
Google scholar
|
[73] |
Musetti S, Huang L. Nanoparticle-mediated remodeling of the tumor microenvironment to enhance immunotherapy. ACS Nano, 2018, 12(12): 11740–11755
CrossRef
Google scholar
|
[74] |
Allen S D, Liu X, Jiang J, Liao Y P, Chang C H, Nel A E, Meng H. Immune checkpoint inhibition in syngeneic mouse cancer models by a silicasome nanocarrier delivering a GSK3 inhibitor. Biomaterials, 2021, 269: 120635
CrossRef
Google scholar
|
[75] |
Chen P M, Pan W Y, Wu C Y, Yeh C Y, Korupalli C, Luo P K, Chou C J, Chia W T, Sung H W. Modulation of tumor microenvironment using a TLR-7/8 agonist-loaded nanoparticle system that exerts low-temperature hyperthermia and immunotherapy for in situ cancer vaccination. Biomaterials, 2020, 230: 119629
CrossRef
Google scholar
|
[76] |
Shobaki N, Sato Y, Suzuki Y, Okabe N, Harashima H. Manipulating the function of tumor-associated macrophages by siRNA-loaded lipid nanoparticles for cancer immunotherapy. Journal of Controlled Release, 2020, 325: 235–248
CrossRef
Google scholar
|
[77] |
Teo P Y, Yang C, Whilding L M, Parente-Pereira A C, Maher J, George A J, Hedrick J L, Yang Y Y, Ghaem-Maghami S. Ovarian cancer immunotherapy using PD-L1 siRNA targeted delivery from folic acid-functionalized polyethylenimine: strategies to enhance T cell killing. Advanced Healthcare Materials, 2015, 4(8): 1180–1189
CrossRef
Google scholar
|
[78] |
Golden E B, Apetoh L. Radiotherapy and immunogenic cell death. Seminars in Radiation Oncology, 2015, 25(1): 11–17
CrossRef
Google scholar
|
[79] |
Galluzzi L, Kepp O, Kroemer G. Immunogenic cell death in radiation therapy. OncoImmunology, 2013, 2(10): e26536
CrossRef
Google scholar
|
/
〈 | 〉 |