Immunological effects of nano-enabled hyperthermia for solid tumors: opportunity and challenge

Xiangsheng Liu, Hui Sun, Xueqing Wang, Huan Meng

PDF(3418 KB)
PDF(3418 KB)
Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (3) : 333-344. DOI: 10.1007/s11705-021-2059-5
REVIEW ARTICLE
REVIEW ARTICLE

Immunological effects of nano-enabled hyperthermia for solid tumors: opportunity and challenge

Author information +
History +

Abstract

Compared to conventional hyperthermia that is limited by low selectivity and severe side effects, nano-enabled hyperthermia yields great potentials to tackle these limitations for cancer treatment. Another major advance is the observation of immunological responses associated with nano-enabled hyperthermia, which introduces a new avenue, allowing a potential paradigm shift from the acutely effective and cytotoxicity-centric response to the next-phase discovery, i.e., long-lasting and/or systemic anti-tumor immunity. This perspective first discusses the temperature-gradient and the spatially-structured immunological landscape in solid tumors receiving nano-enabled hyperthermia. This includes the discussion about underlying mechanism such as immunogenic cell death, which initiates a profound immunological chain reaction. In order to propagate the immune activation as a viable therapeutic principle, we further discussed the tumor type-specific complexity in the immunological tumor microenvironment, including the creative design of nano-enabled combination therapy to synergize with nano-enabled hyperthermia.

Graphical abstract

Keywords

nano-enabled hyperthermia / immunogenic cell death / heterogeneous immunological landscape / tumor microenvironment

Cite this article

Download citation ▾
Xiangsheng Liu, Hui Sun, Xueqing Wang, Huan Meng. Immunological effects of nano-enabled hyperthermia for solid tumors: opportunity and challenge. Front. Chem. Sci. Eng., 2022, 16(3): 333‒344 https://doi.org/10.1007/s11705-021-2059-5

References

[1]
Chu K F, Dupuy D E. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nature Reviews. Cancer, 2014, 14(3): 199–208
CrossRef Google scholar
[2]
Falk M H, Issels R D. Hyperthermia in oncology. International Journal of Hyperthermia, 2001, 17(1): 1–18
CrossRef Google scholar
[3]
Field S B, Bleehen N M. Hyperthermia in the treatment of cancer. Cancer Treatment Reviews, 1979, 6(2): 63–94
CrossRef Google scholar
[4]
Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R, Schlag P M. Hyperthermia in combined treatment of cancer. Lancet. Oncology, 2002, 3(8): 487–497
CrossRef Google scholar
[5]
Cherukuri P, Glazer E S, Curley S A. Targeted hyperthermia using metal nanoparticles. Advanced Drug Delivery Reviews, 2010, 62(3): 339–345
CrossRef Google scholar
[6]
Thiesen B, Jordan A. Clinical applications of magnetic nanoparticles for hyperthermia. International Journal of Hyperthermia, 2008, 24(6): 467–474
CrossRef Google scholar
[7]
Beik J, Abed Z, Ghoreishi F S, Hosseini-Nami S, Mehrzadi S, Shakeri-Zadeh A, Kamrava S K. Nanotechnology in hyperthermia cancer therapy: from fundamental principles to advanced applications. Journal of Controlled Release, 2016, 235: 205–221
CrossRef Google scholar
[8]
Huang X, Jain P K, El-Sayed I H, El-Sayed M A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers in Medical Science, 2008, 23(3): 217–228
CrossRef Google scholar
[9]
Jaque D, Maestro L M, Del Rosal B, Haro Gonzalez P, Benayas A, Plaza J, Rodriguez E M, Sole J. Nanoparticles for photothermal therapies. Nanoscale, 2014, 6(16): 9494–9530
CrossRef Google scholar
[10]
Liu X, Huang N, Li H, Wang H, Jin Q, Ji J. Multidentate polyethylene glycol modified gold nanorods for in vivo near-infrared photothermal cancer therapy. ACS Applied Materials & Interfaces, 2014, 6(8): 5657–5668
CrossRef Google scholar
[11]
Kim H C, Kim E, Jeong S W, Ha T L, Park S I, Lee S G, Lee S J, Lee S W. Magnetic nanoparticle-conjugated polymeric micelles for combined hyperthermia and chemotherapy. Nanoscale, 2015, 7(39): 16470–16480
CrossRef Google scholar
[12]
Tamarov K P, Osminkina L A, Zinovyev S V, Maximova K A, Kargina J V, Gongalsky M B, Ryabchikov Y, Al Kattan A, Sviridov A P, Sentis M. Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy. Scientific Reports, 2014, 4(1): 1–7
[13]
Kumar R, Chauhan A, Jha S K, Kuanr B K. Localized cancer treatment by radio-frequency hyperthermia using magnetic nanoparticles immobilized on graphene oxide: from novel synthesis to in vitro studies. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2018, 6(33): 5385–5399
CrossRef Google scholar
[14]
Cardinal J, Klune J R, Chory E, Jeyabalan G, Kanzius J S, Nalesnik M, Geller D A. Noninvasive radiofrequency ablation of cancer targeted by gold nanoparticles. Surgery, 2008, 144(2): 125–132
CrossRef Google scholar
[15]
Kaczmarek K, Hornowski T, Kubovcikova M, Timko M, Koralewski M, Jozefczak A. Heating induced by therapeutic ultrasound in the presence of magnetic nanoparticles. ACS Applied Materials & Interfaces, 2018, 10(14): 11554–11564
CrossRef Google scholar
[16]
Beik J, Abed Z, Shakeri-Zadeh A, Nourbakhsh M, Shiran M B. Evaluation of the sonosensitizing properties of nano-graphene oxide in comparison with iron oxide and gold nanoparticles. Physica E, Low-Dimensional Systems and Nanostructures, 2016, 81: 308–314
CrossRef Google scholar
[17]
Devarakonda S B, Myers M R, Lanier M, Dumoulin C, Banerjee R K. Assessment of gold nanoparticle-mediated-enhanced hyperthermia using MR-guided high-intensity focused ultrasound ablation procedure. Nano Letters, 2017, 17(4): 2532–2538
CrossRef Google scholar
[18]
Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, Felix R, Riess H. The cellular and molecular basis of hyperthermia. Critical Reviews in Oncology/Hematology, 2002, 43(1): 33–56
CrossRef Google scholar
[19]
Lepock J R. Cellular effects of hyperthermia: relevance to the minimum dose for thermal damage. International Journal of Hyperthermia, 2003, 19(3): 252–266
CrossRef Google scholar
[20]
Roti J L. Cellular responses to hyperthermia (40 °C–46 °C): cell killing and molecular events. International Journal of Hyperthermia, 2008, 24(1): 3–15
CrossRef Google scholar
[21]
Fairchild K D, Viscardi R M, Hester L, Singh I S, Hasday J D. Effects of hypothermia and hyperthermia on cytokine production by cultured human mononuclear phagocytes from adults and newborns. Journal of Interferon & Cytokine Research, 2000, 20(12): 1049–1055
CrossRef Google scholar
[22]
Ito A, Honda H, Kobayashi T. Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of “heat-controlled necrosis” with heat shock protein expression. Cancer Immunology, Immunotherapy, 2006, 55(3): 320–328
CrossRef Google scholar
[23]
Ito A, Shinkai M, Honda H, Yoshikawa K, Saga S, Wakabayashi T, Yoshida J, Kobayashi T. Heat shock protein 70 expression induces antitumor immunity during intracellular hyperthermia using magnetite nanoparticles. Cancer Immunology, Immunotherapy, 2003, 52(2): 80–88
CrossRef Google scholar
[24]
Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. Nature Reviews. Immunology, 2017, 17(2): 97–111
CrossRef Google scholar
[25]
Todryk S, Melcher A, Dalgleish A, Vile R G. Heat shock proteins refine the danger theory. Immunology, 2000, 99(3): 334–337
CrossRef Google scholar
[26]
Zhang Z, Wang J, Chen C. Gold nanorods based platforms for light-mediated theranostics. Theranostics, 2013, 3(3): 223–238
CrossRef Google scholar
[27]
Dickerson E B, Dreaden E C, Huang X, El Sayed I H, Chu H, Pushpanketh S, McDonald J F, El Sayed M A. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Letters, 2008, 269(1): 57–66
CrossRef Google scholar
[28]
Yang K, Feng L, Shi X, Liu Z. Nano-graphene in biomedicine: theranostic applications. Chemical Society Reviews, 2013, 42(2): 530–547
CrossRef Google scholar
[29]
Guo L, Yan D D, Yang D, Li Y, Wang X, Zalewski O, Yan B, Lu W. Combinatorial photothermal and immuno cancer therapy using chitosan-coated hollow copper sulfide nanoparticles. ACS Nano, 2014, 8(6): 5670–5681
CrossRef Google scholar
[30]
Wang C, Xu L, Liang C, Xiang J, Peng R, Liu Z. Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis. Advanced Materials, 2014, 26(48): 8154–8162
CrossRef Google scholar
[31]
Tao Y, Ju E, Ren J, Qu X. Immunostimulatory oligonucleotides-loaded cationic graphene oxide with photothermally enhanced immunogenicity for photothermal/immune cancer therapy. Biomaterials, 2014, 35(37): 9963–9971
CrossRef Google scholar
[32]
Chen Q, Xu L, Liang C, Wang C, Peng R, Liu Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nature Communications, 2016, 7(1): 1–13
CrossRef Google scholar
[33]
Liu Y, Maccarini P, Palmer G M, Etienne W, Zhao Y, Lee C T, Ma X, Inman B A, Vo-Dinh T. Synergistic immuno photothermal nanotherapy (SYMPHONY) for the treatment of unresectable and metastatic cancers. Scientific Reports, 2017, 7(1): 8606
CrossRef Google scholar
[34]
Nam J, Son S, Ochyl L J, Kuai R, Schwendeman A, Moon J J. Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nature Communications, 2018, 9(1): 1074
CrossRef Google scholar
[35]
Yu G T, Rao L, Wu H, Yang L L, Bu L L, Deng W W, Wu L, Nan X, Zhang W F, Zhao X Z, Liu W, Sun Z J. Myeloid-derived suppressor cell membrane-coated magnetic nanoparticles for cancer theranostics by Inducing macrophage polarization and synergizing immunogenic cell death. Advanced Functional Materials, 2018, 28(37): 1801389
CrossRef Google scholar
[36]
Dong X, Liang J, Yang A, Qian Z, Kong D, Lv F. Fluorescence imaging guided CpG nanoparticles-loaded IR820-hydrogel for synergistic photothermal immunotherapy. Biomaterials, 2019, 209: 111–125
CrossRef Google scholar
[37]
Zhang D, Wu T, Qin X, Qiao Q, Shang L, Song Q, Yang C, Zhang Z. Intracellularly generated immunological gold nanoparticles for combinatorial photothermal therapy and immunotherapy against tumor. Nano Letters, 2019, 19(9): 6635–6646
CrossRef Google scholar
[38]
Chao Y, Chen G, Liang C, Xu J, Dong Z, Han X, Wang C, Liu Z. Iron nanoparticles for low-power local magnetic hyperthermia in combination with immune checkpoint blockade for systemic antitumor therapy. Nano Letters, 2019, 19(7): 4287–4296
CrossRef Google scholar
[39]
Ong C, Cha B G, Kim J. Mesoporous silica nanoparticles doped with gold nanoparticles for combined cancer immunotherapy and photothermal therapy. ACS Applied Bio Materials, 2019, 2(8): 3630–3638
CrossRef Google scholar
[40]
Ma Y, Zhang Y, Li X, Zhao Y, Li M, Jiang W, Tang X, Dou J, Lu L, Wang F, Wang Y. Near-infrared II phototherapy induces deep tissue immunogenic cell death and potentiates cancer immunotherapy. ACS Nano, 2019, 13(10): 11967–11980
CrossRef Google scholar
[41]
Wang Z, Guo B, Middha E, Huang Z, Hu Q, Fu Z, Liu B. Microfluidics-prepared uniform conjugated polymer nanoparticles for photo-triggered immune microenvironment modulation and cancer therapy. ACS Applied Materials & Interfaces, 2019, 11(12): 11167–11176
CrossRef Google scholar
[42]
Li Y, Liu X, Pan W, Li N, Tang B. Photothermal therapy-induced immunogenic cell death based on natural melanin nanoparticles against breast cancer. Chemical Communications, 2020, 56(9): 1389–1392
CrossRef Google scholar
[43]
Bezu L, Gomes-da-Silva L C, Dewitte H, Breckpot K, Fucikova J, Spisek R, Galluzzi L, Kepp O, Kroemer G. Combinatorial strategies for the induction of immunogenic cell death. Frontiers in Immunology, 2015, 6: 187
CrossRef Google scholar
[44]
Duan X, Chan C, Lin W. Nanoparticle-mediated immunogenic cell death enables and potentiates cancer immunotherapy. Angewandte Chemie International Edition, 2019, 58(3): 670–680
CrossRef Google scholar
[45]
Rodallec A, Sicard G, Fanciullino R, Benzekry S, Lacarelle B, Milano G, Ciccolini J. Turning cold tumors into hot tumors: harnessing the potential of tumor immunity using nanoparticles. Expert Opinion on Drug Metabolism & Toxicology, 2018, 14(11): 1139–1147
CrossRef Google scholar
[46]
Wang S, Riedinger A, Li H, Fu C, Liu H, Li L, Liu T, Tan L, Barthel M J, Pugliese G, De Donato F, Scotto D’Abbusco M, Meng X, Manna L, Meng H, Pellegrino T. Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects. ACS Nano, 2015, 9(2): 1788–1800
CrossRef Google scholar
[47]
Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annual Review of Immunology, 2013, 31(1): 51–72
CrossRef Google scholar
[48]
Garg A D, Dudek-Peric A M, Romano E, Agostinis P. Immunogenic cell death. International Journal of Developmental Biology, 2015, 59(1-3): 131–140
CrossRef Google scholar
[49]
Liu X, Jiang J, Liao Y P, Tang I, Zheng E, Qiu W, Lin M, Wang X, Ji Y, Mei K C, . Combination chemo-immunotherapy for pancreatic cancer using the immunogenic effects of an irinotecan silicasome nanocarrier plus anti-PD-1. Advancement of Science, 2021, 8(6): 2002147
[50]
Wong D Y, Ong W W, Ang W H. Induction of immunogenic cell death by chemotherapeutic platinum complexes. Angewandte Chemie International Edition in English, 2015, 54(22): 6483–6487
CrossRef Google scholar
[51]
Verfaillie T, Rubio N, Garg A D, Bultynck G, Rizzuto R, Decuypere J P, Piette J, Linehan C, Gupta S, Samali A, Agostinis P. PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death and Differentiation, 2012, 19(11): 1880–1891
CrossRef Google scholar
[52]
Garg A D, Krysko D V, Verfaillie T, Kaczmarek A, Ferreira G B, Marysael T, Rubio N, Firczuk M, Mathieu C, Roebroek A J, Annaert W, Golab J, de Witte P, Vandenabeele P, Agostinis P. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO Journal, 2012, 31(5): 1062–1079
CrossRef Google scholar
[53]
Radogna F, Diederich M. Stress-induced cellular responses in immunogenic cell death: implications for cancer immunotherapy. Biochemical Pharmacology, 2018, 153: 12–23
CrossRef Google scholar
[54]
Krysko D V, Garg A D, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nature Reviews. Cancer, 2012, 12(12): 860–875
CrossRef Google scholar
[55]
Li W, Yang J, Luo L, Jiang M, Qin B, Yin H, Zhu C, Yuan X, Zhang J, Luo Z, Du Y, Li Q, Lou Y, Qiu Y, You J. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nature Communications, 2019, 10(1): 3349
CrossRef Google scholar
[56]
Dimou A, Syrigos K N, Saif M W. Overcoming the stromal barrier: technologies to optimize drug delivery in pancreatic cancer. Therapeutic Advances in Medical Oncology, 2012, 4(5): 271–279
CrossRef Google scholar
[57]
Meng H, Zhao Y, Dong J, Xue M, Lin Y S, Ji Z, Mai W X, Zhang H, Chang C H, Brinker C J, Zink J I, Nel A E. Two-wave nanotherapy to target the stroma and optimize gemcitabine delivery to a human pancreatic cancer model in mice. ACS Nano, 2013, 7(11): 10048–10065
CrossRef Google scholar
[58]
Miao L, Lin C M, Huang L. Stromal barriers and strategies for the delivery of nanomedicine to desmoplastic tumors. Journal of Controlled Release, 2015, 219: 192–204
CrossRef Google scholar
[59]
Meng H, Nel A E. Use of nano engineered approaches to overcome the stromal barrier in pancreatic cancer. Advanced Drug Delivery Reviews, 2018, 130: 50–57
CrossRef Google scholar
[60]
Rosenberg A, Mahalingam D. Immunotherapy in pancreatic adenocarcinoma-overcoming barriers to response. Journal of Gastrointestinal Oncology, 2018, 9(1): 143–159
CrossRef Google scholar
[61]
Torphy R J, Zhu Y, Schulick R D. Immunotherapy for pancreatic cancer: barriers and breakthroughs. Annals of Gastroenterological Surgery, 2018, 2(4): 274–281
CrossRef Google scholar
[62]
Issels R D. Hyperthermia adds to chemotherapy. European Journal of Cancer, 2008, 44(17): 2546–2554
CrossRef Google scholar
[63]
Nam J, Son S, Park K S, Zou W P, Shea L D, Moon J J. Cancer nanomedicine for combination cancer immunotherapy. Nature Reviews. Materials, 2019, 4(6): 398–414
CrossRef Google scholar
[64]
Peng J, Xiao Y, Li W, Yang Q, Tan L, Jia Y, Qu Y, Qian Z. Photosensitizer micelles together with IDO inhibitor enhance cancer photothermal therapy and immunotherapy. Advancement of Science, 2018, 5(5): 1700891
CrossRef Google scholar
[65]
Li Y, Li X, Zhou F, Doughty A, Hoover A R, Nordquist R E, Chen W R. Nanotechnology-based photoimmunological therapies for cancer. Cancer Letters, 2019, 442: 429–438
CrossRef Google scholar
[66]
Liu X, Zhang Y, Wang Y, Zhu W, Li G, Ma X, Zhang Y, Chen S, Tiwari S, Shi K, Zhang S, Fan H M, Zhao Y X, Liang X J. Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy. Theranostics, 2020, 10(8): 3793–3815
CrossRef Google scholar
[67]
Mei K C, Liao Y P, Jiang J, Chiang M, Khazaieli M, Liu X, Wang X, Liu Q, Chang C H, Zhang X, Li J, Ji Y, Melano B, Telesca D, Xia T, Meng H, Nel A E. Liposomal delivery of mitoxantrone and a cholesteryl indoximod prodrug provides effective chemo-immunotherapy in multiple solid tumors. ACS Nano, 2020, 14(10): 13343–13366
CrossRef Google scholar
[68]
Stephen Z R, Zhang M. Recent progress in the synergistic combination of nanoparticle-mediated hyperthermia and immunotherapy for treatment of cancer. Advanced Healthcare Materials, 2020, 10(2): 2001415
[69]
Wang S, Sun Z, Hou Y. Engineering nanoparticles toward the modulation of emerging cancer immunotherapy. Advanced Healthcare Materials, 2020, 10(5): e2000845
CrossRef Google scholar
[70]
Mortezaee K, Narmani A, Salehi M, Bagheri H, Farhood B, Haghi-Aminjan H, Najafi M. Synergic effects of nanoparticles-mediated hyperthermia in radiotherapy/chemotherapy of cancer. Life Sciences, 2021, 269: 119020
CrossRef Google scholar
[71]
Liu X S, Jiang J H, Chang C H, Liao Y P, Jared J L, Tang I, Zheng E, Qiu W, Lin M, Wang X, . Development of facile and versatile platinum drug delivering silicasome nanocarriers for efficient pancreatic cancer chemo-immunotherapy. Small, 2021, 17(14): 2005993
CrossRef Google scholar
[72]
Chen J, Lin L, Yan N, Hu Y, Fang H, Guo Z, Sun P, Tian H, Chen X. Macrophages loaded CpG and GNR-PEI for combination of tumor photothermal therapy and immunotherapy. Science China Materials, 2018, 61(11): 1484–1494
CrossRef Google scholar
[73]
Musetti S, Huang L. Nanoparticle-mediated remodeling of the tumor microenvironment to enhance immunotherapy. ACS Nano, 2018, 12(12): 11740–11755
CrossRef Google scholar
[74]
Allen S D, Liu X, Jiang J, Liao Y P, Chang C H, Nel A E, Meng H. Immune checkpoint inhibition in syngeneic mouse cancer models by a silicasome nanocarrier delivering a GSK3 inhibitor. Biomaterials, 2021, 269: 120635
CrossRef Google scholar
[75]
Chen P M, Pan W Y, Wu C Y, Yeh C Y, Korupalli C, Luo P K, Chou C J, Chia W T, Sung H W. Modulation of tumor microenvironment using a TLR-7/8 agonist-loaded nanoparticle system that exerts low-temperature hyperthermia and immunotherapy for in situ cancer vaccination. Biomaterials, 2020, 230: 119629
CrossRef Google scholar
[76]
Shobaki N, Sato Y, Suzuki Y, Okabe N, Harashima H. Manipulating the function of tumor-associated macrophages by siRNA-loaded lipid nanoparticles for cancer immunotherapy. Journal of Controlled Release, 2020, 325: 235–248
CrossRef Google scholar
[77]
Teo P Y, Yang C, Whilding L M, Parente-Pereira A C, Maher J, George A J, Hedrick J L, Yang Y Y, Ghaem-Maghami S. Ovarian cancer immunotherapy using PD-L1 siRNA targeted delivery from folic acid-functionalized polyethylenimine: strategies to enhance T cell killing. Advanced Healthcare Materials, 2015, 4(8): 1180–1189
CrossRef Google scholar
[78]
Golden E B, Apetoh L. Radiotherapy and immunogenic cell death. Seminars in Radiation Oncology, 2015, 25(1): 11–17
CrossRef Google scholar
[79]
Galluzzi L, Kepp O, Kroemer G. Immunogenic cell death in radiation therapy. OncoImmunology, 2013, 2(10): e26536
CrossRef Google scholar

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 31671017 and 81872809) and the startup funding support from The Cancer Hospital of the University of Chinese Academy of Sciences (CAS), Institute of Basic Medicine and Cancer (IBMC), CAS. HM thanks the start-up packages of NCNST, CAS.

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(3418 KB)

Accesses

Citations

Detail

Sections
Recommended

/