Dynamic modelling and simulation of a post-combustion CO2 capture process for coal-fired power plants
Jianlin Li, Ti Wang, Pei Liu, Zheng Li
Dynamic modelling and simulation of a post-combustion CO2 capture process for coal-fired power plants
Solvent-based post-combustion capture technologies have great potential for CO2 mitigation in traditional coal-fired power plants. Modelling and simulation provide a low-cost opportunity to evaluate performances and guide flexible operation. Composed by a series of partial differential equations, first-principle post-combustion capture models are computationally expensive, which limits their use in real time process simulation and control. In this study, we propose a first-principle approach to develop the basic structure of a reduced-order model and then the dominant factor is used to fit properties and simplify the chemical and physical process, based on which a universal and hybrid post-combustion capture model is established. Model output at steady state and trend at dynamic state are validated using experimental data obtained from the literature. Then, impacts of liquid-to-gas ratio, reboiler power, desorber pressure, tower height and their combination on the absorption and desorption effects are analyzed. Results indicate that tower height should be designed in conjunction with the flue gas flow, and the gas-liquid ratio can be optimized to reduce the reboiler power under a certain capture target.
CO2 capture / post-combustion capture / simulation / dominant factor
[1] |
Hanak D P, Manovic V. Linking renewables and fossil fuels with carbon capture via energy storage for a sustainable energy future. Frontiers of Chemical Science and Engineering, 2020, 14(3): 453–459
CrossRef
Google scholar
|
[2] |
Mumford K A, Yue W U, Smith K H, Stevens G W. Review of solvent-based carbon-dioxide capture technologies. Frontiers of Chemical Science and Engineering, 2015, 9(2): 125–141
CrossRef
Google scholar
|
[3] |
Lew D, Brinkman G, Kumar N, Besuner P, Agan D D, Lefton S. Impacts of wind and solar on emissions and wear and tear of fossil-fueled generators. In: 2012 IEEE Power and Energy Society General Meeting. San Diego: IEEE, 2012, 1–8
|
[4] |
Guido G D, Compagnoni M, Pellegrini L A, Rossetti H. Mature versus emerging technologies for CO2 capture in power plants: Key open issues in post-combustion amine scrubbing and in chemical looping combustion. Frontiers of Chemical Science and Engineering, 2018, 12(2): 315–325
CrossRef
Google scholar
|
[5] |
Wall T F. Combustion processes for carbon capture. Proceedings of the Combustion Institute, 2007, 31(1): 31–47
CrossRef
Google scholar
|
[6] |
Cohen S M, Rochelle G T, Webber M E. Optimal operation of flexible post-combustion CO2 capture in response to volatile electricity prices. Energy Procedia, 2011, 4: 2604–2611
CrossRef
Google scholar
|
[7] |
Wu X, Wang M, Liao P, Shen J, Li Y. Solvent-based post-combustion CO2 capture for power plants: a critical review and perspective on dynamic modelling, system identification, process control and flexible operation. Applied Energy, 2020, 257: 257–113941
CrossRef
Google scholar
|
[8] |
Treybal R E. Adiabatic gas absorption and stripping in packed towers. Industrial & Engineering Chemistry, 1969, 61(7): 36–41
CrossRef
Google scholar
|
[9] |
Kenig E Y, Schneider R, Górak A. Reactive absorption: optimal process design via optimal modelling. Chemical Engineering Science, 2001, 56(2): 343–350
CrossRef
Google scholar
|
[10] |
Kvamsdal H M, Jakobsen J P, Hoff K A. Dynamic modeling and simulation of a CO2 absorber column for post-combustion CO2 capture. Chemical Engineering and Processing, 2009, 48(1): 135–144
CrossRef
Google scholar
|
[11] |
Jayarathna S A, Lie B, Melaaen M C. Dynamic modelling of the absorber of a post-combustion CO2 capture plant: modelling and simulations. Computers & Chemical Engineering, 2013, 53: 178–189
CrossRef
Google scholar
|
[12] |
Kvamsdal H M, Hillestad M. Selection of model parameter correlations in a rate-based CO2 absorber model aimed for process simulation. International Journal of Greenhouse Gas Control, 2012, 11: 11–20
CrossRef
Google scholar
|
[13] |
Jayarathna S A, Lie B, Melaaen M C. NEQ rate based modeling of an absorption column for post combustion CO2 capturing. Energy Procedia, 2011, 4(1): 1797–1804
CrossRef
Google scholar
|
[14] |
Ziaii S, Rochelle G T, Edgar T F. Dynamic modeling to minimize energy use for CO2 capture in power plants by aqueous monoethanolamine. Industrial & Engineering Chemistry Research, 2009, 48(13): 6105–6111
CrossRef
Google scholar
|
[15] |
Enaasen N, Tobiesen A, Kvamsdal H M, Hillestad M. Dynamic modeling of the solvent regeneration part of a CO2 capture plant. Energy Procedia, 2013, 37(1): 2058–2065
CrossRef
Google scholar
|
[16] |
Lawal A, Wang M, Stephenson P, Koumpouras G, Yeung H. Dynamic modelling and analysis of post-combustion CO2 chemical absorption process for coal-fired power plants. Fuel, 2010, 89(10): 2791–2801
CrossRef
Google scholar
|
[17] |
Jayarathna S A, Lie B, Melaaen M C. Amine based CO2 capture plant: dynamic modeling and simulations. International Journal of Greenhouse Gas Control, 2013, 14(5): 282–290
CrossRef
Google scholar
|
[18] |
Wellner K, Marx-Schubach T, Schmitz G. Dynamic behavior of coal-fired power plants with post combustion CO2 capture. Industrial & Engineering Chemistry Research, 2016, 55(46): 12038–12045
CrossRef
Google scholar
|
[19] |
Dutta R, Nord L O, Bolland O. Selection and design of post-combustion CO2 capture process for 600 MW natural gas fueled thermal power plant based on operability. Energy, 2017, 121: 643–656
CrossRef
Google scholar
|
[20] |
Montañés R M. GarÐarsdóttir S Ó, Normann F, Johnsson F, Nord L O. Demonstrating load-change transient performance of a commercial-scale natural gas combined cycle power plant with post-combustion CO2 capture. International Journal of Greenhouse Gas Control, 2017, 63: 158–174
CrossRef
Google scholar
|
[21] |
Wu X, Wang M, Shen J, Li Y, Lawal A, Lee K Y. Reinforced coordinated control of coal-fired power plant retrofitted with solvent based CO2 capture using model predictive controls. Applied Energy, 2019, 238: 495–515
CrossRef
Google scholar
|
[22] |
He X, Lima F V. Development and implementation of advanced control strategies for power plant cycling with carbon capture. Computers & Chemical Engineering, 2018, 121: 497–509
CrossRef
Google scholar
|
[23] |
Zhang Q, Turton R, Bhattacharyya D. Nonlinear model predictive control and H-infinity robust control for a post-combustion CO2 capture process. International Journal of Greenhouse Gas Control, 2019, 82: 138–151
|
[24] |
Madeddu C, Errico M, Baratti R. Process analysis for the carbon dioxide chemical absorption-regeneration system. Applied Energy, 2018, 251: 532–542
CrossRef
Google scholar
|
[25] |
Moullec Y L, Neveux T, Azki A A, Chikukwa A, Hoff K A. Process modifications for solvent-based post-combustion CO2 capture. International Journal of Greenhouse Gas Control, 2014, 31: 96–112
CrossRef
Google scholar
|
[26] |
Dowell N M, Shah N. The multi-period optimisation of an amine-based CO2 capture process integrated with a super-critical coal-fired power station for flexible operation. Computers & Chemical Engineering, 2015, 74: 169–183
CrossRef
Google scholar
|
[27] |
Dowell N M, Shah N. Dynamic modelling and analysis of a coal-fired power plant integrated with a novel split-flow configuration post-combustion CO2 capture process. International Journal of Greenhouse Gas Control, 2014, 27: 103–119
CrossRef
Google scholar
|
[28] |
Gaspar J, Jorgensen J B, Fosbol P L. Control of a post-combustion CO2 capture plant during process start-up and load variations. IFAC-PapersOnLine, 2015, 48(8): 580–585
CrossRef
Google scholar
|
[29] |
Marx-Schubach T, Schmitz G. Modeling and simulation of the start-up process of coal fired power plants with post-combustion CO2 capture. International Journal of Greenhouse Gas Control, 2019, 87: 44–57
CrossRef
Google scholar
|
[30] |
Åkesson J, Laird C D, Lavedan G, Prölß K, Tummescheit H, Velut S, Zhu Y. Nonlinear model predictive control of a CO2 post combustion absorption unit. Chemical Engineering & Technology, 2012, 35(3): 445–454
CrossRef
Google scholar
|
[31] |
Jin H, Liu P, Li Z. Energy-efficient process intensification for post-combustion CO2 capture: a modeling approach. Energy, 2018, 158: 471–483
CrossRef
Google scholar
|
[32] |
Harun N, Nittaya T, Douglas P L, Croiset E, Ricardez-Sandoval L A. Dynamic simulation of MEA absorption process for CO2 capture from power plants. International Journal of Greenhouse Gas Control, 2012, 10: 295–309
CrossRef
Google scholar
|
[33] |
Lyu B H. Mass transfer-reaction mechanism of CO2 absorption in MEA/ionic liquid mixed aqueous solution. Dissertation for the Doctoral Degree. Zhejiang: Zhejiang University, 2014, 59–60
|
[34] |
Onda K, Takeuchi H, Okumoto Y. Mass transfer coefficients between gas and liquid phases in packed columns. Journal of Chemical Engineering of Japan, 1968, 1(1): 56–62
CrossRef
Google scholar
|
[35] |
Danckwerts P V, Lannus A. Gas-liquid reactions. Journal of the Electrochemical Society, 1970, 117(10): 369C
CrossRef
Google scholar
|
[36] |
Ramachandran N, Aboudheir A, Idem R, Tontiwachwuthikul P. Kinetics of the absorption of CO2 into mixed aqueous loaded solutions of monoethanolamine and methyldiethanolamine. Industrial & Engineering Chemistry Research, 2006, 45(8): 2608–2616
CrossRef
Google scholar
|
[37] |
Saha A K, Bandyopadhyay S S, Biswas A K. Solubility and diffusivity of nitrous oxide and carbon dioxide in aqueous solutions of 2-amino-2-methyl-1-propanol. Journal of Chemical & Engineering Data, 1993, 38(1): 78–82
CrossRef
Google scholar
|
[38] |
Versteeg G F, Van Swaaij W P M. Solubility and diffusivity of acid gases (carbon dioxide, nitrous oxide) in aqueous alkanolamine solutions. Journal of Chemical & Engineering Data, 1988, 33(1): 29–34
CrossRef
Google scholar
|
[39] |
Ko J J, Tsai T C, Lin C Y, Wang H M, Li M H. Diffusivity of nitrous oxide in aqueous alkanolamine solutions. Journal of Chemical & Engineering Data, 2001, 46(1): 160–165
CrossRef
Google scholar
|
[40] |
Edwards T J, Maurer G, Newman J, Prausnitz J M. Vapor-liquid equilibria in multicomponent aqueous solutions of volatile weak electrolytes. AIChE Journal, 1978, 24(6): 966–976
CrossRef
Google scholar
|
[41] |
Bower V E, Robinson R A, Bates R G. Acidic dissociation constant and related thermodynamic quantities for diethanolammonium ion in water from 0 to 50 °C. Journal of Research of the National Bureau of Standards, 1962, 66(1): 71–75
CrossRef
Google scholar
|
[42] |
Li H, Chen J. Thermodynamic model and process simulation of CO2 absorption by monoethanolamine. CIESC, 2014, 65(1): 47–54
|
[43] |
Gaspar J, Jørgensen J B, Fosbøl P L. A dynamic mathematical model for packed columns in carbon capture plants. In: 2015 European Control Conference (ECC). Linz: IEEE, 2015, 2738–2743
|
[44] |
Bemer G G, Kalis G A J. New calculation method of liquid holding capacity and pressure drop in packed tower. Guangxi Chemical Technology, 1979, 1979(2): 55–63
|
[45] |
Stichlmair J, Bravo J L, Fair J R. General model for prediction of pressure drop and capacity of countercurrent gas/liquid packed columns. Gas Separation & Purification, 1989, 3(1): 19–28
CrossRef
Google scholar
|
[46] |
Jayarathna S A, Lie B, Melaaen M C. Development of a dynamic model of a post combustion CO2 capture process. Energy Procedia, 2013, 37: 1760–1769
CrossRef
Google scholar
|
/
〈 | 〉 |